2019高三物理人教版一轮课时分层集训:19 动量守恒定律及其应用 Word版含解析
- 格式:doc
- 大小:164.50 KB
- 文档页数:11
一、动量守恒定律的理解及应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
④Δp=0,系统总动量的增量为零。
2.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
3.动量守恒定律的“五性”二、碰撞现象的特点和规律1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间极短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力外力,可认为相互碰撞的系统动量守恒。
(3)分类(1)动量守恒:p1+p2=p1′+p2′。
(2)动能不增加:E k1+E k2≥E k1′+E k2′p21 p22 p1′2 p2′2或+≥+。
2m1 2m2 2m1 2m2(3)速度要符合情景。
①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v′前≥v′后。
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
三动量和能量观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题。
2.动量守恒定律与机械能守恒定律的比较高频考点一动量守恒定律的理解及应用例1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在其中,将弹簧压缩到最短。
2019届高考物理一轮复习第六章动能动量守恒定律第2讲动量守恒定律及其应用作业新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第六章动能动量守恒定律第2讲动量守恒定律及其应用作业新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第六章动能动量守恒定律第2讲动量守恒定律及其应用作业新人教版的全部内容。
第2讲动量守恒定律及其应用[课时作业] 单独成册方便使用[基础题组]一、单项选择题1.(2018·黑龙江大庆模拟)两球在水平面上相向运动,发生正碰后都变为静止.可以肯定的是,碰前两球的()A.质量相等B.动能相等C.动量大小相等D.速度大小相等解析:两球组成的系统碰撞过程中满足动量守恒,两球在水平面上相向运动,发生正碰后都变为静止,故根据动量守恒定律可以判断碰前两球的动量大小相等、方向相反,选项C正确.答案:C2。
(2018·山东济南检测)如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dPa打到屏MN上的a点,通过Pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.两个微粒所受重力均忽略.新微粒运动的( ) A.轨迹为Pb,至屏幕的时间将小于tB.轨迹为Pc,至屏幕的时间将大于tC.轨迹为Pb,至屏幕的时间将等于tD.轨迹为Pa,至屏幕的时间将大于t解析:碰撞过程中动量守恒mv=(m+Δm)v′,据带电粒子在磁场中做圆周运动的半径公式R=错误!可知新粒子的轨迹不变.由于新粒子的速度v′<v,因此运动时间变长,正确选项为D。
第2讲动量守恒定律及应用见学生用书P094微知识1 动量守恒定律1.内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持不变。
2.常用的四种表达形式(1)p=p′,即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同。
(2)Δp=p′-p=0,即系统总动量的增量为零。
(3)Δp1=-Δp2,即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量。
(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等。
3.常见的几种守恒形式及成立条件(1)理想守恒:系统不受外力或所受外力的合力为零。
(2)近似守恒:系统所受外力虽不为零,但内力远大于外力。
(3)分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。
微知识2 碰撞1.碰撞现象:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。
2.碰撞特征(1)作用时间短。
(2)作用力变化快。
(3)内力远大于外力。
(4)满足动量守恒。
3.碰撞的分类及特点(1)弹性碰撞:动量守恒,机械能守恒。
(2)非弹性碰撞:动量守恒,机械能不守恒。
(3)完全非弹性碰撞:动量守恒,机械能损失最多。
微知识3 爆炸现象爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒。
微知识4 反冲运动1.物体的不同部分在内力作用下向相反方向运动的现象。
2.反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
一、思维辨析(判断正误,正确的画“√”,错误的画“×”。
)1.动量守恒定律中的速度是相对于同一参考系的速度。
(√)2.质量相等的两个物体发生碰撞时,一定交换速度。
(×)3.系统的总动量不变是指系统总动量的大小保持不变。
(×)4.系统的动量守恒时,机械能也一定守恒。
(×)二、对点微练1.(动量守恒条件)(多选)如图所示,在光滑水平面上有A、B两个木块,A、B之间用一轻弹簧连接,A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态。
2019年高考物理一轮复习专题26 动量动量定理动量守恒定律(讲)(含解析)1.理解动量、动量变化量、动量定理的概念.2.知道动量守恒的条件.1、动量、动量定理(1)动量①定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。
②表达式:p=mv。
③单位:kg·m/s。
④标矢性:动量是矢量,其方向和速度方向相同。
(2)冲量①定义:力和力的作用时间的乘积叫做力的冲量。
②表达式:I=Ft。
单位:N·s。
③标矢性:冲量是矢量,它的方向由力的方向决定。
(3)动量定理2、动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′。
(3)适用条件①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
考点一 动量定理的理解与应用 1.应用动量定理时应注意(1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向。
2.动量定理的应用 (1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。
②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。
(2)应用I =Δp 求变力的冲量。
(3)应用Δp =F ·Δt 求恒力作用下的曲线运动中物体动量的变化量。
★重点归纳★ 1、动量的性质①矢量性:方向与瞬时速度方向相同。
②瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的。
③相对性:大小与参考系的选取有关,通常情况是指相对地面的动量。
3.动量、动能、动量的变化量的关系 ①动量的变化量:Δp =p ′-p 。
第二节动量守恒定律及其应用(对应学生用书第107页)[教材知识速填]:知识点1 动量守恒定律1.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒.(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒.(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒.2.动量守恒定律的内容一个系统不受外力或所受外力之和为零,这个系统的总动量就保持不变.3.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′).(2)Δp=0(系统总动量变化为零).(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反).易错判断(1)系统所受合外力的冲量为零,则系统动量一定守恒.(√)(2)动量守恒是指系统在初、末状态时的动量相等.(×)(3)物体相互作用时动量守恒,但机械能不一定守恒.(√) 知识点2 碰撞、反冲和爆炸问题1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒.(3)分类:(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒.(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动.易错判断(1)在爆炸现象中,动量严格守恒.(×)(2)在碰撞问题中,机械能也一定守恒.(×)(3)反冲现象中动量守恒、动能增加.(√)[教材习题回访]:考查点:碰撞现象分析1.(鲁科版选修3—5P20T3)(多选)半径相等的两个小球A和B,在光滑水平面上沿同一直线相向运动.若A球的质量大于B球的质量,发生弹性碰撞前,两球的动能相等.碰撞后两球的运动状态可能是( )A.A球的速度为零,B球的速度不为零B.B球的速度为零,A球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等[答案]:AC考查点:动量守恒定律在反冲现象中的应用2.(粤教版选修3-5P16T2)一个静止的、不稳定的原子核的质量为m′,当它放射出一个质量为m、速度为v的粒子后,剩余部分获得的反冲速度大小为( )A.m′vm′+m B.mvm′+mC.mvm′-m D.mvm′[答案]:C考查点:动量守恒定律在碰撞现象中的应用3.(人教版选修3-5P21T2改编)两球A、B在光滑水平面上沿同一直线、同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s.当A 追上B并发生碰撞后,两球A、B速度的可能值是 ( )A.v A′=5 m/s,v B′=2.5 m/sB.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/sD.v A′=7 m/s,v B′=1.5 m/s[答案]:B考查点:碰撞中的图象问题4.(沪科选修3-5P23T4改编)(多选)如图621甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的xt图象.已知m1=0.1 kg.由此可以判断( )图621A.碰前m2静止,m1向右运动B.碰后m2和m1都向右运动C.m2=0.3 kgD.碰撞过程中系统损失了0.4 J的机械能[答案]:AC(对应学生用书第108页)1.动量守恒定律的“五性”方法一:直接由动量守恒的条件判断.方法二:直接看系统的动量是否变化.如果系统的动量增加或减少,则系统的动量一定不守恒.[题组通关]:1.(多选)木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图622所示,当撤去外力后,下列说法中正确的是( )图622A .a 尚未离开墙壁前,a 和b 组成的系统动量守恒B .a 尚未离开墙壁前,a 和b 组成的系统动量不守恒C .a 离开墙壁后,a 和b 组成的系统动量守恒D .a 离开墙壁后,a 和b 组成的系统动量不守恒[题眼点拨]:“撤去外力”及“光滑水平面”,要分析撤去外力后,a和b的受力特点和运动特点.BC[动量守恒定律的适用条件是不受外力或所受合外力为零.a尚未离开墙壁前,a和b组成的系统受到墙壁对它们的作用力,不满足动量守恒条件;a离开墙壁后,系统所受合外力为零,动量守恒.]:2.(多选)如图623所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则( )【导学号:84370259】图623A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒BCD[如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B=3∶2,所以F A∶F B=3∶2,则A、B组成系统所受的外力之和不为零,故其动量不守恒,A选项错误.对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力、支持力,它们的合力为零,故该系统的动量守恒,B、D选项正确.若A、B所受摩擦力大小相等,则A、B组成系统的受到的外力之和为零,故其动量守恒,C选项正确.]:1.碰撞现象满足的三个规律(1)动量守恒(2)机械能不增加(3)速度要合理①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.2.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加.(3)反冲运动中平均动量守恒.3.爆炸现象的三个规律(1)动量守恒由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.(3)位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动.[多维探究]:考向1 爆炸问题1.(多选)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等CD[根据动量守恒定律可知,若a的速度方向仍沿原来的方向,则b的速度大小和方向无法判断,A错误;物体炸裂后,a、b都做平抛运动,因距地面高度相同,所以a、b一定同时到达地面,但它们飞行的水平距离无法判断,B错误,C正确;根据动量守恒可以判断D正确.]:上题中若物体飞行到距离地面 5 m高,飞行的水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )B [爆炸以后甲、乙均做平抛运动,可根据竖直方向的自由落体运动求得时间t =2hg =1 s ;根据水平方向的匀速直线运动求得爆炸后两者的水平速度大小.在A 、B 选项中,v 甲=x 甲t =2.5 m/s ;v 乙=x 乙t =0.5 m/s ;C 、D 选项中,v 甲=x 甲t =1 m/s ,v 乙=x 乙t =2 m/s.弹丸爆炸时水平方向不受外力,满足动量守恒定律.设乙的质量为m ,则甲的质量为3m ,爆炸前弹丸的动量为p =4mv =8m (kg·m·s -1).爆炸后,选项A 中总动量p A =3mv 甲-mv 乙=7m (kg·m·s -1),A 项错误;选项B 中总动量p B =3mv 甲+mv 乙=8m (kg·m·s -1),B 项正确;选项C 中总动量p C =3mv 甲+mv 乙=5m (kg·m·s -1),C 项错误;选项D 中总动量p D =3mv 甲-mv 乙=m (kg·m·s -1),D 项错误.]:考向2 反冲问题2.(2017·全国Ⅰ卷)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102kg·m/s C .6.0×102 kg·m/s D .6.3×102 kg·m/s A [由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p1=mv=0.05×600 kg·m/s=30 kg·m/s,则火箭的动量p2=p1=30 kg·m/s,选项A正确.]:考向3 碰撞问题3.如图624所示,在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球A的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生弹性正碰后小球A与小球B均向右运动.小球B与墙壁碰撞后以原速率返回并与小球A在P点相遇,PQ=2PO,则两小球质量之比m1∶m2为( )【导学号:84370260】图624A.7∶5 B.1∶3C.2∶1 D.5∶3[题眼点拨]:①“光滑水平面”表明物体水平方向除碰撞力外,不受其它力作用;②“PQ=2PO”以位移方式表明速度间的关系.D[设A、B两个小球碰撞后的速度分别为v1、v2,由动量守恒定律有m1v0=m1v1+m2v2,发生弹性碰撞,不损失动能,故根据能量守恒定律有12m1v20=12m1v21+12m2v22,两个小球碰撞后到再次相遇,其速率不变,由运动学规律有v 1∶v 2=PO ∶(PO +2PQ )=1∶5,联立三式可得m 1∶m 2=5∶3,D 正确.]:4.(多选)A 、B 两球沿同一条直线运动,如图625所示的x t 图象记录了它们碰撞前后的运动情况,其中a 、b 分别为A 、B 碰撞前的x t 图象.c 为碰撞后它们的x t 图象.若A 球质量为1 kg ,则B 球质量及碰后它们的速度大小为( )图625A .2 kgB.23 kgC .4 m/sD .1 m/sBD [由图象可知碰撞前二者都做匀速直线运动,v a =4-102m/s =-3 m/s ,v b =4-02 m/s =2 m/s ,碰撞后二者连在一起做匀速直线运动,v c =2-44-2 m/s =-1 m/s.碰撞过程中动量守恒,即 m A v a +m B v b =(m A +m B )v c可解得m B =23 kg由以上可知选项B 、D 正确.]:(多选)质量为m 的小球A ,沿光滑水平面以速度v 0与质量为2m的静止小球B 发生正碰.碰撞后,A 球的动能变为原来的19,那么小球B 的速度可能是( )A.13v 0B.23v 0C.49v 0D.59v 0AB [要注意的是,两球的碰撞不一定是弹性碰撞,A 球碰后动能变为原来的19,则其速度大小仅为原来的13.两球在光滑水平面上正碰,碰后A 球的运动有两种可能,继续沿原方向运动或被反弹.当以A 球原来的速度方向为正方向时,则v A ′=±13v 0,根据两球碰撞前、后的总动量守恒,有mv 0+0=m ×13v 0+2mv B ′,mv 0+0=m ×⎝ ⎛⎭⎪⎫-13v 0+2mv B ″.解得v B ′=13v 0,v B ″=23v 0.]: 1抓住碰撞的特点和不同种类碰撞满足的条件,程求解.2可熟记一些公式,=.当两物体质量相等时,两物体碰撞后交换速度3因碰撞过程发生在瞬间,间发生突变,而物体的位置不变1.应用动量守恒定律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.2.解决动力学问题的三个基本观点[母题]:(2016·全国Ⅱ卷)如图626所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10 m/s 2.图626(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?[题眼点拨]: ①“光滑冰面”表明斜面体与物体碰撞会沿平面运动;②“最大高度”表明冰块和斜面体达到共同速度.[解析]:(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3.由水平方向动量守恒和机械能守恒定律得 m 2v 20=(m 2+m 3)v ①12m 2v 220=12(m 2+m 3)v 2+m 2gh ② 式中v 20=-3 m/s 为冰块被推出时的速度.联立①②式并代入题给数据得m3=20 kg. ③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0 ④代入数据得v1=1 m/s ⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20=m2v2+m3v3 ⑥12m2v220=12m2v22+12m3v23⑦联立③⑥⑦式并代入数据得v2=1 m/s ⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.[答案]:(1)20 kg (2)不能[母题迁移]:迁移1 多物体、多阶段运动的求解1.(2015·全国Ⅰ卷)如图627所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.【导学号:84370261】图627[题眼点拨]: ①“光滑水平面”表明碰撞过程动量守恒;②“各发生一次碰撞”要思考发生一次碰撞的条件及各种可能.[解析]: A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得mv 0=mv A 1+Mv C 1① 12mv 20=12mv 2A 1+12Mv 2C 1②联立①②式得 v A 1=m -Mm +M v 0③ v C 1=2mm +M v 0 ④如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞,设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0 ⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥联立④⑤⑥式得 m 2+4mM -M 2≥0⑦解得 m ≥(5-2)M ⑧另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 (5-2)M ≤m <M . ⑨[答案]: (5-2)M ≤m <M迁移2 临界问题分析2.(2018·河北石家庄检测)如图628所示,甲车质量m 1=m ,在车上有质量M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m 2=2m的乙车正以速度v 0迎面滑来,已知h =2v 20g ,为了使两车不发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看成质点.图628[题眼点拨]: ①“斜坡上高h 处由静止滑下”:利用机械能守恒可求得到达水平面的速度;②“不发生碰撞”:思考满足的临界条件.[解析]: 设向左为正方向,甲车(包括人)滑下斜坡后速度为v 1,由机械能守恒定律有12(m 1+M )v 21=(m 1+M )gh ,解得v 1=2gh=2v 0设人跳出甲车的水平速度(相对地面)为v ,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后,两车的速度分别为v ′1和v ′2,则人跳离甲车时: (M +m 1)v 1=Mv +m 1v ′1人跳上乙车时:Mv -m 2v 0=(M +m 2)v ′2解得v ′1=6v 0-2v ,v ′2=12v -12v 0两车不发生碰撞的临界条件是v ′1=±v ′2当v ′1=v ′2时,解得v =135v 0当v ′1=-v ′2时,解得v =113v 0故v 的取值范围为135v 0≤v ≤113v 0.[答案]: 135v 0≤v ≤113v 0在母题中,若将斜面体换成放置一个截面为四分之一圆的半径足够大的光滑自由曲面,一个坐在冰车上的小孩手扶一小球静止在冰面上.某时刻小孩将小球以v 0的速度向曲面推出,如图所示.已知小孩和冰车的总质量为m 1=40 kg ,小球质量为m 2=2 kg ,若小孩将球推出后还能再接到小球,求曲面质量m 3应满足的条件.[解析]: 人推球过程动量守恒,即0=m 2v 0-m 1v 1对于小球和曲面,根据动量守恒定律和机械能守恒定律,有 m 2v 0=-m 2v 2+m 3v 312m 2v 20=12m 2v 22+12m 3v 23解得v 2=m 3-m 2m 3+m 2v 0若小孩将小球推出后还能再接到小球,则有v 2>v 1解得m 3>4219 kg.[答案]: m 3>4219 kg。
2019年高考物理一轮复习精品资料1.理解动量守恒定律的确切含义,知道其适用范围2.掌握动量守恒定律解题的一般步骤3.会应用动量守恒定律解决一维运动有关问题一、动量守恒定律的理解及应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
④Δp=0,系统总动量的增量为零。
2.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
3.动量守恒定律的“五性”系统性动量守恒是针对满足守恒条件的系统而言的,系统改变,动量不一定满足守恒条件相对性公式中v1、v2、v1′、v2′必须相对于同一个惯性系公式中v1、v2是在相互作用前同一时刻的速度,v1′、v2′是相互作用后同一时同时性刻的速度矢量性应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值普适性不仅适用于低速宏观系统,也适用于高速微观系统二、碰撞现象的特点和规律1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间极短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力≫外力,可认为相互碰撞的系统动量守恒。
(3)分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒非完全弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大2.碰撞后运动状态可能性判断的三个依据(1)动量守恒:p1+p2=p1′+p2′。
(2)动能不增加:E k1+E k2≥E k1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2。
课时分层集训(十九) 动量守恒定律及其应用(限时:40分钟)(对应学生用书第301页)[基础对点练]动量守恒的理解和判断1.关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒C[根据动量守恒条件可知A、B错误,C正确;D项中所有物体加速度为零时,各物体速度恒定,动量恒定,总动量一定守恒.]2.如图6-2-9所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()图6-2-9A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒C[两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确.甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.]3.(多选)如图6-2-10所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处由静止开始自由下滑()【导学号:84370262】图6-2-10A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽高h处BC[在下滑过程中,小球和槽之间的相互作用力对槽做功,故A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合力为零,所以在水平方向动量守恒,故B正确;因两物体之后不受外力,故小球脱离弧形槽后,槽向左做匀速运动,而小球反弹后也会做匀速运动,故C正确;小球与槽组成的系统动量守恒,小球与槽的质量相等,小球沿槽下滑,两者分离后,速度大小相等,小球被反弹后与槽的速度相等,小球不能滑到槽上,更不能回到高度h处,故D错误.]如图所示,两木块A、B用轻质弹簧连在一起,置于光滑的水平面上.一颗子弹水平射入木块A,并留在其中.在子弹打中木块A及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,下列说法中正确的是()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量、机械能都不守恒B[子弹击中木块A及弹簧被压缩的整个过程,系统不受外力作用,外力冲量为0,系统动量守恒.但是子弹击中木块A过程,有摩擦力做功,部分机械能转化为内能,所以机械能不守恒,B正确.]碰撞、爆炸与反冲4.(多选)如图6-2-11所示,动量分别为p A=12 kg·m/s、p B=13 kg·m/s的两个小球A、B在光滑的水平面上沿一直线向右运动,经过一段时间后两球发生正碰,分别用Δp A、Δp B表示两小球动量的变化量.则下列选项中可能正确的是()【导学号:84370263】图6-2-11A.Δp A=-3 kg·m/s、Δp B=3 kg·m/sB.Δp A=-2 kg·m/s、Δp B=2 kg·m/sC.Δp A=-24 kg·m/s、Δp B=24 kg·m/sD.Δp A=3 kg·m/s、Δp B=-3 kg·m/sAB[本题的碰撞问题要遵循三个规律:动量守恒定律,碰后系统的机械能不增加和碰撞过程要符合实际情况.本题属于追及碰撞,碰前,后面运动物体的速度一定要大于前面运动物体的速度(否则无法实现碰撞),碰后前面物体的动量增大,后面物体的动量减小,减小量等于增大量,所以Δp A<0,Δp B>0,并且Δp A=-Δp B,据此可排除选项D;若Δp A=-24 kg·m/s、Δp B=24 kg·m/s,碰后两球的动量分别为p A′=-12 kg·m/s、p B′=37kg·m/s,根据关系式E k=p22m可知,A球的质量和动量大小不变,动能不变,而B球的质量不变,但动量增大,所以B球的动能增大,这样系统的机械能比碰前增大了,选项C可以排除;经检验,选项A、B满足碰撞遵循的三个原则.]5.如图6-2-12所示,光滑平面上有一辆质量为2m的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m,开始两个人和车一起以速度v0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v跳离小车,然后站在车左端的甲以相对于地面向左的速度v跳离小车.两人都离开小车后,小车的速度将是()图6-2-11A.v0B.2v0C.大于v0,小于2v0D.大于2v0B[两人和车所组成的系统动量守恒,初动量为4m v0,方向向右.当甲、乙两人先后以对地相等的速度向两个方向跳离时,甲、乙两人的动量和为零,则有4m v0=2m v车,v车=2v0,选项B正确.]6.在光滑的水平面上,有a、b两球,其质量分别为m a、m b,两球在t0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度图象如图6-2-13所示,下列关系正确的是()图6-2-13A.m a>m b B.m a<m bC.m a=m b D.无法判断B[由题图可知b球碰前静止,取a球碰前速度方向为正方向,设a球碰前速度为v0,碰后速度为v1,b球碰后速度为v2,两球碰撞过程中动量守恒,机械能守恒,则m a v 0=m a v 1+m b v 2① 12m a v 20=12m a v 21+12m b v 22 ②联立①②得:v 1=m a -m b m a +m b v 0,v 2=2m a m a +m b v 0由a 球碰撞前后速度方向相反,可知v 1<0,即m a <m b ,故B 正确.]一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A (A +1)2D.(A +1)2(A -1)2A [设中子的质量为m ,则被碰原子核的质量为Am ,两者发生弹性碰撞,据动量守恒,有m v 0=m v 1+Am v ′,据动能守恒,有12m v 20=12m v 21+12Am v ′2.解以上两式得v 1=1-A1+A v 0.若只考虑速度大小,则中子的速率为v ′1=A -1A +1v 0,故中子碰撞前、后速率之比为A +1A -1.]动量守恒中的综合问题7.(多选)如图6-2-14所示,有一光滑钢球质量为m ,被一U 形框扣在里面,框的质量为M ,且M =2m ,它们搁置于光滑水平面上,今让小球以速度v 0向右去撞击静止的框,设碰撞无机械能损失,经多次相互撞击,下面结论正确的是( )【导学号:84370264】图6-2-14 A .最终都将停下来B .最终将以相同的速度向右运动C .永远相互碰撞下去,且整体向右运动D .在它们反复碰撞的过程中,球的速度将会再次等于v 0,框也会再次重现静止状态CD [小球与框碰撞过程中,系统动量守恒,机械能也守恒;根据动量守恒定律,有:m v 0=m v 1+M v 2根据机械能守恒定律,有:12m v 20=12m v 21+12M v 22其中M =2m联立解得:v 1=v 0,v 2=0(两次碰撞后)或者v 1=-13v 0,v 2=23v 0(一次碰撞后)由于二次碰撞后的速度情况与开始时相同,故整体内部一直不断碰撞,整体持续向右运动;球的速度将会再次等于v 0,框也会再次重现静止状态,故A 错误,B 错误,C 正确,D 正确.]8.如图6-2-15所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线同一方向运动,速度分别为2v 0、v 0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图6-2-15 [解析] 设乙船上的人抛出货物的最小速度大小为v min ,抛出货物后乙船的速度为v 乙.甲船上的人接到货物后甲船的速度为v 甲,规定向右的方向为正方向.对乙船和货物的作用过程,由动量守恒定律得12m v 0=11m v 乙-m v min ①对货物和甲船的作用过程,同理有10m ×2v 0-m v min =11m v 甲② 为避免两船相撞应有v 甲=v 乙③联立①②③式得v min =4v 0.[答案] 4v 09.如图6-2-16所示,三个质量相同的滑块A 、B 、C ,间隔相等地静置于同一水平直轨道上.现给滑块A 向右的初速度v 0,一段时间后A 与B 发生碰撞,碰后A 、B 分别以18v 0、34v 0的速度向右运动,B 再与C 发生碰撞,碰后B 、C 粘在一起向右运动.滑块A 、B 与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求B 、C 碰后瞬间共同速度的大小.图6-2-16 [解析] 设滑块质量为m ,A 与B 碰撞前A 的速度为v A ,由题意知,碰撞后A 的速度v ′A =18v 0,B 的速度v B =34v 0,由动量守恒定律得m v A =m v ′A +m v B ① 设碰撞前A 克服轨道阻力所做的功为W A ,由功能关系得W A =12m v 20-12m v 2A②设B 与C 碰撞前B 的速度为v ′B ,B 克服轨道阻力所做的功为W B ,由功能关系得W B =12m v 2B -12m v ′2B③ 据题意可知W A =W B ④设B 、C 碰撞后瞬间共同速度的大小为v ,由动量守恒定律得m v′B=2m v ⑤联立①②③④⑤式,代入数据得v=21 16v0.[答案]2116v0[考点综合练]10.(2018·衡阳模拟)如图6-2-17所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切.质量m2=0.2 kg的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m1=0.2 kg的小球a自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B时对轨道的压力为小球a重力的2倍.忽略空气阻力,重力加速度g取10 m/s2.求:图6-2-17(1)小球a由A点运动到B点的过程中,摩擦力做功W f;(2)小球a通过弹簧与小球b相互作用的过程中,弹簧的最大弹性势能E p;(3)小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小.【导学号:84370265】[解析](1)小球由释放到最低点的过程中,根据动能定理:m1gR+W f=12m1v21小球在最低点,根据牛顿第二定律:F N-m1g=m1v21 R联立可得:W f=-0.4 J.(2)小球a与小球b通过弹簧相互作用,达到共同速度v2过程中,由动量关系:m1v1=(m1+m2)v2由能量转化和守恒:12m1v21=12(m1+m2)v22+E p联立可得:E p=0.2 J.(3)小球a与小球b通过弹簧相互作用的整个过程中,a后来速度为v3,b 后来速度为v4,由动量关系:m1v1=m1v3+m2v4由能量转化和守恒:12m1v21=12m1v23+12m2v24根据动量定理有:I=m2v4联立可得:I=0.4 N·s.[答案](1)-0.4 J(2)0.2 J(3)0.4 N·s11. 如图6-2-18所示,地面和半圆轨道面均光滑.质量M=1 kg、长L=4 m的小车放在地面上,其右端与墙壁的距离为s=3 m,小车上表面与半圆轨道最低点P的切线相平.现有一质量m=2 kg的滑块(视为质点)以v0=6 m/s的初速度滑上小车左端,带动小车向右运动.小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面间的动摩擦因数μ=0.2,g取10 m/s2.图6-2-18(1)求小车与墙壁碰撞时的速度大小;(2)要使滑块在半圆轨道上运动时不脱离轨道,求半圆轨道的半径R的取值.[解析](1)设滑块与小车的共同速度为v1,滑块与小车相对运动过程中动量守恒,有m v0=(m+M)v1代入数据解得v 1=4 m/s设滑块与小车的相对位移为L 1,由系统能量守恒有μmgL 1=12m v 20-12(m +M )v 21代入数据解得L 1=3 m设与滑块相对静止时小车的位移为s 1,根据动能定理有μmgs 1=12M v 21-0代入数据解得s 1=2 m因L 1<L ,s 1<s ,说明小车与墙壁碰撞前滑块与小车已具有共同速度,且共速时小车与墙壁还未发生碰撞,故小车与墙壁碰撞时的速度为v 1=4 m/s.(2)小车与墙壁碰撞后滑块在车上继续向右做初速度v 1=4 m/s 、位移为L 2=L -L 1=1 m 的匀减速直线运动,然后滑上半圆轨道的最低点P .若滑块恰能滑过半圆轨道的最高点Q ,设滑至最高点的速度为v ,临界条件为mg =m v 2R根据动能定理有-μmgL 2-mg (2R )=12m v 2-12m v 21联立并代入数据解得R =0.24 m若滑块恰好滑至14圆弧到达T 点时就停止,则滑块也能沿半圆轨道运动而不脱离半圆轨道.根据动能定理有-μmgL 2-mgR =0-12m v 21代入数据解得R =0.6 m综上所述,要使滑块在半圆轨道上运动时不脱离轨道,半圆轨道的半径必须满足R≤0.24 m或R≥0.6 m.[答案](1)4 m/s(2)R≤0.24 m或R≥0.6 m11。