核磁共振波谱分析
- 格式:ppt
- 大小:4.66 MB
- 文档页数:86
核磁共振波谱分析引言1945年,美国哈佛大学和斯坦福大学的几位学者,各自独立观察到一般状态下物质的核磁共振现象,1952年由此获得诺贝尔物理奖。
1953年世界上第一台商品化NMR谱仪研制成功(30MHz),1964年第一台超导磁体的NMR谱仪研制成(200MHz),1976年Ernst等人确立了二维谱的理论基础,1991年Ernst教授因其在脉冲付立叶变换NMR和二维NMR方面的杰出贡献而获当年诺贝尔化学奖。
2000年在900MHz谱仪上获得NMR谱图。
30MHz= 0.7T (泰斯勒tesla) = 7000高斯(Gauss)200MHz= 4.7T = 47000高斯400MHz= 9.4T = 94000高斯10000高斯 = 1T2929核磁共振谱仪的主要组成部分 1. 提供外磁场B 0的磁铁 2. 产生射频场B 1的谱仪部分 3. 用于控制及数据处理的计算机 三者构成一个整体——核磁共振谱仪(1) 超导磁体—— 铌-钛合金绕成的螺管线圈,置于盛有液氦的超低温杜瓦瓶中,通过一定电流产生强磁场,在接近绝对零度的温度时,螺管线圈内阻几乎为零,成为超导体,消耗的功率也接近零,断绝电源后,超导电流仍保持循环流动,形成永久磁场。
(2) 波谱仪 N S FID D/A FT探头是NMR 谱仪的心脏,样品管放置其中,探头绕有线圈,射频源作用于样品线圈,把共振时样品线圈发生的变化转交给接收机。
(3) 数据处理系统FID -free inductione decay 自由感应衰减 FT -Tourier transferm 付立叶变换一、核磁共振基本原理核磁共振研究对象为具有磁矩的原子核。
只有存在自旋运动的原子核才具有磁矩。
原子核的自旋运动与自旋量子数Ⅰ相关。
Ⅰ= 0的原子核没有自旋运动,Ⅰ≠ 0的原子核才有自旋运动。
在此主要讨论Ⅰ= 1/2的1H,13C,19F,31P……当原子核自旋量子数Ⅰ非零时,它具有自旋角动量P。
分析化学核磁共振波谱法分析化学核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR)是一种非常重要的分析技术,广泛应用于有机化学、生物化学等领域。
本文将从基本原理、仪器设备、样品制备和应用等方面对NMR进行分析。
基本原理核磁共振波谱法是基于核磁共振现象的,核磁共振是指在外加静磁场和射频磁场的作用下,原子核能级的分裂现象。
当样品中的核磁共振活性核被置于静磁场中时,它会分裂成若干个子能级,对应着不同的共振频率。
这些频率可以测量并转换为核磁共振谱图,从而确定样品中不同核的化学环境和相对位置。
仪器设备核磁共振仪包括主磁场、射频系统和梯度线圈等部分。
主磁场是核磁共振仪的核心组成部分,它通过产生一个稳定且均匀的静磁场使样品中的核磁共振现象能够发生。
射频系统用于产生能与样品中核的共振频率相匹配的射频脉冲,从而激发样品中的核磁共振信号。
梯度线圈用于产生梯度磁场,使样品中不同位置的核有不同的共振频率,从而可以对核的位置进行定位。
样品制备样品的制备是进行核磁共振分析的关键步骤,其中要求样品的纯度和浓度都需要达到一定的要求。
通常,为了提高样品的分析效果,可以进行特定的样品制备,例如通过标记原子核来增强信号强度,或者通过选择性的核磁共振脉冲来增强特定核的信号。
应用核磁共振波谱法在许多领域具有重要的应用价值。
在有机化学中,核磁共振波谱法常用于确定分子的结构和化学环境,从而帮助确定分子的组成和结构。
在生物化学中,核磁共振波谱法可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,从而帮助理解生物反应的机理。
此外,核磁共振波谱法还可以应用于材料科学、医学和环境科学等领域。
总结通过分析化学核磁共振波谱法的基本原理、仪器设备、样品制备和应用等方面,可以看出核磁共振波谱法是一种重要而常用的分析技术。
它可以提供关于化合物结构、分子环境和分子动力学等方面的信息,对于解决化学和生物化学中的许多问题具有不可替代的作用。
核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T 时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
核磁共振波谱法目的与要求
核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy)
是一种用于研究物质的分子结构和化学性质的分析技术。
它利用物质中原子核的磁共振现象来获取关于分子中原子核的信息。
该技术广泛应用于有机化学、药物化学、生物化学等领域。
核磁共振波谱法的目的是通过测定样品的核磁共振谱图,获得关于样品中原子核种类、相对数量、结构以及它们之间的化学环境等信息。
核磁共振波谱法的要求包括:
1. 样品纯度:被测样品的纯度对核磁共振波谱的分析结果有很大影响。
样品应尽量纯净,确保不会受到其他杂质的干扰。
2. 溶剂选择:通过溶解样品以提高其溶解度,并且在选择溶剂时要考虑溶剂的磁性,以避免对谱图的解释造成误导。
3. 参数设置:通过调整核磁共振实验中的参数,如脉冲序列、扫描时间等,可以优化信号强度和分辨率,从而得到更准确的谱图。
4. 仪器校准:核磁共振仪器的校准对于获得准确的波位和能量单位是非常重要的。
仪器应定期进行校准,以确保结果的精确性和可靠性。
5. 数据分析:对获得的核磁共振波谱进行仔细的数据处理和分析,包括峰识别、积分、峰面积比较等,以获得关于样品结构和化学环境的详细信息。
总之,核磁共振波谱法的目的是通过测定并分析核磁共振谱图,
获取样品中原子核的相关信息,并且在样品制备、参数设置、仪器校准和数据分析等方面要求细致和准确。
核磁共振波谱分析1.基本原理核磁共振是在电磁波的作用下,原子核在外磁场中的磁能级之间的共振跃迁现象。
因此,要产生核磁共振,首先原子核必须具有磁性。
自旋量子数I=0的原子核没有磁性,自旋量子数I≠0的原子核具有磁性。
I=1/2:1H,13C,15N,19F,31P,77Se,113Cd,119Sn,195Pt.I=3/2:7Li,9Be,11B,23Na,33S,35Cl,37Cl,39K,63Cu,79Br此外还有I=5/2,7/2,9/2,1,2,3等。
I=1/2的原子核,电荷均匀分布在原子核表面,核磁共振的谱线窄,最适合核磁共振检测。
1H,13C原子核是最为常见,其次是15N,19F,31P核。
除了原子核具有磁性外,要产生核磁共振,还必须外加一静磁场和一交变磁场。
在磁场中,通电线圈产生磁距,与外磁场之间的相互作用使线圈受到力矩的作用而发生偏转。
同样在磁场中,自旋核的赤道平面也受到力矩作用而发生偏转,其结果是核磁距围绕磁场方向转动,这就是拉莫尔进动。
其进动频率与外加磁场成正比,即:v=(ϒ/2π)*H0。
V—进动频率;H0—外磁场强度;ϒ—旋磁比。
在相同的外磁场强度作用下,不同的原子核以不同的频率进动。
如果在垂直于外磁场方向加一交变磁场H1,其频率v1等于原子核的进动频率v。
此时,就产生共振吸收现象。
即使原子核在外磁场中的磁能级之间产生共振跃迁现象,也即核磁共振。
2.核磁共振波普在化学中的应用2.1 基本原则从核磁共振波谱得到的信息主要有化学位移、偶合常数、峰面积、弛豫时间等。
化学位移在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
化学位移的标准:相对标准TMS(四甲基硅烷)位移常数δ=0。
与裸露的氢核相比,TMS的化学位移最大,但规定TMSTMS=0,其他种类氢核的位移为负值,负号不加。
采用此标准的原因:(1)12个氢处于完全相同的化学环境,只产生一个尖峰;(2)屏蔽强烈,位移最大;只在图谱中远离其他大多数待研究峰的高磁场区有一个尖峰;(3)易溶于有机溶剂,沸点低,易回收。
核磁共振波谱法基本原理核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy)是一种利用核磁共振现象进行分析的方法。
核磁共振是基于原子核的特定性质,在外加磁场作用下,原子核能够吸收具有特定频率的电磁波并发生共振现象的现象。
该方法通过检测不同原子核的共振信号来获取样品的结构和组成信息。
核磁共振波谱法基于原子核中的自旋(Spin)性质。
自旋是描述原子核内部的一种性质,可以与外加磁场相互作用。
在没有外加磁场作用下,原子核的自旋朝向是随机的。
然而,当样品置于强磁场中时,原子核的自旋会排列在不同能级上。
这些能级之间存在能量差,当这些能级之间的能量差等于外加电磁波的能量时,原子核就会发生共振吸收。
核磁共振波谱仪的基本构造包括磁场系统、射频系统、探测系统和计算机系统。
磁场系统用来产生强磁场,常见强磁场有永磁磁体、超导磁体等。
射频系统则用来产生特定频率的电磁波,以激发样品中的原子核共振吸收。
探测系统用来接收样品发出的信号,并将其转化为电信号,进一步处理和分析。
计算机系统则用来进行数据处理和结果分析。
在进行核磁共振波谱实验时,首先将样品放置于磁场中,样品中的原子核会受到磁场的作用,并分裂为不同能级。
接下来,通过调节射频系统产生特定频率的电磁波,激发样品中的原子核发生共振吸收。
这时,探测系统会接收样品发出的共振信号,并将其转化为电信号。
最后,计算机系统会对接收到的信号进行数学处理,生成核磁共振波谱图。
核磁共振波谱图是核磁共振波谱法的主要结果,可以提供关于样品的结构和组成的信息。
波谱图中的共振信号对应于不同原子核的吸收峰,其化学位移(Chemical Shift)可以帮助确定样品中的不同官能团或基团。
同时,共振信号的相对积分面积可以提供定量分析所需的信息。
总体而言,核磁共振波谱法通过利用原子核在磁场中的共振吸收现象,能够提供丰富的结构和组成信息。
它在有机化学、无机化学、生物化学等领域有着广泛的应用,成为了一种重要的分析手段。
核磁共振波谱解析的主要参数核磁共振(Nuclear Magnetic Resonance, NMR)波谱是一种高分辨无损的分析技术,广泛应用于化学、生物化学、药学、材料科学等领域。
核磁共振波谱解析的主要参数包括信号强度、化学位移、偶合常数、弛豫时间以及分辨率等。
下面将对这些参数进行详细介绍。
1. 信号强度(Signal Intensity):信号强度反映了溶液中特定核的相对丰度或浓度。
在NMR波谱中,信号强度通常用积分面积或峰高度表示。
2. 化学位移(Chemical Shift):化学位移是核磁共振波峰在频率轴上的位置。
它是相对于参考物质(通常是四氢呋喃或二甲基硫醚)定义的,并且与共振核周围的电子环境有关。
化学位移通常以δ值表示,以部分百万分之一(ppm)为单位。
3. 偶合常数(Coupling Constant):偶合常数是描述磁共振核之间相互作用的参数。
它反映了不同核自旋之间的耦合程度。
在NMR波谱中,可以通过峰间的分裂模式来确定偶合常数。
4. 弛豫时间(Relaxation Time):弛豫时间是核磁共振过程中,自旋系统从高能态向低能态返回的速度。
主要有纵向弛豫时间(T1)和横向弛豫时间(T2)两个参数。
T1反映了自旋系统恢复到热平衡所需的时间,而T2则是自旋之间能量转移和相干性的衰减时间。
5. 分辨率(Resolution):分辨率是指NMR波谱中两个峰之间的最小频率差。
它取决于核磁共振仪的仪器分辨率和样品的纯度。
较高的分辨率意味着可以分辨更多的峰并提供更多的结构信息。
除了以上主要参数外,还有一些其他与NMR波谱解析相关的参数:6. 强度归一化(Normalization):强度归一化用于将不同波峰的信号强度标准化,以便比较不同实验的结果。
7. 脉冲宽度(Pulse Width):脉冲宽度是指核磁共振仪在激发和检测过程中所施加的射频脉冲的宽度。
脉冲宽度的选择将影响到信号的强度和分辨率。
核磁共振波谱解析的主要参数1. 化学位移(Chemical Shift)化学位移是核磁共振谱上信号相对于参比物的位置。
它是由核磁共振体系中不同核的环境所决定的。
化学位移的测量可以提供化学组成、分子结构等信息。
在核磁共振谱图上,化学位移以ppm(parts per million)为单位来表示。
常用参比物有TMS(二甲基硅烷),其化学位移定为0 ppm。
2. 积分强度(Integral Intensity)积分强度是指核磁共振谱上信号的峰面积,它与信号分子的数量成正比。
通过测量积分强度可以计算出各个组分在样品中的相对含量。
积分强度是定量分析的重要参数。
3. 耦合常数(Coupling Constants)耦合常数是指核磁共振谱上两个磁共振峰的距离,即两个信号的分裂程度。
耦合常数的测量可以提供关于分子之间相互作用的信息,包括分子的平面结构、键长等。
耦合常数的大小和形态可以帮助研究分子的化学性质。
4. 旋转速率(Spin-Spin Relaxation Time)旋转速率(T2)是指核磁共振谱上信号的半高宽(FWHM),它反映了样品中分子之间的自旋-自旋耦合强度。
旋转速率的测量可以为表征样品的物理性质(如分子流动速度、粘滞效应等)提供重要的信息。
5. 解析峰形(Line Shape)解析峰形是指核磁共振谱上信号的峰形状,通常为高斯型或洛伦兹型。
解析峰形的位置和形状可以提供信号的分辨率和灵敏性。
不同的峰形对信号参数的解析有不同的影响。
6. 离域效应(Chemical Exchange)核磁共振谱解析还可以通过观察离域效应来获取关于分子间和分子内动力学过程的信息。
离域效应是指分子或官能团中的动态过程对核磁共振信号的影响。
可以通过观察峰形的形变、峰的强度、位置和化学位移的变化来分析离域效应。
总之,核磁共振波谱解析的主要参数包括化学位移、积分强度、耦合常数、旋转速率、解析峰形和离域效应。
这些参数的测量和解析可以提供分子结构、组成、动力学等信息,对于化学、生物、材料等领域的研究具有重要的意义。