北师大版六年级上册数学必背知识总结
- 格式:doc
- 大小:74.50 KB
- 文档页数:6
二、百分数的应用1、带有百分号的数叫做百分数,百分数相当于一个比值,因而没有单位。
2、四个公式:①谁是谁的几分之几?②谁是谁的百分之几?前面的数是字后面的数前面的数是字后面的数×100%③谁比谁多百分之几?④谁比谁少百分之几?比字前面的数-后面的数比字后面的数×100%比字后面的数-前面的数比字后面的数×100%3、两个公式:①增加量(减少量)=原来的量×增加的百分数(减少的百分数)②现在的量=原来的量±增加量(减少量)4、存入银行的钱叫本金,利息与本金的比值叫做利率。
利息=本金×利率×时间5、含有未知数的等式就是方程,如x+5=66、解方程的步骤:①去分母②去括号③移项④合并同类项⑤系数化为1例;1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这西服的()%。
2、从学校到文化宫,甲要20分钟,乙要16分钟。
乙的时间比甲少()%;乙的速度比甲()%。
3、()千米的60%是3千米;比40吨少20%()吨。
4、甲数是乙数的比是5/2,乙数比甲数少()%,甲数比乙数多()%。
5、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%,四月份销售额比五月份少()%。
6、六一期间游乐场门票八折优惠,现价是原价的()%。
儿童文具店所有学习用品一律折出售,节省()%。
四、比的认识1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
北师大版小学六年级数学上册知识点整理一、圆的知识1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O 表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r 表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d 表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
4、①车走一圈的距离,相当于车轮的周长。
车走的距离=车轮的周长×走的圈数②把一条线围成一个图形,那么这么线的长度相当于这个图形的周长5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示, π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径 即 C 圆=πd =2πr 。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr² 或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr² 或 S=π(R²-r²)。
北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
六年级上册数学知识点北师大版笔记以下是北师大版六年级上册数学的知识点笔记,供您参考:第一章圆1. 圆是由一条曲线围成的封闭图形,具有无数条对称轴。
2. 圆的半径是从圆心到圆上任意一点的线段,用字母 r 表示。
3. 圆的直径是通过圆心且两端点在圆上的线段,用字母 d 表示。
直径是半径的2倍,即 d = 2r。
4. 圆规是用来画圆的工具,其中钢针的长度是半径,可以调整长度来控制画出的圆的大小。
5. 圆心角是指在圆上所对应的中心角度,用字母θ 表示。
6. 圆周率是圆的周长与其直径的比值,用字母π 表示。
圆周率是一个无理数,约等于。
7. 圆的周长是圆的周长与其半径的比值,用字母 C 表示。
周长的计算公式为C = 2πr。
8. 圆的面积是圆所占平面的大小,用字母 A 表示。
面积的计算公式为 A = πr²。
第二章分数混合运算1. 分数是指将一个整体平均分成若干等份,表示其中一份或几份的数。
分数的分子是表示部分大小的数,分母是表示整体的等分数。
2. 分数的加减法要注意分母相同才能相加减,分子相加减,分母不变。
3. 分数的乘法要注意分子乘分子,分母乘分母,结果能约分的要约分。
4. 分数的除法可以转化为乘法,即除以一个分数等于乘以这个分数的倒数。
5. 分数混合运算要注意运算顺序,先乘除后加减,有括号的先算括号里的。
6. 对于同分母的分数加减法,可以直接相加减;对于异分母的分数加减法,先通分再计算;对于分数与整数的混合运算,先统一为分数或整数再进行计算。
7. 对于分数的运算要注意约分和通分的概念和应用。
约分是指将分数化为最简分数,通分是指将异分母的分数化为同分母的分数。
8. 在解决实际问题时,要注意分数和整数混合运算的应用,根据实际情况选择适当的运算方法进行计算。
北师大版小学数学六年级上册知识点汇总第一部分:圆1、圆的定义:平面上的一种曲线图形。
2、圆心的定义:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等。
圆心确定圆的位置。
3、半径的定义:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
半径确定圆的大小。
4、直径的定义:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
直径=半径×2;d=2r。
5、在同一个圆内:①所有的半径都相等,所有的直径都相等;②有无数条半径,有无数条直径;③直径的长度是半径的2倍,半径的长度是直径的一半。
5、圆的周长的定义:围成圆的曲线的长度叫做圆的周长。
圆的周长公式:C=πd 或C=2πr。
圆周长=π×直径=π×半径×2。
7、圆周率的定义:我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
8、圆的面积的定义:圆所占面积的大小叫圆的面积。
把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以9、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长;在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
10、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
(其中R=r+环的宽度.)11、半圆的周长等于圆的周长的一半加直径。
半圆的周长与圆周长的一半的区别在于,半圆的周长有直径,而圆周长的一半没有直径。
半圆的周长公式:C=πd/2+d 或C=πr+2r;圆周长的一半=πr半圆面积=圆的面积÷2;S=πr²/212、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
六年级上册数学知识点北师大版一、圆。
1. 圆的认识。
- 圆是由一条曲线围成的封闭图形。
圆心用字母O表示,半径用字母r表示,直径用字母d表示。
- 在同圆或等圆中,d = 2r,r=(d)/(2)。
2. 圆的周长。
- 圆的周长C = 2π r或C=π d(π是圆周率,通常取3.14)。
- 半圆的周长C=π r + 2r=( π + 2)r。
3. 圆的面积。
- 圆的面积S=π r^2。
- 圆环的面积S = π R^2-π r^2=π(R^2-r^2)(R为外圆半径,r为内圆半径)。
二、分数混合运算。
1. 分数混合运算顺序。
- 与整数混合运算顺序相同,先算乘除,后算加减,有括号的先算括号里面的。
2. 解决问题。
- 连续求一个数的几分之几是多少,用乘法计算。
例如:求a的(b)/(c)的(d)/(e)是多少,列式为a×(b)/(c)×(d)/(e)。
- 已知一个数比另一个数多(少)几分之几,求这个数。
- 单位“1”已知,用乘法。
如:已知a,比a多(b)/(c)的数是a×(1+(b)/(c));比a少(b)/(c)的数是a×(1-(b)/(c))。
- 单位“1”未知,用除法或列方程。
设单位“1”为x,若已知数比单位“1”多(b)/(c),则x×(1+(b)/(c))=已知数;若已知数比单位“1”少(b)/(c),则x×(1 -(b)/(c))=已知数。
三、观察物体。
1. 观察的范围。
- 观察点的位置越低,观察到的范围越小;观察点的位置越高,观察到的范围越大。
- 观察点离障碍物越近,观察到的范围越小;观察点离障碍物越远,观察到的范围越大。
2. 天安门广场。
- 根据照片或画面判断拍摄的位置与画面的相互关系。
四、百分数。
1. 百分数的认识。
- 百分数表示一个数是另一个数的百分之几。
百分数也叫百分率或百分比。
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”。
第一单元 圆圆概念总结1、圆的定义:由一条曲线围成的封闭图形。
圆是平面上的一种曲线图形。
2、圆的中心叫圆心。
圆心一般用字母O 表示。
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
5、圆心确定圆的位置,半径确定圆的大小。
6、圆内最长的线段是直径,圆规两脚之间的距离是半径。
7、在同一个圆内,所有的半径都相等,所有的直径都相等。
8、在同一个圆内,有无数条半径,有无数条直径。
9、在同一个圆内,直径的长度是半径的2倍,用字母表示为:d =2r用文字表示为:直径=半径×2半径的长度是直径的一半,用字母表示为: r = d 。
12用文字表示为:半径=直径÷210、圆的周长:围成圆的曲线的长度叫做圆的周长。
11、圆的周长总是直径的3倍多一些,周长除以直径的商是一个固定的数。
我们把它叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,通常取π3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
π≈12、圆的周长公式:C= d 或C=2rππ圆周长=×直径 圆周长=×半径×2ππ13、圆的面积:圆所占面积的大小叫圆的面积。
14、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半, 用字母(r )表示,宽相当于圆的半径,用字母(r )表示,因为长方形的面积=长π×宽,所以圆的面积= r ×r 。
π圆的面积公式:S=r²。
π15、圆的面积公式:S=r²或者S=(d 2)²ππ÷或者S=(C 2)²π÷π÷16、在正方形里画一个最大的圆,圆的直径等于正方形的边长。
北师大版六年级数学上册知识点汇总北师大版六年级数学上册知识点汇总第一单元:圆1.圆的定义是由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。
2.圆心是将一张圆形纸片对折两次,折痕相交于圆中心的一点。
圆心一般用字母O表示,它到圆上任意一点的距离都相等。
3.半径是连接圆心到圆上任意一点的线段。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径是通过圆心并且两端都在圆上的线段。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r,r=1/2d。
用文字表示为:半径=直径÷2,直径=半径×2.9.圆的周长是围成圆的曲线的长度。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14.世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式为C=πd或C=2πr。
即圆周长=π×直径或圆周长=π×半径×2.12.圆的面积是圆所占面积的大小。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示。
因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式为S=πr²。
14.圆的面积公式为S=πr²或者S=π(d/2)²。
15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)(其中R=r+环的宽度)。
北师大版六年级上册数学必背知识总结
摘要:北师大版六年级上册数学必背知识总结,整理有关圆的知识、百分数的应用、图形的变换、比的认识、统计与概率、几何形体周长、面积计算公式等重要的知识点。
一、圆的知识
1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的1/2。
4、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽
7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示,π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径即C圆=πd =2πr。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方
形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;
长方形的长相当于圆周长的一半,宽相当于圆的半径。
13、如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr2 。
14、半圆的周长不是圆的周长的一半,而是圆的周长的一半再加上一条直径长,即πr +2r;半圆的面积是圆的面积的一半,即
15、周长相等时,圆的面积最大;面积相等时,圆的周长最小。
(考试一般正方形、长方形和圆,周长相等,圆的面积最大,长方形的面积最小;面积相等,圆的周长最小,长方形的周长最大。
)
16、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。
17、几个公式:
18、永远记住要带单位,周长是(cm),面积是平方(cm2),体积是立方(cm3)。
19、圆的周长:
3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7
3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=31.4
20、圆的面积:
二、百分数的应用
1、带有百分号的数叫做百分数,百分数相当于一个比值,因而没有单位。
2、四个公式:
3、两个公式:
① 增加量(减少量)=原来的量×增加的百分数(减少的百分数)
② 现在的量=原来的量±增加量(减少量)
4、存入银行的钱叫本金,利息与本金的比值叫做利率。
利息=本金×利率×时间
5、含有未知数的等式就是方程,如x+5=6
6、解方程的步骤:①去分母②去括号③移项④合并同类项⑤系数化为1
7、列方程解应用题的步骤:
①审题,用x表示未知数。
(一般问什么就设什么)
②找出等量关系,列方程。
(这一步最最重要)
③解方程。
④检验、写出答案。
三、图形的变换
1、图形的变换方法有平移、旋转、画轴对称图形。
2、找规律:看差看商、看某数的平方或立方、隔开看、分组法等等。
四、比的认识
1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数
叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
5、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
6、公因数只有1的两个数叫做互质数。
最简整数比:比的前项和后项是互质数。
7、比的化简:用商不变的性质、分数的基本性质或比的基本性质来化简。
8、比例:①表示两个比相等的式子叫做比例。
如:(3:4=9:12)。
比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
9、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
10、比、比例、比例尺、百分数的后面不能带单位。
五、统计与概率
1、三种统计图:条形统计图(表示各个量的多少)、折线统计图(表示数量多少、反映增减变化)扇形统计图(表示部分与整体的关系)。
2、平均数:几个数量的和除以数量的个数;中位数:数据从大到小或从小到大排列,最中间的一个或最中间的两个的平均数。
众数:在一组数据中出现次数最多的数。
3、事情的发生有三种情况:第一种是必然事件:一定会发生的事件,概率是1
第二种是不可能事件:一定不会发生的事件,概率为0
第三种是随机事件(也叫可能事件):可能发生也可能不发生的事件,概率是大于0小于1
六、观察物体
1、观察物体一般从正面、上面、左面或右面来观察。
2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;
离光源越远,这个物体的影子就越长。
3、站得高,才能望得远。
七、线与角
1、直线无端点,不可度量;射线1个端点,不可度量;线段两个端点,可度量。
2、从直线外一点到直线的线段中,垂直线段最短。
这条垂直线段叫做点到直线的距离。
3、锐角:小于90度的角;直角:等于90度的角;钝角:大于90度而小于180度的角;平角:等于180度的角;周角:等于360度的角。
三角形的内角和为180度。
八、几何形体周长、面积计算公式
1、长方形的周长=(长+宽)×2C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a= a2
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r 半径=直径÷2r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2C=πd =2πr
10、圆的面积=圆周率×半径×半径S=πr2
九、常见的量
1、长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米。