2012公考数量关系核心公式汇总
- 格式:doc
- 大小:26.00 KB
- 文档页数:5
行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。
(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。
(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。
(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。
(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。
三、平均数关系公式:1.平均数=和/个数。
2.和=平均数×个数。
四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。
2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。
2.时间=距离/速度。
3.距离=速度×时间。
六、面积和体积关系公式:1.长方形面积=长×宽。
2.正方形面积=边长×边长。
3.圆面积=π×半径的平方。
4.圆柱体体积=底面积×高。
5.球体体积=4/3×π×半径的立方。
6.锥体体积=1/3×底面积×高。
七、等差数列关系公式:1.第n项=首项+(n-1)×公差。
2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。
2.前n项和=(首项×(公比的n次方-1))/(公比-1)。
公务员考试行测数量关系16大核心公式汇总1、弃9验算法利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。
用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。
对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等注:1.弃九法不适合除法2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。
这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意2、传球问题核心公式N个人传M次球,记X=(N-1)^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数3、整体消去法在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去4、裂项公式1/n(n-k) =1/k (1/(n-k)-1/n)5、平方数列求和公式1^2+2^2+3^2…+n^2=1/6 n(n+1)(2n+1)6、立方数列求和公式1^3+2^3+3^3…+n^3=[1/2 n(n+1) ]^27、行程问题(1)分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的(2n-1)倍(2)A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= (〖2V〗_1 V_2)/(V_1+V_2 ),(3)沿途数车问题:(同方向)相邻两车的发车时间间隔×车速=(同方向)相邻两车的间隔(4)环形运动问题:异向而行,则相邻两次相遇间所走的路程和为周长同向而行,则相邻两次相遇间所走的路程差为周长(5)自动扶梯问题能看到的级数=(人速+扶梯速)×顺行运动所需时间能看到的级数=(人速-扶梯速)×逆行运动所需时间(6)错车问题对方车长为路程和,是相遇问题路程和=速度和×时间(7)队伍行走问题V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则从队尾到队首的时间为:L/(V_1-V_2 )从队首到队尾的时间为:L/(V_1+V_2 )8、比赛场次问题N为参赛选手数,淘汰赛仅需决出冠亚军比赛场次=N-1,淘汰赛需决出前四名比赛场次=N,单循环赛比赛场次=?_N^2,双循环赛比赛场次=A_N^29、植树问题两端植树:距离/间隔+1 = 棵数一端植树(环形植树):距离/间隔= 棵数俩端均不植树:距离/间隔-1=棵数双边植树:(距离/间隔-1)*2=棵数10、方阵问题最为层每边人数为N方阵总人数=N^2最外层总人数=(N-1)×4相邻两层总人数差=8(行数和列数>3)去掉一行一列则少(2N-1)人空心方阵总人数=(最外层每边人数-层数)×层数×411、几何问题N边形内角和=(N-2)×180°球体体积=4/3 πr^3圆柱体积=πr^2 h圆柱体积=1/3 πr^2 h12、牛吃草问题(牛头数-每天长草量)×天数=最初总草量13、日期问题一年加1,闰年加2,小月(30天)加2,大月(31天)加3,28年一周期4年1闰,100年不闰,400年再闰14、页码问题如:一本书的页码一共用了270个数字,求这本书的页数。
一、拆数求积问题
拆数求积问题核心法则:将一个正整数(≥2)拆成若干自然数之和,要使这些自然数的乘积尽可能的大,那么我们应该这样来拆数:全部拆成若干个3和少量2(1个2或者2个2)之和即可。
二、货物集中问题
在非闭合的路径上(包括线形、树形等,不包括环形)有多个“点”,每个点之间通过“路”来连通,每个“点”上有一定的货物,需要用优化的方法把货物集中到一个“点”上的时候,通过以下方式判断货物流通的方向:判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。
特别提示
1. 本法则必须适用于“非闭合”的路径问题中;
2. 本法则的应用,与各条路径的长短没有关系;
3. 实际操作中,我们应该从中间开始分析,这样可以更快得到答案。
三、货物装卸问题
如果有M辆车和N(N>M)个工厂,所需装卸工的总数就是需要装卸工人数最多的M个工厂所需的装卸工人数之和。
(若M≥N,则把各个点上需要的人加起来即答案)
四、行程问题。
公考数量关系公式大全
在求解数量关系问题时,常用的公式包括以下几种:
1. 比例关系公式:
a/b = c/d ,其中 a、b、c、d 表示不同量之间的比值关系。
2. 百分比关系公式:
数量关系 x = 百分数 y/100 ,其中 x 表示待求数量,y 表示
已知百分比。
3. 加减乘除关系公式:
加法:a + b = c ,其中 a、b 表示已知数量,c 表示待求数量。
减法:a - b = c ,其中 a、c 表示已知数量,b 表示待求数量。
乘法:a × b = c ,其中 a、b 表示已知数量,c 表示待求数量。
除法:a ÷ b = c ,其中 a、c 表示已知数量,b 表示待求数量。
4. 平均数关系公式:
平均数 = 总和 / 数量,其中平均数表示待求数量,总和表
示已知数量之和,数量表示已知数量个数。
5. 比较关系公式:
a =
b ,其中 a、b 表示已知数量。
这些公式可以应用于不同的数量关系问题,但具体使用哪个公式要根据具体的问题情况来确定。
数量关系常用公式1行程问题①往返间运动核心公式(其中V 和V 分别代表往返速度)②沿途数车问题核心公式③漂流瓶问题核心公式(其中t 和t 分别代表船顺流所需时间和逆流所需时间)⑤往返接人问题核心公式一般的若记两班同学步行的速度为v 和v ,客车载人时速度为v,空载时速度为v’,全程为S,则可得到下述方程组三种重要特例1若人速相同、车速不变:v =v =v ,且v=v ’=v =nv ,原方程组变型为2若人速相同、车速变化:v =v =v ,原方程变型为3若人速不同、车速不变:v =v ’=v , 原方程变型为⑥两次相遇问题核心公式:单岸型:两岸型:(其中S表示两岸的距离).电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?A.4.8 元B.5 元C.5.3 元D.5.5 元7.十字交叉法:A/B=(r-b)/(a-r)例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数。
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种B. 65种C. 70种D. 75种9.对折问题:一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段10.方阵问题:方阵人数=(最外层人数/4+1)的2次方N排N列最外层有:4N-4人11.过河问题:M个人过河,船能载N个人。
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b2 3. 完全立方公式:(a ±b)3=(a±b)(a 2ab+b 2) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
常考的数量关系公式汇总No.1 奇偶判定奇数±奇数=偶数;偶数±偶数=偶数偶数±奇数=奇数;奇数±偶数=奇数奇数x奇数=奇数;奇数x偶数=偶数偶数x奇数=偶数;偶数x偶数=偶数No.2 计算公式平方差公式:完全平方公式:立方和与立方差公式:No.3 数字变化对任意两数a、b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b当a、b为任意两正数时,如果a/b>1,则a>b;如果a/b<1,则a<b;如果a/b=1,则a=b当a、b为任意两负数时,如果a/b>1,则a<b;如果a/b<1,则a>b;如果a/b=1,则a=b对任意两数a、b,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值c,如果a>c,且c>b,则我们说a>bNo.4 整除判定2,4,8整除及其余数判定法则一个数字能被2(或5)整除,当且仅当末一位数字能被2(或5)整除一个数字能被4(或25)整除,当且仅当末两位数字能被4(或25)整除一个数字能被8(或125)整除,当且仅当末三位数字能被8(或125)整除3,9整除判定基本法则一个数字能被3整除,当且仅当其各位数字之和能被3整除一个数字能被9整除,当且仅当其各位数字之和能被9整除7整除判定基本法则一个数是7的倍数,当且仅当其末位数的2倍,与剩下的数的差为7的倍数11整除判定基本法则一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数,则这个数就是11的倍数No.5 工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率总工作量=各分工作量之和注:在解决实际问题时,常设总工作量为1No.6 行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2) 左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程No.7 利润问题利润=销售价(卖出价)-成本利润率=利润÷成本=(销售价-成本)÷成本=销售价÷成本-1总利润=单利润×销量售价=进价+利润=原价×折扣销售价=成本×(1+利润率)成本=销售价÷(1+利润率)No.8 钟表问题钟面上按“时”分为12大格,按“分”分为60小格。
行测常用数学公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) mnm +nm n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 21为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
2012公考数量关系核心公式汇总
数学运算核心公式汇总
1、弃9验算法:利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。
用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。
对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等
注:1.弃九法不适合除法
2.当一个数的几个数码相同,但0的个数不同,或数字和公式
1 +
2 +
3 …+n =1/6 n(n+1)(2n+1)
6、立方数列求和公式
1 +
2 +
3 …+n =[1/2 n(n+1) ]
7、行程问题
(1)分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的(2n-1)倍
(2)A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= (〖2V〗_1 V_2)/(V_1+V_2 ),
(3)沿途数车问题:
(同方向)相邻两车的发车时间间隔×车速=(同方向)相邻两车的间隔
(4)环形运动问题:
异向而行,则相邻两次相遇间所走的路程和为周长
同向而行,则相邻两次相遇间所走的路程差为周长
(5)自动扶梯问题
能看到的级数=(人速+扶梯速)×顺行运动所需时间
能看到的级数=(人速-扶梯速)×逆行运动所需时间
(6)错车问题
对方车长为路程和,是相遇问题
路程和=速度和×时间
(7)队伍行走问题
V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则
从队尾到队首的时间为:L/(V_1-V_2 )
从队首到队尾的时间为:L/(V_1+V_2 )
8、比赛场次问题
N为参赛选手数,
淘汰赛仅需决出冠亚军比赛场次=N-1,
淘汰赛需决出前四名比赛场次=N,
单循环赛比赛场次=∁_N,
双循环赛比赛场次=A_N
9、植树问题
两端植树:距离/间隔+1 = 棵数
一端植树(环形植树):距离/间隔= 棵数
俩端均不植树:距离/间隔-1=棵数
双边植树:(距离/间隔-1)*2=棵数
10、方阵问题
最为层每边人数为N
方阵总人数=N
最外层总人数=(N-1)×4
相邻两层总人数差=8(行数和列数>3)
去掉一行一列则少(2N-1)人
空心方阵总人数=(最外层每边人数-层数)×层数×4 11、几何问题
N边形内角和=(N-2)×180°
球体体积=4/3 πr
圆柱体积=πr h
圆柱体积=1/3 πr h
12、牛吃草问题
(牛头数-每天长草量)×天数=最初总草量
13、日期问题
一年加1,闰年加2,小月(30天)加2,大月(31天)加3,28年一周期
4年1闰,100年不闰,400年再闰
14、页码问题
如:一本书的页码一共用了270个数字,求这本书的页数。
页数=(270+12×9)/3=126页
公式:10-99页:页数=(数字+1×9)/2
100-999页:页数=(数字+12×9)/3
1000-9999页:页数=(数字+123×9)/4
15、时钟问题
小知识:时针与分针一昼夜重合22次,垂直44次,成180°,也是22次
求时针与分针成一定角度时的实际时间T
T=T_0+1/11 T_0,其中T_0为时针不动时,分针走到符合题意位置所需的时间
16、非闭合路径货物集中问题
在非闭合的路径上(包括线形、树形等,不包括环形)有多个节点,每个节点之间通过“路”来连通,每个节点上有一定的货物。
当需要用优化的方法把货物集中到一个节点上的时
候,通过以下方式判断货物流通的方向:
1、判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。
2、适用于“非闭合”的路径问题,与各条路径的长短没有关系;实际操作中,我们应该从中间开始分析,这样可以更快得到答案。
1、在一条公路上每隔100公里有一个仓库,共有5
个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要运费( )。
A. 4500元
B. 5000元
C. 5500元
D. 6000元
解析:本题中四条“路”都具备“左边总重量轻于右边总重量”的条件,所以这些“路”上的流通方式都是从左到右。
故集中到五号仓库是选择。