截交线与相贯线习题
- 格式:doc
- 大小:5.09 MB
- 文档页数:28
截交线与相贯线习题第五节截交线与相贯线截交线和相贯线是⽴体表⾯常见的两种表⾯交线,⽴体被平⾯截切,表⾯就会产⽣截交线,两⽴体相交,表⾯就产⽣相贯线,⼆者有共同点,也有不同点。
⼀、截交线的特性及画法【考纲要求】1、掌握特殊位置平⾯截断棱柱和棱锥的截交线画法;2、掌握特殊位置平⾯截断圆柱、圆锥、圆球的截交线画法;3、掌握简单的同轴回转体的截交线画法;【要点精讲】(⼀)截交线的定义:由平⾯截断基本体所形成的表⾯交线称为截交线。
(⼆)截交线的特性:1、任何基本体的截交线都是⼀个封闭的平⾯图形(平⾯体是平⾯多边形,曲⾯体是平⾯曲线或由平⾯曲线与直线共同组成的图形);2、截交线是截平⾯与基本体表⾯的共有线,截交线上的每⼀点都是截平⾯与基本体表⾯的共有点(共有点的集合)。
(三)求截交线的⽅法:①积聚性求点法;②辅助(素)线法;③辅助平⾯法。
(四)求截交线的步骤:1、确定被截断的基本体的⼏何形状;2、判断截平⾯的截断基本体的位置(回转体判别截平⾯与轴线的相对位置3、想象截交线的空间形状;4、分析截平⾯与投影⾯的相对位置,弄清截交线的投影特性;5、判别截交线的可见性,确定求截交线的⽅法;6、将求得的各点连接,画出其三⾯投影。
(五)平⾯体的特殊截交线及画法:1、特性:平⾯体的截交线都是由直线所组成的封闭的平⾯多边形。
多边形的各个顶点是棱线与截平⾯的交点,多边形的每⼀条边是棱⾯与截平⾯的交线。
2、画法:求平⾯体截交线的⽅法主要是⽤积聚性求点法和辅助线法。
画平⾯体的截交线就是求出截平⾯与平⾯体上各被截棱线的交点(即平⾯多边形的各个顶点),然后依次连接即得截交线。
根据截交线是截平⾯与基本体表⾯的共有线,截交线上的点也是截平⾯与基本体表⾯的共有点,我们所要求掌握的是特殊位置平⾯截切平⾯⽴体的截交线,我们可以利⽤积聚性求点法或辅助平⾯法,求出截平⾯与平⾯⽴体的各棱线的交点,然后依次连接,也就求出了截交线。
例如图5-1 所⽰,先根据截交线具有积聚性投影的正⾯投影和具有收缩性的⽔平投影确定出截平⾯与六棱柱棱线的六个交点(截交线平⾯多边形的六个顶点),再利⽤积聚性求点法求出其侧⾯投影。
第五节截交线与相贯线截交线和相贯线是立体表面常见的两种表面交线,立体被平面截切,表面就会产生截交线,两立体相交,表面就产生相贯线,二者有共同点,也有不同点。
一、截交线的特性及画法【考纲要求】1、掌握特殊位置平面截断棱柱和棱锥的截交线画法;2、掌握特殊位置平面截断圆柱、圆锥、圆球的截交线画法;3、掌握简单的同轴回转体的截交线画法;【要点精讲】(一)截交线的定义:由平面截断基本体所形成的表面交线称为截交线。
(二)截交线的特性:1、任何基本体的截交线都是一个封闭的平面图形(平面体是平面多边形,曲面体是平面曲线或由平面曲线与直线共同组成的图形);2、截交线是截平面与基本体表面的共有线,截交线上的每一点都是截平面与基本体表面的共有点(共有点的集合)。
(三)求截交线的方法:①积聚性求点法;②辅助(素)线法;③辅助平面法。
(四)求截交线的步骤:1、确定被截断的基本体的几何形状;2、判断截平面的截断基本体的位置(回转体判别截平面与轴线的相对位置3、想象截交线的空间形状;4、分析截平面与投影面的相对位置,弄清截交线的投影特性;5、判别截交线的可见性,确定求截交线的方法;6、将求得的各点连接,画出其三面投影。
(五)平面体的特殊截交线及画法:1、特性:平面体的截交线都是由直线所组成的封闭的平面多边形。
多边形的各个顶点是棱线与截平面的交点,多边形的每一条边是棱面与截平面的交线。
2、画法:求平面体截交线的方法主要是用积聚性求点法和辅助线法。
画平面体的截交线就是求出截平面与平面体上各被截棱线的交点(即平面多边形的各个顶点),然后依次连接即得截交线。
根据截交线是截平面与基本体表面的共有线,截交线上的点也是截平面与基本体表面的共有点,我们所要求掌握的是特殊位置平面截切平面立体的截交线,我们可以利用积聚性求点法或辅助平面法,求出截平面与平面立体的各棱线的交点,然后依次连接,也就求出了截交线。
例如图5-1所示,先根据截交线具有积聚性投影的正面投影和具有收缩性的水平投影确定出截平面与六棱柱棱线的六个交点(截交线平面多边形的六个顶点),再利用积聚性求点法求出其侧面投影。
再如图5-2所示,根据截交线具有积聚性的正面投影取点,再利用积聚性求点法求出其水平投影和侧面投影。
以上是单一截平面截断平面体所形成的截交线,当多个截平面截断平面体时,可以看成是多个截平面分别截断而组合形成的截交线,分别求出其投影,但要注意截交线的具体形状和截平面交界处的情况。
1'2'(3')4'(5')6'13565''3'1''4''2'1'2'3'1231"2"3"图5-1 六棱柱截交线画法图5-2 三棱锥截交线画法(六)回转体的特殊截交线及求法:1、特性:回转体的截交线一般是封闭的平面曲线或由平面曲线和直线共同组成的图形。
截交线上的任一点都可看作截平面与回转体表面上某一素线(主要是轮廓素线)或圆曲线的交点。
2、类型:回转体的截交线比较复杂,不同回转体的截交线形状是不同的。
(1)单一截平面截断单一回转体的截交线:①圆柱的截交线:根据截平面与圆柱轴线的相对位置的不同,其截交线有三种不同的形状,如表5-1所示:表5-1 圆柱的截交线截平面的位置平行于轴线垂直于轴线倾斜于轴线截交线的形状矩形圆椭圆轴测图投影图②圆锥的截交线:根据截平面与圆锥轴线的相对位置的不同,其截交线有五种不同的形状,如表5-2所示:表5-2 圆锥的截交线类别轴测图投影图截交线的形状截平面的位置1 圆垂直于轴线θ=90°2椭圆倾斜于轴线θ>α3 抛物线倾斜于轴线且平行于一条素线θ=α4 双曲线平行于轴线5 过锥顶的两相交直线(三角形)倾斜于轴线且过锥顶③圆球的截交线:任何位置的截平面截切圆球时,其截交都是圆。
当截平面平行于某一投影面时,其投影在该投影面上的投影为一圆,在其他两个投影面上的投影都积聚为直线,如图5-3所示;当截平面(投影面垂直面)垂直于某一投影面时,截交线在该投影面上的投影积聚为直线,在其他两个投影面上的投影都为椭圆,如图5-4所示。
图5-3 球被水平面截断5-4 球被正垂面截断(2)多个截平面截断单一回转体的截交线:多个截平面截断同一回转体的截交线可以看成多个截平面分别截断同一回转体而形成的截交线的组合。
由于回转体的截交线比较复杂,一定要确定好截交线的具体形状,例如图5-5所示,上面的截交线是椭圆,中间的截交线是圆,下面的截交线是矩形。
图5-5 圆柱被三个截平面截断图5-6 同轴圆柱体的截交线(3)同轴回转体的截交线:同轴回转体的截交线可以看成同一截平面截断不同回转体所形成的截交线的组合,画同轴回转体的截交线时,首先要分析该立体是由哪些基本体所组成的,再分析截平面与每个基本体的相对位置、截交线的形状和投影特性,然后逐个画出基本体的截交线组成的图形。
画图时一定要区别开截平面截断各个回转体的截交线形状以及各条截交线的分界点。
如图5-6所示,要区别出截平面截断大圆柱和小圆柱的分界线。
4、回转体截交线的画法:(1)求回转体截交线的方法:①积聚性求点法;②辅助素线法;③辅助平面法。
(2)投影为直线或圆的截交线画法:可以利用其积聚性或真实性直接求出,如表5-1、表5-2、图5-3和图5-6所示。
(3)投影为非圆曲线的截交线求法:投影为非圆曲线的截交线可根据回转体被截平面截断的截交线的形状,先求出截交线上特殊位置点的投影(即最左、最右、最上、最下、最前、最后点,可理解为截平面与轮廓素线或圆曲线的交点),再利用辅助平面法或表面取点法(利用积聚性)求出几个一般位置点的投影(最好是对称点,求点的投影时可利用积聚性求点法、辅助素线法或辅助平面法),最后光滑连接所求各点的同面投影即得截交线,如图5-7 a 和b 所示,(a ) 圆柱的截断 ( b ) 圆球的截断图5-7 投影为非圆曲线的截交线画法【典型例题】【例题一】补全棱柱截断体的三视图,见图5-8(a ):(a ) (b ) (c )图5-8 棱柱的截交线画法分析:1、求平面体的截交线的困难就是判别它是几边形。
我们可以运用下面的方法进行判别,截平面与几条棱线相交就有几个顶点(包括顶面和底面所在的边),与几个棱面相交就有几条边(包括顶面和底面),多个截平面截断时,截平面与截平面的相交处如果不与棱线重合,必然又多出了两个顶点,即多了一条边。
2、本形体用了P、Q两个截平面截断五棱柱,P平面为侧平面,Q平面为正垂面。
Q平面与四个棱面,三条棱线相交,就必然有四条边三个顶点(Ⅰ、Ⅱ、Ⅵ),平面Q与平面P相交就有一条边两个顶点(Ⅲ、Ⅳ),所以可以判定该截交线是一个五边形;运用同样的方法可判别出截平面P所在的截交线是一个四边形,如图5-8(b)所示。
3、棱柱表面上的点都具有积聚性,可以运用积聚性求点法求截交线。
截平面Q的正面投影都具有积聚性,可在正面投影上取点1'、2'、3'、4'、5',其水平投影都积聚在五边形的各条边上,可得水平投影1、2、3、4、5,根据正面投影和水平投影可求出侧面投影1"、2"、3"、4"、5",将1"、2"、3"、4"、5"按顺序依次连接就得到了截交线的侧面投影;平面P可运用同样的方法求出。
形体前端被切去一块,将被切去的轮廓线擦掉,描深全图。
如图5-8(c)所示。
4、截交线的分析方法有多种,可以根据具体情况采用最简便的方法分析。
正确答案:如图5-8(c)所示。
【例题二】补全棱锥截断体的其余投影,见图5-9(a):(a) (b) (c)图5-9 棱柱截交线的画法分析:1、棱锥表面上求点的方法主要用积聚性求点法和辅助线法。
2、本形体是正三棱锥被P、Q两个截平面切去一块,Q面为平行于三棱锥底面的水平面,Q平面截一棱线得Ⅰ点,在主视图的投影为1 ',利用积聚性求点法求出其水平投影1和侧面投影1",两截面P、Q的交线与三棱锥棱面的交点为Ⅱ点和Ⅴ点,利用辅助平面法和积聚性求点法分别求出两点的水平投影2、5,侧面投影2"、5",依次连接Ⅰ、Ⅱ、Ⅴ各点同面投影即得截交线,如图5-9(b)所示。
3、P平面为垂直于正面的正垂面,P平面截两棱线得Ⅲ、Ⅳ两点,在正面上的投影分别为3'、4',在棱线的其他两条棱线上求出另两面投影3、4和3"、4"再分别连接Ⅱ、Ⅲ、Ⅳ、Ⅴ各点的同面投影即得另一截交线,如图5-9(b)所示。
4、正三棱锥被P、Q两截面切割掉了一部分,将切去部分的轮廓线擦去。
最后描深全图,如图5-9(c)所示。
正确答案:如图5-9(c)所示。
【例题三】根据圆柱截断体的主视图和俯视图,画出其左视图,如图5-10(a)所示。
(a) (b) (c)图5-10 圆筒截交线的画法分析:1、求回转体截交线的难点是判别多个截平面切割时判断截交线的形状,这就得正确的判别截平面与回转体轴线的相对位置,然后再判别截交线的形状,还要弄清截平面相交处的分界线情况。
最后按方法、步骤求出截交线的三面投影。
2、本形体是一个圆柱沿着中心轴线挖一通孔后,形成了一个有内圆柱表面的圆筒,从主视图和俯视图(截断位置最明显的特征视图)可以看出,圆筒的上端又分别用一个水平面和一个侧平面各切去一块,下端用一个水平面和两个侧平面切去一块,形成一个凹槽,这就在内、外圆柱面上都产生了截交线。
3、圆筒上端的两个水平面与圆柱的轴线平行,可判别其截交线是矩形,由于内、外圆柱面上都形成了截交线,所以前后各形成了两个矩形。
四个矩形正面投影和水平投影都积聚为竖线,侧面投影是反映实形的矩形,可利用积聚性求点法,按投影规律分别求出其三面投影。
两个正平面与圆柱的轴线垂直,可判别其截交线是圆,由于是不完全截断,其截交线是由两段曲线和两段直线组成的圆平面,该平面在正面和侧面上都积聚为横线,水平投影反映实形,也可利用积聚性求点法分别求出其三面投影。
下端的截断情况也可运用这种方法进行分析,得出其截交线的投影,如图5-10(b)所示。
4、求回转体的截交线还要正确分析截平面是否将回转体的转向轮廓素线切去了,如图5-10(b)所示,圆筒的内、外圆柱面的左、右轮廓素线切去了,所以其主视图的转向轮廓线不完整(上端),其内、外转向轮廓素线都没有了;其前、后轮廓线切去了,所以其左视图轮廓线不完整,其内、外转向轮廓线也没有了,这种情况作图时要认真分析,一定要将被切去的转向轮廓素线擦去,最后描深全图,如图5-10(c)所示。
正确答案:如图5-10(c)所示。
【例题四】根据主视图和左视图,分析共轴回转体的截断情况,补画出左视图,如图5-11(a)所示。
(a) (b)(c)图5-11 同轴回转体的截交线画法分析:1、本形体是由共轴的圆锥和圆柱组成,其轴线垂直于侧面。