数学-2015-2016学年高二上学期第二次月训数学试题
- 格式:doc
- 大小:164.00 KB
- 文档页数:4
2015—2016学年度南昌市八一中学高二数学10份月考试卷命题人:刘娟 审题人:胡文敏第Ⅰ卷一、选择题:(共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 1<k 3<k 2D .k 3<k 2<k 12.方程322x xy x +=所表示的曲线是( ).A.一个圆B.一条直线 C 一个点和一条直线. D.一条直线和一个圆3.点A(-1,2)关于直线03=-+y x 的对称点B 的坐标是( )A. (1,4)B. (2,5)C. (-1,2)D.(-2,1) 4.已知直线02=+-a y ax 与直线0)12(=++-a ay x a 垂直,则实数a 的值为( ) A. 1 B. 1 或-1 C. 0或2 D.0或15.直线y x =绕原点逆时针方向旋转 15后所得直线与圆22(2)3x y -+=的位置关系是( )A. 相离B. 相交C. 相切D.无法判定 6.已知圆C :0322=++++Ey Dx y x,圆心在直线01=-+y x 上,且圆心在第二象限,半径为2,则圆的一般方程为( )A . 032422=+-++y x y xB .032422=++-+y x y x C . 032422=+--+y x y x D .034222=+-++y x y x7.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为 ( )A.3y x =-B.y = C.y = D.3y x = 的倾斜角的范围是直线的交点在第一象限,则和直线若直线12142:2:..8l y x l k x y l =+-=A. )4,6(ππ B.)2,4(ππ C.]2,4(ππ D.]3,4(ππ9.直线 01=++y x 截圆 222=+y x 所得的两段弧长之差的绝对值是( )A .32πB .32πC . 322π D .π22 10.圆(x -2)2+(y+1)2=9上到直线3x +4y -12=0的距离等于1的点有( )A .4个B .3个C .2个D .1个11.若点P 在直线04:1=++y x l 上,过点P 的直线2l 与曲线076:22=+-+x y x C 相切于点M ,则PM 的最小值为( )A . 245B .233C .263D .210312.若点(,)M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则3125+-+a b a 的最大值为( )A . 59B .34C . 320D .1第Ⅱ卷二、填空题:(本大题共4小题,每小题5分。
2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的X围,利用正弦函数的单调性即可求得f(x)的取值X围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值X围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值X围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值X围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。
辽师大附中2015—2016学年上学期第二次模块考试高二数学试题(理科)考试时间:90分钟 满分120分注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题纸的相应位置。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择一个符合题目要求的选项.1、如图是正方体的平面展开图,则在正方体中,有下列结论:① BM ∥DE ; ② CN 与BE 是异面直线; ③ CN 与BM 成60°角; ④ DM 与BN 是异面直线. 其中正确结论的序号是( )A .①②③B .②④C .③④D .②③④2、已知正三棱柱ABC A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( )A.12B.32C.35D.453、已知二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .若AB =4,AC =6,BD =8,CD =2 17,则该二面角的大小为( ) A .150° B .45° C .60° D .120°4、如图所示,△ABC 是等腰直角三角形,其中∠A =90°,且DB ⊥BC ,∠BCD =30°.现将△ABC 折起,使得二面角A BC D 为直角,则下列叙述正确的是( )①BD →·AC →=0; ②平面BCD 的法向量与平面ACD 的法向量垂直; ③异面直线BC 与AD 所成的角为60°; ④直线DC 与平面ABC 所成的角为30°.A .①③B .①④C .①③④D .①②③④5、如图所示,△ADP 为正三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .若点M 为平面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为( )6、已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线的左支C .一条射线D .双曲线的右支7、直线4kx -4y -k =0 (k ∈R ) 与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( )A.74 B .2 C.94 D .48、已知中心为(0,0),一个焦点为F (0,5 2)的椭圆截直线y =3x -2所得弦的中点的横坐标为12,则该椭圆的方程是( )A.x 2150+y 2100=1B.x 275+y 225=1C.x 225+y 275=1D.x 2100+y 2150=19、已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4 上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .1510、已知A ,B 两点均在焦点为F 的抛物线y 2=2px (p >0)上,若|AF →|+|BF →|=4,线段AB 的中点到直线x =p2的距离为1,则p 的值为( )A .1B .1或3C .2D .2或6第Ⅱ卷( 共70分)二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上。
2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。
辽宁省沈阳市第二中学2023-2024学年高二上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .1-B .13.若32nx x ⎛⎫+ ⎪⎝⎭展开式中存在常数项,则正整数A .5B .64.已知直线()1y k x =-与双曲线()A .33±B .±5.2023年的五一劳动节是疫情后的第一个小长假,常见的五个旅游热门地北京、上海、广州、深圳、成都外,淄博烧烤火爆全国,则甲、乙、丙、丁四个部门至少有三个部门所选旅游地全不相同的方法种数共有(A .1800B .10806.已知直线l :20x y ++=与和2l :420my x m --+=交于点A .10B .5A.23二、多选题9.如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F为圆心的圆形轨道Ⅰ上绕月球飞行,然后在点P处变轨进入以F为一焦点的椭圆轨道Ⅱ上绕月球飞行,最后在点Q处变轨进入以F为圆心的圆形轨道Ⅲ上绕月球飞行.设圆形轨道Ⅰ的半径为R,圆形轨道Ⅲ的半径为r,则下列结论中正确的是()A.轨道Ⅱ的焦距为R r-B.轨道Ⅱ的长轴长为R r+C.若R不变,r越大,轨道Ⅱ的短轴长越小D.若r不变,R越大,轨道Ⅱ的离心率越大10.将4个编号分别为1,2,3,4的小球放入4个编号分别为1,2,3,4的盒子中.下列说法正确的是()=种放法A.共有44A24A .1D C 与EF 所成角为B .平面EFG 截正方体所得截面的面积为C .1//AD 平面EFGD .若APD FPC ∠∠=12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线22:C x y +=结论,其中结论正确的有(A .曲线C 围成的图形的面积是B .曲线C 围成的图形的周长是C .曲线C 上的任意两点间的距离不超过D .若(,)P m n 是曲线C 三、填空题13.正方体ABCD-A 1B 1C 1D 的中点,则平面AMN 与平面14.已知椭圆22122:x y C a b +=直线12y x =-与直线l 的交点恰好为线段15.现有7名志愿者,其中只会俄语的有人担任“一带一路”峰会开幕式翻译工作,种不同的选法.16.已知椭圆2222:x y C a b+点,12AF F △的内切圆的圆心为为.四、解答题17.如图,一个正方形花圃被分成(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法(2)若向这5个部分放入的放法?18.已知抛物线2:2C y px =B 两点.(1)求抛物线C 的方程;(2)如果4OA OB ⋅=-,直线试说明理由.19.如图,在四棱锥(1)证明:平面PBC ⊥平面(2)求直线DE 与平面PAC 所成角的正弦值;20.已知,m n 是正整数,(1(1)当展开式中2x 的系数最小时,求出此时(2)已知12122m n x +-⎛⎫+ ⎪⎝⎭的展开式的二项式系数的最大值为(1)求证:FG 平面111A B C ;(2)若平面ABC ⊥平面11BCC B ,点Q 为BC 的中点,2AB AC BC ===,则在线段是否存在一点M ,使得二面角11M B Q C --为60 ,若存在,求1AMMC 的值;若不存在,说明理由.22.动点(),M x y 与定点()3,0F的距离和M 到定直线:23l x =的距离之比是常数。
一.填空题:(本大题共14小题,每题5分,共70分.请把答案填写在答题卡相应位置.......上.) 1. 命题:∀x ∈R ,sin x <2的否定是 ▲ .2. 已知命题,命题点在圆的内部.若命题“或”为假命题,则实数的取值范围 . 3. 抛物线22y x =的准线方程为 ▲ .4. 圆x 2+y 2-4x =0在点P 处的切线方程为 ▲ . 5. 若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a = ▲ .6. 在三棱锥S -ABC 中,面SAB ,SBC ,SAC 都是以S 为直角顶点的等腰直角三角形,且AB =BC =CA =2,则三棱锥S -ABC 的表面积是 ▲ .7. 已知椭圆2214x y +=的左、右焦点分别为F 1、F 2,第一象限内的点M 在该椭圆上,且12MF MF ⊥,则点M 的横坐标为 ▲ .8. 设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为 ▲ .9. 如图所示,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,点E 在线段PC 上,BE PC ⊥.下列四个命题;①PC DE ⊥;②PC ⊥平面BDE ;③平面BED ⊥平面PAC ;④平面PBC ⊥平面PAC . 其中,所有真命题的序号是 ▲ .10. 已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是 ▲ .11. 过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若AB =7,则AB 的中点M 到抛物线准线的距离为 ▲ .12. 设α,β为两个不重合的平面,m ,n 为两条不重合的直线,给出下列四个命题;①若m ⊥n ,m ⊥α,n ⊄ α,则n ∥α; ②若α⊥β,α∩β=m ,n ⊂α,n ⊥m ,则n ⊥β;③若m ⊥n ,m ∥α,n ∥β,则α⊥β; ④若n ⊂α,m ⊂β,α与β相交且不垂直,则n 与m 不垂直. 其中,所有真命题的序号是 ▲ .13. 点A B 、是椭圆221(04)4x y n n+=<<上的动点,O 是坐标原点,若0OA OB ⋅=,且O 到直线AB,则实数n = ▲ .14. 已知双曲线22221(0)x y a b a b-=>,的左右焦点分别是12F F 、,点A 在双曲线的左支上,射线1F A 与双曲线的右支交于点B ,若存在点B ,满足221BAF BF F ∠=∠,则该双曲线的离心率的取值范围是 ▲ .2:,0p x R x x m ∀∈+-≥:q ()1,2A -()()221x m y m -++=p q m二、解答题:(本大题共6小题,共90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.)15. (本题满分14分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }. (1)若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围; (2)若x ∈P 是x ∈S 的充分不必要条件,求实数m 的取值范围.16. (本题满分14分) 如图所示的容器,由一个有下底面但没有上底面的圆柱和一个与圆柱底面相同的圆锥侧面组成.已知圆柱的高为2米,底面的周长为2π米,圆锥的母线长为2米. (1)求该容器的表面积; (2)求该容器的体积.17. (本题满分15分)如图,在四棱锥P -ABCD 中, 四边形ABCD 为矩形,AB ⊥BP ,M ,N 分别为AC ,PD 的中点. (1)求证:MN ∥平面ABP ;(2)若BP ⊥PC ,求证:平面ABP ⊥平面APC .18. (本题满分15分)已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.19. (本题满分16分)过椭圆M :22221(0)x y a b a b+=>>右焦点的直线0x y +交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形面积的最大值.20. (本题满分16分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,短轴长为2,动点M (2,t )(t >0)在椭圆的准线上. (1)求椭圆的标准方程.(2)设点F 是椭圆的右焦点,过点F 作OM 的垂线FH ,与以OM 求证:线段ON 的长为定值,并求出这个定值.参考答案1. ∃x ∈R ,sin x ≥22.[)∞+⎥⎦⎤⎝⎛,,2141- 3. y =-18 4. x -3y +2=0 5. 1 6. 3+ 3 7. 263 8. 159. ①②③ 10. 4x -y -7=0 11. 7212. ①② 13. 1 14.(32+,15. (1)由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10}, ......2分 由x ∈P 是x ∈S 的必要条件,知S ⊆P . ......4分 则{ 1-m ≤1+m ,1-m ≥-2,1+m ≤10,解得:0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. ......6分 (2)由题意得:P S ⊆且P S ≠,则 ......8分 12110m m -≤-⎧⎨+>⎩ 或12110m m -<-⎧⎨+≥⎩......12分 解得m ≥9,即m 的取值范围是[9,+∞) . ......14分 16.(1)由题意得,表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积的和. 而圆锥的底面周长为2π米,圆锥的母线长为2米,所以圆锥的侧面积为2π平方米;圆柱的底面周长为2π米,高为2米,所以圆柱的侧面积为4π平方米;而圆柱的底面周长为2π米,则底面半径为1米,底面面积为π平方米,综上,该容器的表面积为7π平方米. ......7分(2)由题意得,体积是圆锥的体积与圆柱的体积的和.由(1)得,圆锥的母线长为2米,底面半径为1的体积为13π⨯=立方米,而圆柱的体积为2π立方米,所以该容器的体积为2)π+立方米. ......14分 17. (1)连结BD ,由已知,M 为AC 和BD 的中点,在三角形PBD 中,又因为N 为PD 的中点,所以MN ∥BP ,而MN ⊄平面ABP ,BP ⊂平面ABP ,所以MN ∥平面ABP . ......7分(2)因为AB ⊥BP ,AB ⊥BC ,BP ∩BC =B ,BP ,BC 都在平面BPC 上.所以AB ⊥平面BPC . 而PC ⊂平面BP C ,所以AB ⊥PC . .......10分 又因为BP ⊥PC ,AB ∩BP =B ,BP ,AB 都在平面BPC 上,所以PC ⊥平面ABP . 而PC ⊂平面APC ,所以,平面ABP ⊥平面APC . ......15分18. 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34. ......7分(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,CD =得解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. ......15分19. (1)设1122()()A x y B x y ,、,,则2222112222221(1)1(2)x y x y a b a b+=+=,,(1)(2)-得:1212121222()()()()0x x x x y y y y a b -+-++=,因为12121y y x x -=--,设00()P x y ,,因为P 为AB 中点,且OP 的斜率为12,所以0012y x =即12121()2y y x x +=+,所以222222()a b a c ==-,而c =, 所以26a =,M 的方程为:22163x y +=. ......6分(2)将直线AB 方程与椭圆M 方程联立,解得点A B 、坐标分别为(0-,则||AB = ......8分因为CD ⊥AB ,设直线CD 方程为:y x m =+,代入22163x y +=得,2234260x mx m ++-=,设点C D 、的坐标分别为3344()()x y x y ,、,,则在2221612(26)7280m m m ∆=--=->时,即33m -<<时, 2343442633m m x x x x -+=-=, . ......12分CD当0m =时,CD 有最大值4 ......16分 20. (1)由2b =2,得b =1.又由点M 在准线上,得a2c =2.故1+c 2c =2.所以c =1.从而a = 2.所以椭圆的方程为x 22+y 2=1. .......6分(2)法一 由平面几何知ON 2=OH ·OM .直线OM :y =t 2x ,直线FN :y =-2t (x -1).由⎩⎨⎧y =t 2x ,y =-2t (x -1),得x H =4t 2+4.所以ON 2=1+t 24·|x H |·1+t 24·|x M|=⎝⎛⎭⎫1+t 24·4t 2+4·2=2. 所以线段ON 的长为定值 2. ......16分法二 设N (x 0,y 0),则FN →=(x 0-1,y 0),OM →=(2,t ),MN →=(x 0-2,y 0-t ),ON →=(x 0,y 0). 因为FN →⊥OM →,所以2(x 0-1)+ty 0=0.所以2x 0+ty 0=2.又MN →⊥ON →,所以x 0(x 0-2)+y 0(y 0-t )=0.所以x 20+y 20=2x 0+ty 0=2. 所以|ON →|=x 20+y 20=2为定值. ......16分。
2015-2016学年四川省成都七中高二(上)期末数学模拟试卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56D.45,47,532.执行如图的框图,第3次和最后一次输出的A的值是()A.7,9 B.5,11 C.7,11 D.5,93.对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.x增加一个单位时,y平均增加个单位C.样本数据中x=0时,可能有D.样本数据中x=0时,一定有4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D﹣ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④5.若A、B两点的坐标分别是A(3cosa,3sina,1),B (2cosb,2sinb,1),则||的取值范围是( )A.B.C.(1,5) D.6.平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于( )A.6 B.5 C.4 D.37.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是( )A.B.C.D.8.已知:,求z=x2+y2最小值为()A.13 B.C.1 D.9.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=110.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.两个圆C1:x2+y2+2x+2y﹣2=0与C2:x2+y2﹣4x﹣2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条12.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2二、填空题:本大题共4小题,每小题4分,共16分。
山东省北镇中学2024-2025学年高二上学期第二次考试(9月月考)数学试题一、单选题1.若()()()2,3,2,1,2,2,1,2,2a b c ===-r r r,则()a b c -⋅r r r 的值为( )A .1-B .0C .1D .22.已知命题p :方程22151x y m m +=--表示焦点在y 轴上的椭圆,则m 的范围( )A .35m <<B .45m <<C .15m <<D .1m >3.如图,在空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u ur r ,点M 在OA 上,且2OM MA =,N 为BC 的中点,则MN u u u u r等于( )A .121232a b c -+r r rB .221332a b c +-r r rC .211322a b c -++r r rD .111222a b c +-r r r4.已知()4,2M 是直线l 被椭圆22436x y +=所截得的线段AB 的中点,则直线l 的方程为( ) A .280x y +-= B .280x y +-= C .280x y --=D .260x y --=5.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是( )A .[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦UB .(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C .3,44⎡⎤-⎢⎥⎣⎦D .34,4⎡⎤-⎢⎥⎣⎦6.已知向量(a r =,()320b r ,,=-,则a b -r r 在a r 上的投影向量为( )A.33,,444⎛ ⎝⎭B.5544,⎛ ⎝⎭C.33,22⎛ ⎝⎭D.23,55⎛- ⎝⎭7.已知椭圆2222:1(0)x y M a b a b+=>>的左、右焦点分别为12,F F ,点P 在M 上,Q 为2PF 的中点,且121,FQ PF FQ b ⊥=,则M 的离心率为( ) AB .13C .12D8.已知圆C :()2234x y +-=,过点()0,4的直线l 与x 轴交于点P ,与圆C 交于A ,B 两点,则()CP CA CB ⋅+u u u r u u u r u u u r 的取值范围是( )A .[]0,1B .[)0,1C .[]0,2D .[)0,2二、多选题9.已知椭圆22:416C x y +=的左、右焦点分别为1F ,2F ,P 是C 上的任意一点,则( )A .C 的离心率为12B .128PF PF +=C .1PF的最大值为4+D .使12F PF ∠为直角的点P 有4个10.已知直线:0-+=l kx y k ,圆()2200:650,,C x y x P x y +-+=为圆C 上任意一点,则下列说法正确的是( )A .2200x y +的最大值为5B .00y xC .直线l 与圆C相切时,k =D .圆心C 到直线l 的距离最大为411.如图所示,在直三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,11AB BC AA ===,点D 为侧棱1BB 上的动点,M 为线段11A B 中点.则下列说法正确的是( )A .存在点D ,使得AD ⊥平面BCMB .1ADC △周长的最小值为1C .三棱锥1C ABC -D .平面1ADC 与平面ABC三、填空题12.直线3x +4y +2=0被圆22230x y x +--=截得的弦长为 .13.点P 是椭圆2214x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,若124||||3PF PF =g ,则12F PF ∠的大小为.14.如图,长方体1111ABCD A B C D -中,111111CC C D C B ===,点P 为线段1B C 上一点,则11C P D P ⋅u u u r u u u u r的最大值为.四、解答题15.如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为梯形,AD BC ∥,2AB AD ==,BD =4BC =.(1)证明:111A B AD ⊥;(2)若12AA =,求点B 到平面11B CD 的距离.16.已知圆C 经过点()()3,11,3A B -,且圆心C 在直线320x y --=上. (1)求圆C 方程;(2)若E 点为圆C 上任意一点,且点()4,0F ,求线段EF 的中点M 的轨迹方程.17.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为()10F ,,且离心率为12. (1)求C 的方程;(2)过F 作直线l 与C 交于,M N 两点,O 为坐标原点,若OMN S =V l 的方程. 18.在Rt ABC △中,90C ∠=︒,3BC =,6AC =,,D E 分别是,AC AB 上的点,满足DE BC ∥且DE 经过ABC V 的重心,将ADE V 沿DE 折起到1A DE △的位置,使1AC CD ⊥,M 是1A D 的中点,如图所示.(1)求证:1AC ⊥平面BCDE ; (2)求CM 与平面1A BE 所成角的大小;(3)在线段1AC 上是否存在点N ,使平面CBM 与平面BMN ?若存在,求出CN 的长度;若不存在,请说明理由.19.已知椭圆C :()222210+=>>x y a b a b的离心率为12,右顶点Q 与C 的上,下顶点所围成的三角形面积为(1)求C的方程.(2)不过点Q的动直线l与C交于A,B两点,直线QA与QB的斜率之积恒为1.4(i)证明:直线l过定点;V面积的最大值.(ii)求QAB。
内江2023—2024学年(上)高2025届第二次月考数学试题(答案在最后)考试时间:120分钟满分:150分第Ⅰ卷选择题(满分60分)一、单选题(每题5分,共40分)1.经过()()1,3,1,9A B -两点的直线的一个方向向量为()1,k ,则k =()A.13-B.13C.3- D.3【答案】D 【解析】【分析】根据斜率公式求得3AB k =,结合直线的方向向量的定义,即可求解.【详解】由点()()1,3,1,9A B -,可得直线AB 的斜率为93311AB k -==+,因为经过,A B 两点的直线的一个方向向量为()1,k ,所以3k =.故选:D.2.已知圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为()A.π3B.3C.23π3D.【答案】B 【解析】【分析】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【详解】根据题意,圆锥的底面面积为π,设底面半径为r ,圆锥母线为l ,则2ππr =,1r =,底面周长为2π2πr =,又12π2π2l ⨯=,∴圆锥的母线为2=,所以圆锥的体积1π33=.故选:B .3.若椭圆22134x y +=的长轴端点与双曲线2212y x m-=的焦点重合,则m 的值为()A.4B.4- C.2- D.2【答案】D 【解析】【分析】根据长轴端点确定焦点,再根据,,a b c 的关系可求得m 的值.【详解】椭圆22134x y +=的长轴端点为(0,2),(0,2)-,所以双曲线2212y x m-=的焦点为(0,2),(0,2)-,故242m m +=⇒=.故选:D.4.已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题错误的是()A.若m n ∥,n α∥,m α⊄,则m α∥B.若m n ⊥,m l ⊥,n α∥,l α∥,则m α⊥C.若m β∥,m α⊂,n αβ= ,则m n ∥D.若αβ∥,m α⊥,n β⊥,则m n∥【答案】B 【解析】【分析】根据线面平行的判定定理可判断A ;根据线面垂直的判定定理可判断B ;根据线面平行的性质定理可判断C ;根据面面平行以及线面垂直的性质可判断D.【详解】对于A ,n α∥,则α内必存在直线,设为s ,使得n s ∥,又m n ∥,则m s ∥,而,m s αα⊄⊂,则m α∥,A 正确;B 中,若n l ,此时有可能是m α⊂或m α∥或m α⊥或m 和α相交不垂直,未必一定是m α⊥,则B 的说法不正确.对于C ,若m β∥,m α⊂,n αβ= ,则m n ∥,根据线面平行的性质定理可知m n ∥,C 正确,对于D ,若αβ∥,m α⊥,则m β⊥,又n β⊥,故m n ∥,D 正确,故选:B .5.已知圆22:(1)1C x y -+=与抛物线22(0)x py p =>的准线相切,则p =()A.18B.14C.8D.2【答案】D 【解析】【分析】根据抛物线的几何性质,直线与圆的位置关系即可求解.【详解】 抛物线22(0)x py p =>的准线为2p y =-,又圆22:(1)1C x y -+=与该抛物线的准线相切,∴圆心(1,0)C 到准线2py =-的距离:1,22pd r p ===∴=.故选: D.6.如图,在圆锥PO 中,轴截面PAB 的顶角60APB ∠=︒,设D 是母线PA 的中点,C 在底面圆周上,且PC AB ⊥,则异面直线CD 与PB 所成角的大小为()A.15°B.30°C.45°D.60°【答案】C 【解析】【分析】首先得出异面直线CD 与PB 所成的角即为ODC ∠(或其补角),在DOC △中求角即可.【详解】因为D 是AP 的中点,O 是AB 的中点,所以//OD PB ,所以异面直线CD 与PB 所成的角即为ODC ∠(或其补角).易知AB PO ⊥.因为PC AB ⊥,PC PO P ⋂=,,PC PO ⊂平面POC ,所以AB ⊥平面POC .因为OC ⊂平面POC ,所以OC AB ⊥.又OC OP ⊥,OP AB O = ,,OP AB ⊂平面PAB ,所以OC ⊥平面PAB ,而DO ⊂平面PAB ,所以OC DO ⊥.因为60APB ∠=︒,AP PB =,所以APB △为等边三角形,所以12OD AP OA OC ===,所以45ODC ∠=︒.故选:C .7.已知双曲线的左、右焦点分别为12F F 、,过1F 的直线交双曲线左支于A B 、两点,且5AB =,若双曲线的实轴长为8,那么2ABF △的周长是()A.5B.16C.21D.26【答案】D 【解析】【分析】根据双曲线的定义分析求解.【详解】由题意可知:21218AF AF BF BF -=-=,即21218,8=+=+AF AF BF BF ,所以2ABF △的周长()()22118816226++=++++=+=AF BF AB AF BF AB AB .故选:D.8.已知(1,0)F 为椭圆2219x ym+=的焦点,P 为椭圆上一动点,(1,1)A ,则||||PA PF +的最大值为()A.6+B.6C.6+D.6【答案】A 【解析】【分析】根据焦点求得m ,利用椭圆的定义求得||||PA PF +的最大值.【详解】由于椭圆的焦点为()1,0F ,所以1c =且焦点在x 轴上,则90m >>,1=,8m =,所以椭圆方程为22198x y +=,所以3,a b ==,设左焦点为1F ,根据椭圆的定义得111||||2666PA PF PA a PF PA PF AF +=+-=+-≤+=+,当P 是1AF 的延长线与椭圆的交点时等号成立,所以||||PA PF +的最大值为6+.故选:A二、多选题(全选对得5分,少选得2分,选错不得分,每题5分,共20分)9.(多选)对于抛物线上218x y =,下列描述正确的是()A.开口向上,焦点为()0,2B.开口向上,焦点为10,16⎛⎫⎪⎝⎭C.焦点到准线的距离为4D.准线方程为4y =-【答案】AC 【解析】【分析】写出标准形式即28x y =,即可得到相关结论【详解】由抛物线218x y =,即28x y =,可知抛物线的开口向上,焦点坐标为()0,2,焦点到准线的距离为4,准线方程为=2y -.故选:AC10.下列四个命题中正确的是()A.已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底B.n 是平面α的法向量,a 是直线l 的方向向量,若0a n ⋅=,则//l αC.已知向量()9,4,4a =- ,()1,2,2b = ,则a 在b方向上的投影向量为()1,2,1D.O 为空间中任意一点,若OP xOA yOB zOC =++,且1x y z ++=,则P ,A ,B ,C 四点共面【答案】AD 【解析】【分析】由空间向量基底的性质判断A ;由线面平行的条件判定B ;由投影向量的概念求C ;由向量基本定理的推论判断D.【详解】对于A ,假设,,a b m共面,则存在,R x y ∈,使得m a c xa yb =+=+ ,则()1c x a yb =-+ ,因为{},,a b c 是空间的一组基底,即,,a b c不共面,与()1c x a yb =-+ 矛盾,所以,,a b m不共面,则{},,a b m 也是空间的一组基底,故A 正确;对于B ,当l ⊂α时,满足0a n ⋅=,但直线l 不平行于平面α,故B 错误;对于C ,因为()9,4,4a =- ,()1,2,2b =,则a 在b方向上的投影向量为()1,2,2a b b bb +⋅+-⋅⋅⋅=,故C 错误;对于D ,由空间向量基本定理的推论可知:若OP xOA yOB zOC =++,且1x y z ++=,则P ,A ,B ,C 四点共面,故D 正确.故选:AD.11.已知直线:0l kx y k --=,圆()()22:214M x y -+-=,则下列说法正确的是()A.直线l 恒过点()1,0 B.圆M 与圆22:1C x y +=有两条公切线C.直线l 被圆M 截得的最短弦长为 D.当1k =时,圆M 存在无数对点关于直线l 对称【答案】ABD 【解析】【分析】求解直线系所过的定点判断A ;判断两圆位置关系判断B ;求解直线被圆截的弦长判断C ,利用圆的圆心与直线的位置关系判断D .【详解】对A ,直线:0l kx y k --=,即()10k x x y --=,恒过点(1,0),所以A 正确;对B ,圆M 的圆心坐标为(2,1),半径为2,而圆22:1C x y +=的圆心为()0,0,半径为1,=,半径和为3,半径差为1,则13<<,则两圆相交,则两圆有两条公切线,B 正确;对C ,圆()()22:214M x y -+-=的圆心坐标为(2,1),圆的半径为2.直线:0l kx y k --=,恒过点(1,0),代入圆方程得()()22120124-+-=<,则定点在圆内,则直线与圆必有两交点,设圆心到直线的距离为d,则弦长l ==d 最大,=,所以直线l 被圆M截得的最短弦长为=≠,所以C 不正确;对D ,当1k =时,直线方程为:10x y --=,代入圆心坐标(2,1),得2110--=,则该直线经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确.故选:ABD .12.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1AC 的中点.点P 是1BC 上的动点,则下列说法正确的是()A.当点P 运动到1BC 中点时,直线1A P 与平面111A B C所成的角的正切值为5B.无论点P 在1BC 上怎么运动,都有11A P OB ⊥C.当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且113PQ QA =D.无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30︒【答案】BD 【解析】【分析】选项A :设E 为11B C 的中点,连接1A E 、EP ,可得直线1A P 与平面111A B C 的平面角为1PA E ∠,求正切值即可;选项B :利用线面垂直的性质可证明11A P OB ⊥即可判断;选项C :利用三角形中线的性质判断即可;选项D :由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围判断即可.【详解】选项A :当点P 运动到1BC 中点时,设E 为11B C 的中点,连接1A E 、EP ,如下图示,因为直三棱柱111ABC A B C -,所以1BB ⊥面111A B C ,又因为11C B B 中中位线1EP BB ∥,所以EP ⊥面111A B C ,所以直线1A P 与平面111A B C 所成的角的正切值1tan EPPA E AE∠=,因为112EP BB =,22111152AE A B B E BB =+=,所以15tan 5PA E ∠=,故说法A 错误;选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示,由题意知,11B BCC 为正方形,即有11B C BC ⊥,因为1111A B B C ⊥且111ABC A B C -为直三棱柱,1BB ⊥平面111A B C ,11A B ⊂平面111A B C ,所以111A B BB ⊥,因为1111B C BB BB = ,111B C BB ⊂,面11B BCC ,所以11A B ⊥面11B BCC ,因为1BC ⊂面11B BCC ,所以111A B BC ⊥,又1111A B B C B = ,111,A B B C ⊂面11A B C ,所以1BC ⊥面11A B C ,因为1OB ⊂面11A B C ,所以11BC OB ⊥,连接11,AB AC ,同理11A B AB ⊥,11B C ⊥面11AA B B ,因为1A B ⊂面11AA B B ,所以111B C A B ⊥,又1111AB B C B ⋂=,111,AB B C ⊂面11AB C ,所以1A B ⊥面11AB C ,因为1OB ⊂面11AB C ,所以11A B OB ⊥,又11A B BC B ⋂=,11,A B BC ⊂面11A BC ,所以1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 说法正确;选项C :点P 运动到1BC 中点时,即在11A B C 中1A P 、1OB 均为中线,所以Q为中线的交点,所以根据中线的性质有:112PQ QA =,故C 错误;选项D 中,由于11∥A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角11B A P ∠,由选项A 可知11A B ⊥面11BB C C ,因为1B P ⊂面11BB C C ,所以111A B B P ⊥,所以11111tan B PB A P A B ∠=,点P 在1BC 上运动时,当P 在B 或1C 上时,11B A P ∠最大为45︒,当P 在1BC 中点上时,11B A P ∠最小,此时为11tan 23B A P ∠=>,1130B AP ∠>︒,所以11B A P ∠不可能是30︒,故D 说法正确;故选:BD第Ⅱ卷非选择题(满分90分)三、填空题(每题5分,共20分)13.过椭圆22143x y +=的左顶点,且与直线210x y -+=平行的直线方程为____________.【答案】240x y -+=【解析】【分析】由已知求出椭圆左顶点,利用平行直线斜率相等结合点斜式方程可得答案.【详解】由椭圆22143x y +=知,24a =,所以左顶点为(2,0)-,又所求直线与直线210x y -+=平行,所以斜率2k =,故直线方程为2(2)y x =+,即240x y -+=.故答案为:240x y -+=14.已知数列{}n a 的前n 项和为221n S n n =+-,则数列{}n a 的通项公式为__________.【答案】21412n n a n n =⎧=⎨-≥⎩【解析】【分析】利用11,1=,2n nn S n a S S n -=⎧⎨-≥⎩求解【详解】数列{}n a 的前n 项和221n S n n =+-,可得11211=2a S -==+;2n ≥时,()221212(1)141+1n n n n a S S n n n n -=-=--+=----,不满足12a =,则2,141,2n n a n n =⎧=⎨-≥⎩,故答案为:2,141,2n n a n n =⎧=⎨-≥⎩.15.若2y kx =+与y =k 的取值范围为_____________.【答案】(,2][2,)-∞-+∞ 【解析】【分析】根据题意,得到曲线221(0)x y y +=≤和直线2y kx =+恒过定点(0,2)P ,画出图象,结合斜率公式,即可求解.【详解】由曲线y =221(0)x y y +=≤,表示以原点为圆心,半径为1的下半圆,又由直线2y kx =+恒经过定点(0,2)P ,因为曲线221(0)x y y +=≤与x 轴的交点分别为(1,0),(1,0)A B -,可得2,2AP BP k k ==-,要使得2y kx =+与y =2k ≤-或2k ≥,所以实数k 的取值范围为(,2][2,)-∞-+∞ .故答案为:(,2][2,)-∞-+∞.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在C 上,且2PF x ⊥轴,过点2F 作12F PF ∠的平分线的垂线,与直线1PF 交于点A ,若点A 在圆222:O x y a +=上,则C 的离心率为__________.【解析】【分析】由题意求出22||b PF a=,结合双曲线定义以及角平线性质推出1||2AF a =,从而推出1222cos 2cPF F b a a ∠+=,在1AOF △中,利用余弦定理可求得4224340a a c c -+=,结合齐次式求解离心率,即可得答案.【详解】由题意知2(,0)F c ,2PF x ⊥轴,故将x c =代入22221x y a b-=中,得22221c y a b -=,则2b y a =±,即22||b PF a=,不妨设P 在双曲线右支上,则12||||2PF PF a -=,故21||2b PF a a=+;设PQ 为12F PF ∠的平分线,由题意知2F A PQ ⊥,则2||||PA PF =,即2||b PA a =,而211||||||2b PF PA AF a a=+=+,故1||2AF a =,由点A 在圆222:O x y a +=上,得||OA a =;又1||OF c =,则1221212c ||os 2||F F PF b c PF F a a ∠=+=,在1AOF △中,222111112||||||2||||cos OA OF AF OF AF PF F =+-⋅∠,即222224222ca c a c ab a a=+-⋅⋅⋅+,结合222b c a =-,即得4224340a a c c -+=,即42430e e -+=,解得23e =或21e =(舍),故e =,即C【点睛】关键点睛:求解双曲线的离心率,关键是求出,,a b c 之间的数量关系式,因此解答本题时,要结合题中条件以及双曲线定义推出相关线段长,从而在1AOF △中,利用余弦定理求出,,a b c 的关系,化为齐次式,即可求得答案.四、解答题(17题10分,其余每题12分,共70分)17.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,已知焦距为8,离心率为2,(1)求双曲线标准方程;(2)求双曲线的顶点坐标、焦点坐标、实轴和虚轴长及渐近线方程.【答案】(1)221412x y -=(2)答案见详解【解析】【分析】(1)根据已知条件列方程求出a ,b ,c ,然后可得标准方程;(2)根据(1)中a ,b ,c ,的值直接写出所求即可.【小问1详解】由题知,282c c a=⎧⎪⎨=⎪⎩,解得4,2c a ==,所以b ===,所以双曲线标准方程为:221412x y -=.【小问2详解】由(1)知4,2,c a b ===,双曲线焦点在x 轴上,所以双曲线的顶点坐标为(20)±,,焦点坐标为(4,0)±,实轴长24a =,虚轴长2b =,渐近线方程为2y x =±,即y =.18.如图,四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,O 是ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.(1)求证:PA ∥平面BDE ;(2)若2OP =,求三棱锥E BCD -的体积.【答案】(1)证明见详解(2)16【解析】【分析】(1)连接OE ,由三角形中位线定理可得//OE PA ,再由直线与平面的判定定理可判定//PA 平面BDE ;(2)取OC 中点F ,连接EF ,可得//EF PO ,且112EF PO ==,易得EF ⊥平面ABCD ,再由棱锥体积公式得解.【小问1详解】证明:连接OE ,,O E 分别是AC ,PC 的中点,//OE ∴PA ,又OE ⊂平面BDE ,PA ⊄平面BDE ,//PA ∴平面BDE .【小问2详解】取OC 中点F ,连接EF ,E 是PC 的中点,EF ∴为POC △的中位线,则//EF PO ,且112EF PO ==,又PO ⊥平面ABCD ,EF ∴⊥平面ABCD ,1111326E BCD V -∴=⨯⨯=所以三棱锥E BCD -的体积为16.19.已知圆C 过点(2,3),(5,0)和(4,.(1)求圆C 的方程;(2)已知动圆M 和圆C 外切且过点(2,0)A -,求圆心M 的轨迹方程.【答案】(1)22(2)9x y -+=;(2)224431()972-=≤-x y x .【解析】【分析】(1)设圆C :()()222x a y b r -+-=把点(2,3),(5,0)(4,代入求解,,a b r .(2)根据点(2,0)A -在圆上和两圆相外切可以找到MA ,MC 的关系,根据双曲线的定义求解双曲线方程.【小问1详解】设圆C :()()222x a y b r -+-=,又因为(2,3),(5,0)(4,在圆C 上即()()()()(2222222222354a b r a b r a b r ⎧-+-=⎪⎪-+=⎨⎪-++=⎪⎩ ①②③-①②得:()()()2732330a b -⋅+-⋅-=即20a b --= ④-③②得:()(2920a b -++⋅=即20a +-= ⑤-⑤④得)10b +=即0b =,2a =,29r =所以圆C :22(2)9x y -+=【小问2详解】设动圆的半径为R ,又因为动圆M 经过点A ,所以MA R=动圆M 和圆C 外切,所以3MC R =+,即34MC MA -=<,根据双曲线的定义可知动点M 是以()()2,0,2,0A C -为焦点,3为实轴长的双曲线的左支.由双曲线的定义知:2,23c a ==,所以22297444b c a =-=-=所以动点M 的轨迹为:224431972x y x ⎛⎫-=≤- ⎪⎝⎭20.已知F 是抛物线2:2(0)C x py p =>的焦点,()04,M y 是抛物线C 上一点,且||4MF =.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 交于,A B 两点,且线段AB 的中点坐标为(8,12),求直线l 的斜率.【答案】(1)28x y=(2)2【解析】【分析】(1)根据点在抛物线上及焦半径公式,列方程组求解即可;(2)设出,A B 坐标,代入抛物线方程,结合弦中点,利用点差法即可求得直线的斜率.【小问1详解】由题可知,0016242py p y =⎧⎪⎨+=⎪⎩,解得024y p =⎧⎨=⎩,故抛物线C 的方程为28x y =.【小问2详解】设()()1122,,,A x y B x y ,则21122288x y x y ⎧=⎨=⎩,两式相减得()2212128x x y y -=-,即1212128y y x x x x -+=-.因为线段AB 的中点坐标为(8,12),所以1216x x +=,则12122y y x x --=,故直线l 的斜率为2.21.如图1,在平面四边形PDCB 中,//PD BC ,BA AD ⊥,1PA AB BC ===,12AD =,将PAB 沿BA 翻折到SAB △的位置,使得平面SAB ⊥平面ABCD ,如图2所示:(1)求证:BC ⊥平面SAB ;(2)设线段SC 的中点为Q ,求平面QBD 与平面ABCD 所成角的余弦值.【答案】(1)证明见解析(2)66【解析】【分析】(1)根据已知结合面面垂直的性质,即可得出SA ⊥平面ABCD ,SA BC ⊥.进而即可根据线面垂直的判定定理得出证明;(2)建立空间直角坐标系,求出平面QBD 与平面ABCD 的法向量,根据向量运算求解,即可得出答案.【小问1详解】由已知可得,SA AB ⊥,AD AB ⊥.因为平面SAB ⊥平面ABCD ,平面SAB 平面ABCD AB =,SA ⊂平面SAB ,所以,SA ⊥平面ABCD .因为BC ⊂平面ABCD ,所以SA BC ⊥.又//AD BC ,AD AB ⊥,所以BC AB ⊥.因为AB SA A = ,AB ⊂平面SAB ,SA ⊂平面SAB ,所以BC ⊥平面SAB .【小问2详解】如图,建立空间直角坐标系,因为1SA PA ==,1AB BC ==,12AD =,则()0,0,0A ,1,0,02D ⎛⎫ ⎪⎝⎭,()0,0,1S ,()1,1,0C ,()0,1,0B ,111,,222Q ⎛⎫ ⎪⎝⎭,所以110,,22DQ ⎛⎫= ⎪⎝⎭ ,1,1,02DB ⎛⎫=- ⎪⎝⎭,()0,0,1AS = .设平面QBD 的法向量为(),,n x y z = ,则11022102n DQ y z n DB x y ⎧⋅=+=⎪⎪⎨⎪⋅=-+=⎪⎩,取2x =,则()211,,n =- .又AS ⊥平面ABCD ,所以()0,0,1AS = 即为平面ABCD 的一个法向量.设平面QBD 与平面ABCD 所成的锐二面角为θ,所以cos ,6AS n AS n AS n ⋅===-⋅,所以cos cos ,6AS n θ== ,所以平面QBD 与平面ABCD所成角的余弦值为6.22.如图,椭圆()2222:10x y C a b a b +=>>的离心率为2,其长轴的两个端点与短轴的一个端点构成的三角形的面积为.(1)求椭圆C 的标准方程;(2)过点()1,0M 的直线l 交C 于A 、B 两点,交直线4x =于点P .若= PA AM λ,PB BM μ= ,证明:λμ+为定值,并求出这个定值.【答案】(1)22142x y +=;(2)证明见解析,定值为0.【解析】【分析】(1)由已知得a ab ⎧=⎪⎨=⎪⎩224,2a b ==,即可得椭圆方程;(2)令:(1)l y k x =-,1122(,),(,)A x y B x y ,(4,3)P k ,联立椭圆方程并应用韦达定理得2122412k x x k+=+,21222(2)12k x x k-=+,再由向量数量关系的坐标表示得到λμ+关于参数k 的表达式,将韦达公式代入化简即可证.【小问1详解】由题设2122c a a ab a b ⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎪⎩⋅⋅=⎪⎩,又222a b c =+,则224,2a b ==,所以椭圆C 的标准方程为22142x y +=.【小问2详解】由题设,直线l 斜率一定存在,令:(1)l y k x =-,且()1,0M 在椭圆C 内,联立直线与椭圆并整理得2222(12)4240k x k x k +-+-=,且0∆>,令1122(,),(,)A x y B x y ,而(4,3)P k ,则1111(4,3),),PA x y k AM x y =--=-- ,由= PA AM λ,则11114(1)3x x y k y λλ-=-⎧⎨-=-⎩且11x ≠,得1141x x λ-=-,同理2222(4,3),),PB x y k BM x y =--=-- 由PB BM μ= ,则22224(1)3x x y k y μμ-=-⎧⎨-=-⎩且21x ≠,得2241x x μ-=-,所以121221121244(4)(1)(4)(1)11(1)(1)x x x x x x x x x x λμ----+--+==---+-121212125()28()1x x x x x x x x +--=-++又2122412k x x k +=+,21222(2)12k x x k-=+,则λμ+=2222222222222242(2)5282048816121202(2)42441211212k k k k k k k k k k k k k k -⋅-⋅--+--++==---++-+++.+为定值0.所以λμ。
安徽省蚌埠市五河第一中学2024-2025学年高二上学期第二次月考检测数学试题一、单选题1.点()11,M x y 在函数e x y =的图象上,当[)10,1x ∈时,1111y x +-可能等于()A .1-或2-B .1-或3-C .2-或3-D .02.已知圆22:330C x y mx y +-++=关于直线:0l mx y m +-=对称,则实数m =()A .1或3-B .1C .3D .1-或33.已知二次函数22(0)y x x m m =-+≠交x 轴于,A B 两点(,A B 不重合),交y 轴于C 点.圆M 过,,A B C 三点.下列说法正确的是①圆心M 在直线1x =上;②m 的取值范围是(0,1);③圆M 半径的最小值为1;④存在定点N ,使得圆M 恒过点N .A .①②③B .①③④C .②③D .①④4.过定点A 的直线20ax y +-=与过定点B 的直线420x ay a -+-=交于点(P P 与A 、B 不重合),则PAB 面积的最大值为()AB.C .2D .45.已知线段AB 的端点B 的坐标是()3,4,端点A 在圆()()22124x y -+-=上运动,则线段AB 的中点P 的轨迹方程为()A .()()22232x y -+-=B .()()22231x y -+-=C .()()22341x y -+-=D .()()22552x y -+-=6.直线y x b =+与曲线x =2个交点,则实数b 的取值范围是()A.b <B.1b ≤<C.1b ≤-D .11b -<<7.已知圆224x y +=上有四个点到直线y x b =+的距离等于1,则实数b 的取值范围为()A .()2,2-B .(C .()1-D .()1,1-8.若圆22:(cos )(sin )1(02π)M x y θθθ-+-=≤<与圆22:240N x y x y +--=交于A B 、两点,则tan ANB ∠的最大值为()A .34B C .45D .43二、多选题9.点P 在圆221:1C x y +=上,点Q 在圆222:68240C x y x y +-++=上,则()A .PQ 的最小值为0B .PQ 的最大值为7C .两个圆心所在直线的斜率为43-D .两个圆的公共弦所在直线的方程为68250x y --=10.已知圆()()22:1225C x y -+-=,直线()():211740l m x m y m +++--=,则以下命题正确的有()A .直线l 恒过定点()3,0B .直线l 与圆C 恒相交C .y 轴被圆C 截得的弦长为D .直线l 被圆C 截得的弦长最短时,l 的方程为250x y --=11.若直线:2cos 0l x y θ-⋅=与圆22:10E x y +--=交于两点,A B ,则()A .圆E 的圆心坐标为()-B .圆E 的半径为3C .当1cos 2θ=时,直线l 的倾斜角为π4D .AB 的取值范围是1,5⎡⎢⎣⎦三、填空题12.若ππ,22θ⎛⎤∈- ⎥⎝⎦,则经过两点()0,0P ,()sin ,cos Q θθ的直线的倾斜角为.13.若过点()0,3-与圆²²20x y y m +-+=相切的两条直线的夹角为60︒,则m =14.已知实数0,0a b ><的取值范围是.四、解答题15.已知圆C 过()2,4A -,()2,2B --两点,且圆心C 在直线460x y +-=上.(1)求圆C 的方程;(2)过点()7,1P -作圆C 的切线,求切线方程.16.已知直线()1:340l kx y k k ---=∈R 过定点P .(1)求过点P 且在两坐标轴上截距的绝对值相等的直线方程;(2)若直线l 过点P 且交x 轴正半轴于点A ,交y 轴负半轴于点B ,记ABO 的面积为S (O 为坐标原点),求S 的最小值,并求此时直线l 的方程.17.已知两直线1:390l x y +-=和2:210l x y --=的交点为P .(1)若直线l 过点P 且与直线210x y +-=平行,求直线l 的一般式方程;(2)若圆C 过点(2,5)-且与1l 相切于点P ,求圆C 的标准方程.18.已知圆W 经过(3,3),(2,A B C -三点.(1)求圆W 的方程.(2)已知直线l 与圆W 交于M ,N (异于A 点)两点,若直线,AM AN 的斜率之积为2,试问直线l 是否经过定点?若经过,求出该定点坐标;若不经过,请说明理由.19.已知直线:1l x my =-,圆22:40C x y x ++=.(1)证明:直线l 与圆C 相交;(2)设l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .试探究:当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.。
2015-2016高二第一学期第二次月训
数学试卷 拟卷人:沈小军
一、填空题:本大题共14小题,每小题5分,共70分.
1.命题“b a bm am <<则若,22”的逆命题为___________________________. 2.抛物线x y 82=的焦点坐标为 .
3.从1,2,3,4,5,6中随机抽取2个不同的数,则这2个数的和是偶数的概率是 .
4.若椭圆152
2=+m
y x 的一个焦点坐标为(1,0),则实数m 的值为 . 5.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面
积等于其他10个小长方形的面积的和的4
1,且样本容量为160,则中间一组的频数为 .
6.若直线b x y +=2
1是曲线)0(ln >=x x y 的一条切线,则实数b 的值为 . 7.已知实数y x ,满足⎪⎩
⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.
8.已知椭圆13
42
2=+y x 上一点P 到左焦点的距离为25,则它到右准线的距离为 .
9.过原点作曲线y=lnx 的切线,则切线方程为 .
10.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的右顶点为A ,上顶点为B ,M 为线段AB 的中点,若∠MOB =60°,则该椭圆的离心率e=_________. 11.设函数)0(19)(23<--+=a x ax x x f ,若曲线y=f(x)的斜率最小的切线与直线12x+y-6=0平行,则a 的值为_________.
12.已知椭圆22
213
x y a +
=(a 的中心、左焦点、左顶点、左准线与x 轴的交点依次为O ,F ,G ,H ,则FG OH
取得最大值时a 的值为 . 13.已知椭圆22
221(0)x y a b a b
+=>>的左,右焦点分别为12(,0),(,0)F c F c -.若椭圆
上存在点P ,使122PF a PF c
=;则该椭圆离心率的取值范围是 . 14.设正实数x,y,z 满足x+3y+z=1,则
1248x y x y y z ++++的最小值为 .
二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.
15. 求适合下列条件的圆锥曲线的方程
(1)焦点坐标为()()03-03,,,,准线方程为33±=x 的椭圆;
(2)焦点是)0,26(±,渐近线方程是x y 23±
=的双曲线.
16.已知椭圆124
492
2=+y x 上一点P 与椭圆的两个焦点21,F F 的连线互相垂直. (1)求离心率和准线方程;
(2)求21F PF ∆的面积.
17.已知命题:p “方程22
191
x y k k +=--表示焦点在x 轴上的椭圆”, 命题:q “方程22
12x y k k
+=-表示双曲线”. 若“p q 或”是真命题, “q p 且”是假命题,求实数k 的取值范围.
18.某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能.
(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
19.已知椭圆C:12222=+b
y a x (0>>b a )的左,右焦点分别为21,F F ,离心率为23,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.
(1)求椭圆的标准方程
(2)设P 为椭圆上一点,若6
521π=∠F PF ,求21F PF ∆的面积; (3)若21PF F ∠为钝角,求P 点横坐标的取值范围.
A B
C
D (第18题) B ' P
20.如图,已知椭圆C :)30(192
2
2<<=+b b y x 的左,右焦点分别为21,F F ,椭圆上存在一
点A ,使得212AF AF =,且 9021=∠AF F .
(1)求椭圆C 的标准方程;
(2)已知直线l:x=1与椭圆C 交于P,Q 两点,点M 为椭圆C 上一动点,直线PM,QM 与x 轴分别交于点R,S ,求证:OS OR ∙为常数(o 为原点),并求出这个常数.。