碳纤维
- 格式:doc
- 大小:22.00 KB
- 文档页数:5
碳纤维是什么材料碳纤维是一种由碳元素纤维化制成的高强度材料,具有轻质、高强度、耐腐蚀、耐高温等优良特性。
它被广泛应用于航空航天、汽车制造、体育器材、建筑材料等领域,成为现代工业中不可或缺的材料之一。
首先,碳纤维是由有机聚合物纤维经过高温碳化而成的。
其主要原料为聚丙烯、聚丙烯腈等有机合成纤维,经过特殊工艺处理后,形成具有高度结晶度和完整结构的碳纤维。
这种材料具有非常高的比表面积和优异的机械性能,可以承受较大的拉伸和压缩力,同时重量却非常轻,是传统金属材料的数倍甚至数十倍。
其次,碳纤维的应用领域非常广泛。
在航空航天领域,碳纤维被广泛应用于飞机、导弹、卫星等航空器的结构材料中,因为其轻质高强的特性可以大幅减轻飞行器的自重,提高燃料利用率和飞行性能。
在汽车制造领域,碳纤维被用于制造汽车车身、底盘等部件,可以减轻汽车自重,提高燃油经济性和行驶稳定性。
在体育器材领域,碳纤维被用于制造高尔夫球杆、网球拍、自行车等,因为其高强度和轻质可以提高运动器材的性能。
在建筑材料领域,碳纤维被用于加固混凝土结构、制造建筑外墙板等,可以提高建筑材料的耐久性和安全性。
最后,随着科技的不断进步,碳纤维的应用前景将更加广阔。
随着碳纤维制造工艺的不断改进和成本的不断降低,碳纤维将会在更多领域得到应用,比如医疗器械、船舶制造、新能源领域等。
同时,碳纤维的再生利用和环保性能也将成为未来发展的重要方向,推动碳纤维材料行业的持续发展。
综上所述,碳纤维作为一种具有优异性能的材料,在现代工业中扮演着越来越重要的角色。
它的轻质、高强、耐腐蚀、耐高温等特性,使其在航空航天、汽车制造、体育器材、建筑材料等领域得到广泛应用,并且在未来有着更加广阔的发展前景。
碳纤维的发展将会推动相关产业的发展,为人类社会的进步做出更大的贡献。
碳纤维名词解释碳纤维:是指由碳原子组成的纤维,是一种具有很高比强度、刚性和轻质的纤维材料。
它在汽车、航空航天、军事装备等领域有着广泛的应用。
碳纤维的特性:碳纤维具有很高的比强度,一般的钢材的比强度是1,而碳纤维的比强度可以达到5-6,所以它的强度比钢材高出五倍以上。
此外,碳纤维的刚性也非常的高,比如说材料的模量很高,可以几乎不受弯曲变形,因此,具有良好的机械性能。
最后,碳纤维最大的一个特点就是它的质量比钢材轻,其重量只有钢材的一半,所以在安全性和质量控制方面,碳纤维可以大大提高机械设备的性能。
碳纤维的应用:碳纤维的应用非常广泛,主要应用于汽车、航空航天、军事装备等各个领域。
因为碳纤维具有很好的比强度、刚性和轻质特性,因此,在汽车和航空航天领域里,碳纤维被广泛用于制造车身、歼击机和宇宙飞船等飞行器的外壳、机翼和尾翼等部件,以提高飞行器的速度和稳定性。
此外,碳纤维也在军事装备上得到了广泛的应用,比如说它可以用来制造轻便耐用的枪套,以及防弹衣、盾牌和军队的装备,以增强士兵的防护能力。
碳纤维的发展:随着科技的发展,碳纤维的发展也在不断地推动着科技的进步。
近年来,由于碳纤维的技术发展,碳纤维的性能和性能也在不断地提升,这使得碳纤维应用于更多的领域,比如核能反应堆内壁、民用航空装备、军火工业装备、船舶及油气平台结构件、低空飞行器结构、抗弹衣等等。
未来,随着科技进步,碳纤维在更多领域得到更多应用,并有望推动科技发展。
总结:碳纤维是一种具有很高比强度、刚性和轻质的纤维材料,它是由碳原子组成的,在汽车、航空航天、军事装备等领域有着广泛的应用。
它具有很高的比强度、刚性和轻质,可以大大提高机械设备的性能,在汽车和航空航天领域里,碳纤维被广泛用于制造车身、歼击机和宇宙飞船等飞行器的外壳、机翼和尾翼等部件,以及军事装备上的枪套、防弹衣等等。
在未来,随着科技的发展,碳纤维将在更多领域得到更多应用,并推动科技的发展。
碳纤维名词解释碳纤维是一种不可替代的现代材料,由原料(碳原料)制成,在航空航天、汽车、运动器材、工业制品、医疗器械等领域有广泛应用,并拥有极高价值。
什么是碳纤维(Carbon Fiber)?碳纤维是一种非金属纤维,由含碳元素的合成材料(例如碳棒、碳粉末等)经过高温热处理、制造和改性等工艺,形成独特的结晶结构及立体网络结构,形成具有高强度及优异特性的复合材料点缀,是一种具有高承载能力的碳模板材料。
碳纤维具有优良的力学性能、抗拉强度、抗压强度、耐热性、耐腐蚀性以及较低的密度等特点,所以得到了广泛的应用,在航空航天、汽车、运动器材、工业制品、医疗器械等领域均有使用。
首先,碳纤维在航空航天领域的应用非常广泛,主要应用于飞机机身的结构件及引擎的部件,例如:碳纤维复合材料用于制作飞机机身外壳、机翼、机尾及发动机的部件;碳纤维增强树脂(CFRP)用于制作结构的复合材料,可以提高飞机机身和发动机的安全性,减少飞机的质量,降低燃油消耗,提高飞机的抗拉强度、抗压强度等性能;此外,碳纤维复合材料还可以用于制作飞机机身上的应急发电机、舱内安全设备,以及用于动力装置的冷却系统支架等。
其次,碳纤维在汽车领域的应用也很广泛,主要是用来制造汽车车身的结构件,例如:碳纤维复合材料用于制作汽车车身框架、汽车车身护板、车门、车顶及轮毂等;碳纤维增强树脂(CFRP)用于制作车身结构复合材料,可以提高汽车车身的抗拉强度、抗压强度等性能,以及减轻汽车重量,提高汽车的动力性能和油耗,使车辆更稳定、更舒适而又更省油;此外,碳纤维复合材料还可以用于汽车安全带、车窗及车内空间改善等。
最后,碳纤维还可用于制造运动器材、工业制品、医疗器械等。
碳纤维复合材料的优异特性吸引了国内外众多企业的合作,以应用碳纤维材料制造运动器材、工业制品、医疗器械等产品。
例如,碳纤维复合材料可用于制造自行车、滑雪板、高尔夫球杆、建筑铝材、家具及医疗器械等,其优良的力学性能、抗拉强度、抗压强度、耐热性、耐腐蚀性以及较低的密度可满足众多应用需求。
碳纤维名词解释碳纤维,又称碳纤维复合材料,是一种轻质复合材料,它由碳纤维、聚合物和无定形填充物组成,使用电子显微镜(SEM)分析可以看到材料中各种形状的碳纤维。
碳纤维复合材料具有非常高的强度、弹性和刚度。
由于它的超高性能,它被广泛应用于航空、航天、交通运输、医疗等领域。
碳纤维由炭素(carbon)构成。
这些碳原子经过聚合,形成了微细长丝状的碳纤维。
碳纤维细丝由碳原子构成,纤维的形状和大小取决于碳原子的排列。
碳纤维的物理性能主要取决于它的纤维结构,具体包括纤维的直径、拉伸强度、横向强度、抗弯刚度和弹性模量等。
碳纤维具有极高的拉伸强度、抗弯刚度和弹性模量,但其弯曲强度很低,有时甚至可以忽略。
碳纤维的优势在于可以制造出能够抵抗拉伸、抗拉、抗弯等应力的复合材料。
碳纤维复合材料可以用于制造航空器、汽车零部件、舰船体结构、塑料结构模具、体育器材、桥梁支架等。
碳纤维可以用作以下材料的复合成形,可以借助熔浆通过注入法制备表面层次细节非常丰富的碳纤维增强复合材料:1、金属陶瓷增强复合材料:金属陶瓷复合材料是将金属和陶瓷用碳纤维复合在一起,使用碳纤维作为强化材料,以提高材料的强度和韧性。
2、聚合物-碳纤维复合材料:碳纤维增强复合材料,也称聚酰胺酯碳纤维增强复合材料,是将聚酰胺酯混合物和碳纤维复合在一起,可以提高复合材料的强度、刚度和弹性模量。
3、纤维织物增强复合材料:纤维织物增强复合材料是在织物基体上层层增强的复合材料,主要是在织物基体中添加碳纤维和聚合物,以提高复合材料的强度、刚度和弹性模量。
碳纤维复合材料具有非常高的轻质和强度、刚度和抗拉性,使其在航空、航天、交通运输、医疗等领域受到了广泛的应用。
碳纤维复合材料可以用在航空器零部件制造中,用于制造更轻、更强、更持久的航空器零件。
此外,碳纤维复合材料也可以用于其他行业,如汽车零部件制造、舰船体结构、织物复合体制造等。
碳纤维复合材料的优势在于它的超高性能,拥有强力、刚度和弹性模量,并且可以制造出能够抵抗拉伸、抗拉、抗弯等应力的复合材料。
碳纤维分类标准
1. 碳纤维按原料分,就像做饭用不同食材一样,有 PAN 基碳纤维,这就好比我们常用的大米呀,用处广泛着呢!比如好多高端的自行车车架就是用它做的!
2. 还有沥青基碳纤维哦,它就像是独特风味的调料,虽然不那么常见,但在一些特殊领域可是大显身手,像一些高温环境下的零部件就有它的身影!
3. 按性能来分呢,也有高强型碳纤维呀,嗨,这简直就是个大力士,能承受超强的力量,航空航天领域可少不了它的助力!
4. 中强型碳纤维也有它的用武之地呀,就好像团队里可靠的中间人,虽然不是最突出的,但也是不可或缺的,一些日常的工业制品中就能见到它啦!
5. 高模型碳纤维呢,那像是舞蹈家一样,柔韧性超棒的,在对精度要求高的地方可吃香了,比如精密仪器的制作!
6. 按丝束大小分,小丝束碳纤维就跟小巧玲珑的宝石似的,精致且珍贵,往往用在要求非常高的地方,像一些医疗器材!
7. 大丝束碳纤维呢,那就是大块头有大用处呀,在大规模的生产中那可是发挥大作用,比如风力发电的叶片制造!
8. 碳纤维还能按用途分类呢,竞技体育领域用到的碳纤维,那就是让运动员如虎添翼的利器,能提升装备的性能呀!
9. 民用领域的碳纤维,就像是我们生活中的好帮手,让各种产品更轻便、更耐用呀!总之,碳纤维的分类标准可多了,每个分类都有它独特的魅力和价值呢!。
碳纤维是什么材料碳纤维是一种由碳元素组成的纤维材料。
它具有轻量、高强度、高刚性和优良的耐腐蚀性能,因此被广泛应用于航空航天、汽车、船舶、建筑和体育用品等领域。
下面将详细介绍碳纤维的制备方法、特性及应用。
碳纤维的制备方法主要有两种:气相法和胶纤法。
气相法是通过将有机物在高温条件下裂解而生成碳纤维,其制备过程包括纺丝、热解、碳化和石墨化等环节。
胶纤法则是将聚丙烯腈作为原料,在特定溶剂中溶解后形成原丝,经过拉伸、热固化、炭化等工艺制得碳纤维。
碳纤维的特性主要体现在以下几个方面:1. 高强度和高刚性:碳纤维的强度比钢高5-10倍,刚性比钢高3-5倍,具有出色的承载能力和抗震性能。
2. 低密度:碳纤维比重轻,约为钢的1/4,有助于减轻结构重量,提高整体效能。
3. 耐腐蚀性好:碳纤维不受大气、水、酸碱等常见介质的腐蚀,寿命较长。
4. 电导率高:碳纤维具有优异的导电性能,可用于制作电极材料和导电部件。
5. 良好的耐久性和耐疲劳性:碳纤维具有较长的使用寿命和耐久性,且不易发生疲劳破坏。
碳纤维的应用领域广泛:1. 航空航天领域:碳纤维被广泛应用于航空器的机体、翼面、航空附件等部位,可以减轻飞机重量,提高飞行性能。
2. 汽车工业:碳纤维制品在汽车行业的应用十分广泛,如车身、底盘、发动机罩、内饰件等,有助于提高汽车的安全性和燃油经济性。
3. 建筑领域:碳纤维可以用于加固和修复建筑物结构,提高其抗震能力和耐久性。
4. 体育用品:碳纤维材料轻便且强度高,被广泛应用于高尔夫球杆、自行车、滑雪板等体育用品中,提供更好的使用体验和性能。
虽然碳纤维具有许多优点,但是也存在一些缺点,如制造成本高、产业链发展不完善等。
随着技术的进步和应用领域的不断拓展,相信碳纤维将在未来得到更广泛的应用和发展。
碳纤维材料介绍
碳纤维(CarbonFiber),又称碳素纤维,是一种含碳量在95%以上的高强度、高模量纤维材料,是一种由碳元素组成的具有石墨结构的碳原子组成的有机纤维。
它具有轻质高强、耐高温、耐腐蚀等优点,可作高强度结构材料,已广泛用于航空航天、体育用品、汽车工业等领域。
1.碳纤维是一种含碳量在95%以上的高强度、高模量纤维材料。
根据碳纤维成分的不同,其力学性能也有很大差异。
石墨结构的碳纤维强度可达300Mpa以上,弹性模量在2000GPa左右。
2.碳纤维密度为1.8g/cm3,仅为钢的1/4;强度却是钢的3倍以上。
是目前世界上强度最高的纤维,因此在航空航天工业上具有广泛应用前景。
碳纤维已在军事、汽车、体育用品等领域获得广泛应用。
3.碳纤维具有高比强度和比模量、耐高温、耐腐蚀、抗疲劳等特点,并可制成各种形状复杂的复合材料制品,如航空航天中用于制造结构件的高强高模复合材料;体育用品中用于制造运动鞋和运动器械;汽车工业中用于制造车身、底盘等。
—— 1 —1 —。
碳纤维碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。
它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。
碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。
它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。
良好的导电导热性能、电磁屏蔽性好等。
碳纤维是含碳量高于90%的无机高分子纤维。
其中含碳量高于99%的称石墨纤维。
碳纤维的微观结构类似人造石墨,是乱层石墨结构。
碳纤维各层面间的间距约为3.39到3.42A,各平行层面间的各个碳原子,排列不如石墨那样规整,层与层之间借范德华力连接在一起。
通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、大小和分布对碳纤维的性能影响较大。
当孔隙率低于某个临界值时,孔隙率对碳纤维复合材料的层间剪切强度、弯曲强度和拉伸强度无明显的影响。
有些研究指出,引起材料力学性能下降的临界孔隙率是1%-4%。
孔隙体积含量在0-4%范围内时,孔隙体积含量每增加1%,层间剪切强度大约降低7%。
通过对碳纤维环氧树脂和碳纤维双马来亚胺树脂层压板的研究看出,当孔隙率超过0.9%时,层间剪切强度开始下降。
由试验得知,孔隙主要分布在纤维束之间和层间界面处。
并且孔隙含量越高,孔隙的尺寸越大,并显著降低了层合板中层间界面的面积。
当材料受力时,易沿层间破坏,这也是层间剪切强度对孔隙相对敏感的原因。
另外孔隙处是应力集中区,承载能力弱,当受力时,孔隙扩大形成长裂纹,从而遭到破坏。
即使两种具有相同孔隙率的层压板(在同一养护周期运用不同的预浸方法和制造方式),它们也表现处完全不同的力学行为。
碳纤维的生产工艺与原理碳纤维,这个词听起来是不是就让你感觉高大上?说白了,它就像是材料界的“超人”,轻巧又强韧,简直是现代工业的宠儿。
那么,碳纤维是怎么来的呢?今天就让咱们一起轻松聊聊它的生产工艺和背后的原理,顺便带点幽默,看看这“超级英雄”是如何炼成的!1. 碳纤维的基本概念1.1 什么是碳纤维?说到碳纤维,首先得搞清楚这玩意儿到底是什么。
简单来说,碳纤维就是一种以碳为主要成分的纤维材料,听起来是不是很普通?但它可不简单!这家伙的强度比钢铁还要高,重量却轻得像羽毛,简直是“矮个子有大能量”的典范。
它广泛应用于航空航天、汽车、体育器材等等,像是“万金油”一样,什么地方都能派上用场。
1.2 为什么要用碳纤维?那咱们再问一句,为啥大家都爱用碳纤维呢?这其中的秘密可不少!首先,它的强度高,能承受巨大的压力,轻轻一碰就能感受到它的韧性。
其次,它的耐腐蚀性也很强,就算是在海水里泡着也没事,简直是“水火不侵”的好材料。
而且,碳纤维的耐高温性也不错,能忍受很高的温度,不容易变形,这对于一些工业应用来说,可谓是大大增加了安全系数。
2. 碳纤维的生产工艺2.1 从原料到纤维好,接下来就让我们看看碳纤维是如何一步步“变身”的。
首先,生产碳纤维的主要原料是聚丙烯腈(PAN),别听这个名字吓人,其实它就是一种常见的塑料。
首先,把PAN纤维拉伸,变得更加紧密,这一步就像是“紧箍咒”,让分子间的距离变得更小。
然后,经过氧化、碳化等多个步骤,分子结构就开始发生变化,变得越来越“碳化”。
2.2 高温烘烤接下来就是重头戏了,纤维要经过高温烘烤。
你能想象吗?这些纤维被放进温度高达2000摄氏度的炉子里,简直是火焰山的感觉。
这个过程就像是给纤维来个“桑拿”,把多余的杂质挥发掉,留下的就是纯粹的碳。
最后,经过冷却和整理,这些看似普通的纤维,瞬间就摇身一变,成了我们熟知的碳纤维,简直是神奇得不得了!3. 碳纤维的应用3.1 航天领域的“无敌战舰”说到碳纤维的应用,咱们不得不提航天领域。
今年3月日本东丽公司宣布成功研制出T1100G型高强高模碳纤维,我国企业近年来也不断传出突破高性能碳纤维研制和生产的报道。
碳纤维的关键力学指标包括拉伸强度、拉伸模量、断裂伸长率等。
拉伸强度是指材料在拉伸过程中可承受的最大应力;拉伸模量是指材料拉伸时受到的应力与形变的比值,模量值越高,表示碳纤维的刚度越好;伸长率是指断裂前材料能被拉长的比例,伸长率越高,表示碳纤维的韧性越好。
理论上碳纤维的拉伸强度可以达到180GPa,拉伸模量更是在1000GPa左右,虽然日本东丽公司已经研制出拉伸强度9GPa的高强碳纤维,拉伸模量也达到690GPa的高模碳纤维,但两者尤其是拉伸强度还有很大的发展潜力。
碳纤维的断裂伸长率指标从早期的T300级别的1.5%增加到目前T1000级别的2.4%,有效缓解了碳纤维韧性不足的问题,进一步了扩展应用范围,如用于制造大型客机机体。
按照碳纤维丝束中的单丝数量,聚丙烯腈基碳纤维又可分为小丝束和大丝束两种。
相比小丝束,大丝束的劣势在于,在制作板材等结构时,丝束不宜展开,导致单层厚度增加,不利于结构设计。
此外,大丝束碳纤维粘连、断丝等现象更多,这样会使强度、刚度受影响,性能有所降低,性能的分散性也会较大。
飞机、航天器一般只用小丝束碳纤维,因此小丝束碳纤维又被称为"宇航级"碳纤维,大丝束碳纤维被称为"工业级"碳纤维。
但是大丝束生产成本比小丝束低,而随着生产技术的进步,人们对碳纤维材料结构的熟悉,大丝束碳纤维越来越多用于对可靠性要求严苛的领域。
这样,小丝束与大丝束之间区分也发生了变化,如早期曾以丝束中单丝数量12000根(12K)作为分界线,但目前单丝数量1K~24K的碳纤维被分为小丝束,而48K以上的的划为大丝束。
而空客公司在制造A380超大型客机时已经开始使用了24K碳纤维,估计随着技术的进步,小丝束与大丝束之间的分界线还会向上推。
碳纤维材料具有诸多优点,但其生产工艺流程长,需要突破的技术障碍很多。
碳纤维的制造,可以分为原丝制造和碳化两个关键过程。
原丝制造,简单地说是先通过丙烯腈聚合和纺纱等工艺,先聚合制成聚丙烯腈,再纺丝制出聚丙烯腈纤维原丝。
聚丙烯腈原丝随后进行预氧化、低温和高温碳化等步骤,最后进行表面处理、上浆烘干并收丝就得到了碳纤维。
相对碳化,生产出高质量的聚丙烯腈原丝更加关键,即使是东丽公司也曾因为原丝质量在碳纤维研制过程中上摔过跟头。
要生产处高质量的碳纤维,要降低生产成本,聚丙烯腈原丝须满足高纯化、高强化、均质化、细纤度化和表面光洁等要求,这长期以来一直是碳纤维批量生产中最大的拦路虎。
东丽公司此后又研制了T400、T700、T800、T1000、T1100、T1200等多个系列的高强度碳纤维,此外该公司还研制了M30、M35、M40、M46、M50、M55、M60和M70等多个系列的高模量(可以理解为高刚度)碳纤维。
T系列高强度碳纤维中T300系列的拉伸模量为3530MPa,T700就达到了4900MPa,而T800进一步提高到5490MPa,至于T1000更是高达6370MPa。
由这些数据可以看到,虽然产品编号中数字越高性能越好,但T300或是T800等编号中的300、800等数字并没有与性能数据具体对应的含义。
说到这里,大家或许意识到日本东丽公司在碳纤维行业中的地位了,其公司产品编号被行业直接用作碳纤维的分级。
东丽公司出产的各种碳纤维型号中,还有不同的字母后缀,如T300J、T400H、T700S和T700G等型号,其中J代表相比基本型号增强了拉伸强度,H表示相比基本型和J型号增强了拉伸强度和拉伸模量,S代表拉伸强度最高的型号,G代表在S型号基础上进一步增强拉伸模量和粘合性能的型号。
东丽公司已经研制出了T1200型碳纤维,反而又新研制出T1100G的碳纤维,这是因为T1100G是T1100系列碳纤维中拉伸模量(刚度)最高的型号。
或许会有人问,为什么不直接使用东丽公司M系列的高模量碳纤维,而是要持续提高T系列高强度碳纤维的模量呢?东丽公司在宣布研制成功T1100G碳纤维时就已经专门指出,高模量和高强度难以两全。
东丽公司的产品说明书中,M60JB的拉伸强度只有3820MPa,有些要求高强度但不要求那么高模量的场合,就只能使用T700G、T1000G等增强了模量的高强度碳纤维了。
日本和美国掌握着世界碳纤维的大多数产能,并控制了高端碳纤维的生产。
日本东丽公司在PAN基碳纤维研制生产中最早起步,是日本碳纤维生产企业的代表。
美国Hexcel公司也紧随日本东丽的步伐,20世纪80年代美国研制的三叉戟II潜射导弹和侏儒小型机动洲际导弹都是用了Hexcel公司的IM7型碳纤维(大致相当于T800级别)。
目前世界上小丝束碳纤维的主要生产商包括日本东丽、日本东邦人造丝、日本三菱人造丝三家公司,美国的Hexcel公司和Cytec公司虽然产量相差较大,但技术上仍可与日本三巨头媲美。
此外台湾台塑公司拥有数千吨的产能,并在2013年开始批量供应T800级碳纤维,土耳其阿克萨公司的低端T300碳纤维也在迅速扩张。
大丝束碳纤维的主要生产商包括美国Zoltek、Aldila 公司,日本东邦、日本东丽和德国SGL公司等。
总的说来虽然美国Hexcel公司在小丝束生产、日本东丽公司在大丝束碳纤维生产上都有很强的实力,但美国在大丝束碳纤维生产上优势明显,日本在小丝束碳纤维的生产上垄断地位更为稳固。
由于碳纤维优秀的力学性能,碳纤维复合材料在结构增强方面的应用非常广泛,在对质量斤斤计较的航空航天领域,如飞机机体、导弹/火箭壳体、卫星承力筒等多个用途中,对比传统金属材料,碳纤维有很强的性能优势。
碳纤维复合材料用量较大而场合是民航客机,自美国波音公司的777客机大量使用碳纤维以来,波音777和787客机,空中客车公司的A380和A350XWB客机都大量使用碳纤维复合材料。
美国波音公司的787客机主要使用日本东丽公司的24K丝束的T800碳纤维复合材料,同时也使用了部分美国Hexcel公司的碳纤维复合材料。
欧洲空中客车公司的350XWB客机也使用了美国Hexcel公司的IM7碳纤维。
Hexcel公司还将向中国商飞研制的大型客机提供碳纤维材料,不仅如此,中国商飞C919、波音737 MAX和空中客车A320 NEO等客机使用的新一代LEAP发动机的叶片也使用了Hexcel公司提供的碳纤维复合材料。
各国军用飞机上更是广泛使用了各种碳纤维增强型复合材料,不过这些高性能碳纤维同样基本由日本和美国公司研制生产和提供。
在航天领域,如卫星的太阳能电池阵列结构、卫星和航天器的本体尤其是承力结构等,碳纤维得到了广泛应用。
国际空间站巨大的桁架架构就使用了碳纤维/环氧树脂复合材料。
美国波音公司还正在为下一代运载火箭研制革命性的碳纤维复合材料推进剂储箱,目前已经研制出5.5米直径的碳纤维储箱。
从实际产品数据看,碳纤维推进剂储箱的质量可以比现有的铝合金储箱降低30%,从而显著降低火箭各级的结构质量。
碳纤维的导电性很好而且没有磁性,可用于电磁屏蔽等多方面用途,使用它制造卫星的天线兼顾了质量和导电性,同样拥有比金属天线更好的性能,目前越来越多的卫星天线使用了高模量的碳纤维复合材料。
碳纤维不仅在高端的航空航天市场大放异彩,在化工、发电、医疗、交通和建筑等领域也获得了广泛应用,尤其是风力发电的叶片广泛使用了碳纤维增强型复合材料,风力发电已经成为碳纤维复合材料的重要市场之一。
随着各国节能减排要求的提高,汽车工业也越来越多的使用碳纤维,尤其是电动车为了降低汽车整车质量,更是对碳纤维复合材料如饥似渴。
目前欧美日各大汽车研制和生产厂商都在开发基于碳纤维复合材料的车型,可以预见未来汽车市场将成为碳纤维复合材料的主要市场。
碳纤维诞生以后,20世纪70年代就已经用于钓鱼竿的生产,今天的体育产业更是碳纤维复合材料的主要用户之一,目前世界上很大一部分碳纤维都我国碳纤维生产落后美日30年我国碳纤维的发展并不晚,东丽公司研制出碳纤维前后,我国就开始独立研制碳纤维。
不过遗憾的是,从20世纪70年代中期开始经过近40年发展,我国的碳纤维产业总体研制和生产水平还还很落后,无法与美日公司在市场上正面竞争。
最直观的例子是,日本东丽和美国Hexcel公司在上世纪80年代就研制成功T800/IM7级别的高强度碳纤维,而我国刚完成T800级别碳纤维生产技术的突破,最终批量生产的质量和成本如何还有待观察,可以说落后美日30年。
我国目前只能较为稳定的大批量生产相当于东丽公司T300级别的碳纤维,相当于T700级别的碳纤维,国内只有少数单位和企业能小规模生产,但日美碳纤维企业都开始准备批量生产T1000级别的碳纤维了。
我国也没有批量生产高模量碳纤维的能力,导致很多时候不得不冒巨大的风险走私东丽公司的MJ50、MJ60等高模量碳纤维。
但即便是T300级别的碳纤维,由于生产技术上的落后,忽视高质量聚丙烯腈的生产,绝大部分国内厂家生产成本居高不下。
目前国产T300级别碳纤维售价达到了进口东丽公司T700级别碳纤维的价格,能有什么样的市场表现也就可想而知了。
近些年来,随着政府在产业政策方面的支持,我国碳纤维行业呈现全面开花、大干快上的局面,全国各地规划的碳纤维产能甚至超过了我国之外全世界的碳纤维产能。
但这只不过是虚假的繁荣,2012年我国碳纤维生产线设计产能超过了2万吨,但实际产量只有2000吨左右,而且完全是生产越多亏损越多的局面,同时我国却还在进口上万吨的碳纤维产品满足国民经济的需求。
我国目前号称要建设的碳纤维生产线建成后,设计产能将达到约8万吨,几乎相当于2013年我国以外全世界的碳纤维产能。
但成本居高不下的低端碳纤维生产线即使建成,又能发挥什么作用呢?恐怕除了增加银行的不良贷款,就是让碳纤维生产线的开工率再下降一个甚至几个台阶。
使用在钓鱼竿、网球拍、自行车等各种体育用品上。
我国碳纤维行业还面临着国际碳纤维行业巨头的蓄意压制。
近些年来我国可以稳定批量生产一个级别的碳纤维后,东丽、东邦和Hexcel等企业的对华销售价格就大幅下降一次,如2010年12K的T300级碳纤维还要24万元每吨,2012年就下降到12万元每吨,现在T700级碳纤维的价格也开始稳步下降。
国际巨头们的营销策略虽然有利于我国碳纤维应用厂商的发展,但却对我国碳纤维生产厂商造成了巨大的成本压力。
目前国内碳纤维生产企业面临着一生产就亏损,生产越多亏损越多的极端不利局面,大部分企业只能减产甚至停产,这也是国内碳纤维产业设计产能高但实际产量低的根本原因之一。
所以,我国碳纤维行业目前仍处于大浪淘沙的混沌阶段,未来能获得成功的或许只会是那些重视技术攻关、产品质量、专注于高性能产品的企业。