恒流源在高精度数字多用表中的设计与实现
- 格式:pdf
- 大小:292.33 KB
- 文档页数:4
热敏电阻温度计实验报告热敏电阻温度计实验报告引言热敏电阻温度计是一种利用电阻随温度变化的特性来测量温度的仪器。
在工业和科学研究中,温度是一个重要的参数,因此温度的准确测量对于许多实验和应用至关重要。
本实验旨在通过使用热敏电阻温度计来测量不同温度下的电阻值,并分析其特性曲线。
实验方法实验中使用的热敏电阻温度计是一种负温度系数(NTC)热敏电阻,其电阻值随温度的升高而下降。
首先,我们将热敏电阻温度计连接到一个恒流源和一个数字多用表。
然后,我们将热敏电阻温度计放置在不同的温度下,例如室温、冰水混合物和沸水中。
在每个温度下,我们记录下热敏电阻温度计的电阻值,并计算出温度与电阻的对应关系。
实验结果根据实验数据,我们绘制出了热敏电阻温度计的特性曲线。
曲线显示出温度和电阻之间的非线性关系。
在低温下,电阻值较高,而在高温下,电阻值较低。
这是由于热敏电阻的材料特性决定的。
随着温度的升高,热敏电阻材料中的载流子增多,导致电阻值的下降。
讨论与分析根据实验结果,我们可以看出热敏电阻温度计的响应速度较快,可以快速反应温度变化。
这使得热敏电阻温度计在许多实际应用中非常有用,例如温度控制系统和温度补偿。
然而,热敏电阻温度计也存在一些局限性。
首先,由于其非线性特性,我们需要进行一定的校准和计算才能获得准确的温度值。
其次,热敏电阻温度计对环境的变化非常敏感,例如湿度和压力的变化可能会影响其测量精度。
此外,我们还可以利用实验数据进行一些额外的分析。
通过拟合实验数据,我们可以得到一个数学模型来描述热敏电阻温度计的特性曲线。
这将有助于我们更准确地预测和计算温度值。
此外,我们还可以比较不同型号和品牌的热敏电阻温度计的性能差异,以选择最适合特定应用的温度计。
结论通过本次实验,我们成功地使用热敏电阻温度计测量了不同温度下的电阻值,并分析了其特性曲线。
热敏电阻温度计是一种常用的温度测量仪器,具有快速响应和较高的测量精度。
然而,我们也需要注意其非线性特性和对环境变化的敏感性。
数字万用表的原理及应用1. 引言数字万用表,也称为数字多用表或数字电表,是一种常用的电子测量仪器。
它可以用于测量电压、电流、电阻、频率等各种电气参数。
本文将介绍数字万用表的基本原理和常见应用。
2. 数字万用表的原理数字万用表的核心是电路中的模数转换器(ADC)和微处理器。
模数转换器用于将模拟输入信号转换为数字信号,同时微处理器负责对转换后的数字信号进行处理、显示和计算。
数字万用表的测量原理主要分为以下几个步骤:2.1 电压测量数字万用表通过将待测电压与内部参考电压进行比较,利用模数转换器将电压转换为数字形式。
通常,数字万用表可以测量直流电压和交流电压,通过选择不同的测量范围和设置。
2.2 电流测量在电流测量时,数字万用表需要在测量电路中串联一个电阻,将电流转换为电压值进行测量。
通过欧姆定律,可以得到电流值,同时注意选择适当的测量范围,以防止过载。
2.3 电阻测量数字万用表利用恒流源或恒压源为待测电阻提供一个电压或电流,测量电阻的电压下降或电流上升,然后通过计算电阻大小。
2.4 频率测量在频率测量中,数字万用表利用计数器和定时器等功能来测量待测信号的周期时间,通过倒数得到频率。
3. 数字万用表的应用数字万用表作为一种常用的电子测量仪器,在各个领域都有广泛的应用。
以下是一些常见的应用领域:3.1 电子维修数字万用表在电子设备维修中起着重要的作用。
通过测量电压、电流和电阻等参数,可以快速定位和解决故障。
它可以用于检测电路板上的元件故障,如电阻、电容和二极管等,帮助维修人员快速准确定位故障点。
3.2 电路设计和测试在电路设计和测试中,数字万用表用于测量电路设计中的各种参数,如电压分压比、电流流经的电阻值等。
同时,数字万用表还可以用来检测电路的稳定性、频率响应等性能指标。
3.3 电力行业数字万用表在电力行业中也有广泛的应用。
它可以用于测量电力设备的电压、电流、功率因素等参数,以确保电力系统的安全运行。
此外,数字万用表还可以用于对电能质量进行监测和分析,找出电力系统中的问题并进行修复。
基于FPGA的高精度恒流源系统设计目录一、内容综述 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (4)3. 论文研究目的及内容 (5)二、FPGA技术概述 (6)1. FPGA基本概念及特点 (7)2. FPGA的发展历程 (8)3. FPGA的主要应用领域 (9)三、恒流源系统基本原理与设计要求 (11)1. 恒流源系统基本原理 (12)2. 恒流源系统的设计要求 (13)3. 恒流源系统的性能指标 (14)四、基于FPGA的高精度恒流源系统设计方案 (15)1. 系统架构设计 (16)2. 主要功能模块设计 (18)3. 系统工作流程设计 (18)五、关键技术研究与实现 (19)1. 高精度电流采样与转换技术 (21)2. 高性能PWM波形生成技术 (22)3. 基于FPGA的电流闭环控制技术 (23)六、系统硬件设计与实现 (24)1. 电源模块设计 (26)2. 电流采样与处理模块设计 (27)3. FPGA配置与实现 (28)七、系统软件设计与实现 (30)1. 软件架构设计 (31)2. 程序流程设计 (33)3. 关键算法实现与优化 (34)八、系统测试与性能评估 (36)1. 测试环境与平台搭建 (37)2. 系统测试方法与步骤 (38)一、内容综述本文档主要介绍了基于FPGA的高精度恒流源系统的设计。
恒流源系统在众多领域中有着广泛的应用,如精密测量、电子仪器、医疗设备和通信系统等。
随着科技的不断发展,对恒流源系统的精度和稳定性要求也越来越高。
研究并设计一种基于FPGA的高精度恒流源系统具有重要的实际意义。
该系统设计的主要目标是实现高精度、高稳定性的恒流输出,同时具备良好的响应速度和负载调整能力。
系统设计的核心部分是基于FPGA(现场可编程门阵列)的控制电路,通过优化算法和控制策略,实现对恒流源输出电流的精确控制。
输入电源及稳压模块:为系统提供稳定的输入电压,保证系统的稳定运行。
PXI高精度数字万用表的设计与实现
刘洋;王厚军;戴志坚
【期刊名称】《电子测量技术》
【年(卷),期】2011(34)10
【摘要】介绍基于PXI接口的五位半数字万用表模块的设计与实现方法。
该模块以ES51966为核心,ARM单片机(LPC2103)为控制器,实现了各种电参量的高精度测量以及对测量数据的处理与收发控制,并通过专用PCI接口集成芯片PCI9054实现了PXI接口,从而实现与上位机的通信。
本文重点介绍硬件电路的设计思路、驱动程序的设计流程以及FPGA内部接口转换电路的实现,最后对实际测量结果进行分析,并提出改良方法。
【总页数】4页(P69-71)
【关键词】数字万用表;五位半;ES51966;LPC2103;PXI接口
【作者】刘洋;王厚军;戴志坚
【作者单位】电子科技大学自动化工程学院
【正文语种】中文
【中图分类】TP216
【相关文献】
1.高精度数字万用表恒流源和交流测量电路设计 [J], 张斌
2.基于CPLD和单片机实现高精度数字万用表 [J], 戈素贞
3.泰克为复杂设计应用推出高精度台式数字万用表 [J],
4.泰克为复杂设计应用推出高精度台式数字万用表DMM4000 [J],
5.泰克为复杂设计应用推出高精度台式数字万用表 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
基于LM5117大功率恒流源的设计郑世伟;饶连周;许国忠;王坤森;张廷光;陈俊玮【摘要】采用TI最新同步降压控制芯片LM5117与超低内阻MOS管CSD18532KCS为核心,设计一款具有宽输入电压5.5~65V,输出电压12V,输出电流12A的降压型大功率恒流源.样机经测试满载效率为91.1%、负载调整率Si≤1%、电压调整率Sv≤0.2%,可应用在电镀、热处理炉、照明等行业.【期刊名称】《三明学院学报》【年(卷),期】2017(034)004【总页数】4页(P52-55)【关键词】同步降压;LM5117;恒流源【作者】郑世伟;饶连周;许国忠;王坤森;张廷光;陈俊玮【作者单位】装备智能控制福建省高校重点实验室,福建三明 365004;三明学院机电工程学院,福建三明365004;装备智能控制福建省高校重点实验室,福建三明365004;三明学院机电工程学院,福建三明365004;装备智能控制福建省高校重点实验室,福建三明 365004;三明学院机电工程学院,福建三明365004;装备智能控制福建省高校重点实验室,福建三明 365004;三明学院机电工程学院,福建三明365004;装备智能控制福建省高校重点实验室,福建三明 365004;三明学院机电工程学院,福建三明365004;福建电视大学三明分校,福建三明365000【正文语种】中文【中图分类】TM46随着电子技术的快速发展,电子设备发展越来越来高端和智能化,为了保证高端电子设备性能稳定,需要提供更加优质的高端电源,这就要求电源体积小,集成度、高频化[1]。
为了提高效率,选择导通电阻极低的MOSFET替代整流二极管进行同步整流,能够降低损耗[2]。
为了输出高功率,高电压输出使得器件选型上需要增加成本,所以降低输出电压,提高输出电流能够在一定范围内降低制造成本[3]。
所以研究大功率恒流DC-DC降压型开关电源是新的趋势。
大功率恒流源电路原理图见图1。
霍尔效应及霍尔元件基本参数的测量实验报告实验目的:1. 了解霍尔效应的基本原理及其在霍尔元件中的应用;2. 学习使用霍尔元件测量磁场强度和电流的方法;3. 掌握测量霍尔元件输出电压与磁场强度、电流之间的关系。
实验器材:1. 霍尔元件;2. 恒流源;3. 磁场调节装置;4. 数字多用表。
实验原理:霍尔效应是指当载流子在导体中受到垂直于电流方向的磁场力作用时,在导体横向产生电场差,进而产生电势差。
这一效应被应用在霍尔元件中,通过测量霍尔元件的输出电压,可以间接测量磁场强度和电流。
实验步骤:1. 将恒流源的正极和负极分别连接到霍尔元件的两个引脚上;2. 将数字多用表的电压测量端口连接到霍尔元件的输出引脚上;3. 将磁场调节装置放置在霍尔元件附近,通过调节磁场的强度,使其垂直于电流方向;4. 打开恒流源,调节电流的大小;5. 在不同的电流和磁场强度下,记录霍尔元件的输出电压。
实验数据处理:1. 将实验记录的电流和霍尔元件的输出电压整理成表格;2. 绘制电流和霍尔元件输出电压的关系曲线;3. 利用最小二乘法拟合曲线,得到电流和输出电压之间的线性关系;4. 根据线性关系,计算出霍尔元件的灵敏度和霍尔系数。
实验结果与讨论:根据实验数据处理的结果,可以得到霍尔元件的灵敏度和霍尔系数。
实验还发现,在磁场强度较小的情况下,霍尔元件的输出电压与磁场强度呈线性关系;当磁场强度较大时,输出电压可能存在饱和现象,即不再随磁场强度的增大而线性增加。
结论:通过本次实验,我们成功测量了霍尔元件的基本参数,包括灵敏度和霍尔系数。
同时,我们也验证了霍尔元件输出电压与磁场强度、电流之间的关系,进一步加深了对霍尔效应的理解。
这些实验结果对于霍尔元件的应用和相关工程设计具有重要的参考价值。
高精度宽范围恒流源设计吴茂成(苏州大学物理科学与技术学院,江苏苏州215006)摘要:设计了一种由基准电压源、集成运算放大器及复合管等组成的高精度恒流源电路,其输出电流范围为1 A~1A。
详细分析了该电路的工作原理,公式推导证明了设计的正确性,并对实际应用中元器件的选取进行了说明。
对所设计恒流源电路的性能进行了测试,测试结果表明:该电路精度高、稳定性好,输出电流精度相对误差的最大值为0.152%,输出电流稳定性误差的最大值为0.047%。
关键词:恒流源;高精度;运算放大器;反馈中图分类号:T M933 文献标识码:B文章编号:1001-1390-(2011)01-0064-03D esi gn of a H i gh-precision W i de-range Constant-current SourceWU M ao-cheng(Depart m ent o f Physics Sc i e nce and Techno logy,Soocho w Un i v ersity,Suzhou215006,Ji a ngsu,Ch i n a)A bstract:A w i d e-range high-precisi o n constant-current source i s presented,wh ic h is m a i n l y co m prised o f a vo lt age reference,so m e operational a mp lifiers and a darli n g ton transistor.The range of the circu itry s output curren t va l u e is fro m1 A to1A.The w orking pr i n ciple o f the designed constant-current circu itry is ana l y zed i n details and deduced m athe m atica lly,and the se lective ru les o f the practica l e le m ents are ill u m i n ated.The perfor m ance o f the designed con stant-current source is tested,and the resu lts i n dicate t h at the circu itry cou l d generate a high-prec ision steady cur ren.t The m ax i m al re lati v e error of precisi o n and m ax i m al error o f stab ility of the ou t p ut current are0.152%and0. 047%respecti v e l y.K ey words:constant-current source,h i g h-prec ision,operati o na l a m plifier,feedback0 引 言恒流源是指能够向负载提供恒定电流的电源,在金属薄膜电阻率测量、金属丝杨氏模量测量、磁阻效应、光电效应以及光电池特性测量等大学物理实验中应用广泛。
电子设计大赛-高效数控恒流电源高效数控恒流电源摘要随着信息时代的飞速发展,电源设备也逐渐向数字化的方向发展。
电流源可以看作输出电压随着负载而变化,保证负载中的电流恒定不变。
本设计根据题目要求,采用以TI低功耗单片机MSP430F247为核心控制电路,开关电源控制芯片TPS5430作DC-DC变换电路。
该电路系统具有效率高、输出稳定、电流步进小、输出电流纹波小等特点,具有输入过压、输入欠压和输出过压保护功能,在故障排除后并能自动恢复。
本设计采用彩色液晶显示、红外遥控,控制方便且具有环境温度检测和显示时间等功能。
关键词:MSP430F247 TPS5430 高效率彩色液晶红外时钟温度检测目录1.前言 (1)2.总体方案设计 (1)1.1系统框图 (1)2.1方案论证与比较 (1)2.1.1 主控电路CPU选择 (1)2.1.2 恒流源的设计 (1)2.1.3 输出过压保护控制 (2)2.1.4控制电路电源 (2)2.1.5显示模块 (2)3.单元模块设计及理论分析 (2)3.1 DC-DC控制电路 (2)3.1.1.PWM芯片介绍 (3)3.1.2.主电路描述: (3)3.1.3.电路输出及器件参数计算: (3)3.2 AD和DA电路 (4)3.2.1AD采样电路 (4)3.2.2 DA输出电路 (5)3.3 保护模块 (6)3.3.1输入过压和欠压保护 (6)3.3.2输出过压保护及自动恢复 (6)3.4控制电路供电系统。
(7)3.4.1 CLM7660正负电压转换。
(8)3.5人机互换显示控制 (8)3.6 其它 (9)4.提高效率(加入功耗计算各模块,各芯片器件功耗) (9)5.程序设计 (10)6.系统测试 (12)6.1测试方案 (12)6.2测试环境和仪器 (12)6.3测试数据 (12)7.总结 (13)9.参考文献 (13)1.前言现今社会,电源设备智能化、数字化已成为人们追求的一种趋势,电源设备的性能备受人们的关注,尤其是效率和稳定性。
AD5542 设计的高精度数控恒流源技
本文给出了一种基于AD5542 设计的高精度数控恒流源电路,并已成功应用于陀螺和加速度计等测试中。
随着电子技术向各个领域的渗透,许多场合,尤其是高精度测控系统需要高精度、高稳定性的数控恒流源。
数控恒流源主要由D/A 来控制电流输出大小,恒流源的分辨率、精度、稳定性主要取决于D/A 芯片及其外围电路,因此要达到高精度、高稳定性的恒流源,必须在选器件上慎重考虑。
基本原理
该高精度数控恒流源的结构原理框图如图1 所示,它由总线端、数字隔离电路、D/A 转换电路、V/I 转换电路组成,D/A 采用16 位芯片AD5542,V/I 转换电路采用了高精度运放OP97 和三极管来实现。
图1 高精度数控恒流源的结构原理框图
硬件电路设计
1 D/A 转换电路
数字隔离电路采用专门的磁隔芯片,在此不作介绍。
AD5542 是ADI 公司的一款单通道、16 位、串行输入、电压输出数模转换器,采用5V 单电源供电。
采用多功能三线式接口,并且与SPI、QSPI、MICROWIRE、DSP 接口标准兼容。
可提供16 位性能,无须进行任何调整。
DAC 输出不经过缓冲,。