和差化积积化和差万能公式
- 格式:docx
- 大小:207.19 KB
- 文档页数:10
和差化积、积化和差、万能公式在数学的三角函数领域中,和差化积、积化和差以及万能公式是一组非常重要且实用的公式。
它们在解决各种与三角函数相关的问题时,发挥着至关重要的作用。
首先,咱们来聊聊和差化积公式。
和差化积公式包括四个,分别是:sinα +sinβ =2sin(α +β) /2cos(α β) / 2sinα sinβ =2cos(α +β) /2sin(α β) / 2cosα +cosβ =2cos(α +β) /2cos(α β) / 2cosα cosβ =-2sin(α +β) /2sin(α β) / 2这些公式的作用在于将两个三角函数的和或差转化为乘积的形式。
这在处理一些复杂的三角函数表达式时,能够大大简化计算过程。
比如说,当我们遇到形如 sin5x + sin3x 的式子,如果直接计算可能会比较困难。
但通过和差化积公式,将其转化为 2sin4xcosx,计算就会变得相对简单许多。
接下来,再看看积化和差公式。
它们是:sinαcosβ =1/2sin(α +β) +sin(α β)cosαsinβ =1/2sin(α+β) sin(α β)cosαcosβ =1/2cos(α +β) +cos(α β)sinαsinβ =-1/2cos(α +β) cos(α β)积化和差公式则是把两个三角函数的乘积形式转化为和或差的形式。
比如说,计算∫sin2xcos3xdx 这样的积分问题,如果先使用积化和差公式将sin2xcos3x 转化为和差形式,再进行积分运算,就会轻松不少。
最后,咱们来认识一下万能公式。
万能公式包括:sinα =2tan(α/2) /(1 +tan²(α/2))cosα =(1 tan²(α/2))/(1 +tan²(α/2))tanα =2tan(α/2) /(1 tan²(α/2))万能公式的厉害之处在于,它可以将任何一个三角函数用tan(α/2)来表示。
和差化积公式大全及推导过程如下:
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=(1/2)[cos(α-β)-cos(α+β)]
积化和差公式证明:
对于上面的积化和差公式,我们可以按照以下步骤进行证明:
第一步,根据三角函数的定义,我们知道
sin(a+b)=sinacosb+cosasinb,同时
sin(a-b)=sinacosb-cosasinb。
第二步,将上述两个公式相加,得到:
sin(a+b)+sin(a-b)=2sinacosb,即
sinacosb=(1/2)[sin(a+b)+sin(a-b)]。
第三步,类似地,将第一步中的两个公式相减,得到:cos(a+b)-cos(a-b)=2cosasinb,即
cosasinb=(1/2)[cos(a+b)-cos(a-b)]。
第四步,再次利用三角函数的定义,对于cos(a+b)和cos(a-b),我们也可以使用类似的方法来证明其余的积化和
差公式。
通过上述证明过程,我们可以得到和差化积公式:sinacosb=(1/2)[sin(a+b)+sin(a-b)]
cosasinb=(1/2)[cos(a+b)-cos(a-b)]
cosacosb=(1/2)[cos(a+b)+cos(a-b)]
sinasinb=(1/2)[cos(a-b)-cos(a+b)]。
三角恒等变换的和差化积与积化和差三角恒等变换是数学中的重要概念之一,它能够帮助我们简化复杂的三角函数表达式,并且在解题过程中发挥着重要的作用。
其中,和差化积与积化和差是三角恒等变换的两种常见形式。
本文将详细介绍和差化积与积化和差的定义、推导过程以及应用举例,以加深对该概念的理解。
一、和差化积和差化积是指将两个三角函数的和(或差)表示为一个三角函数的积的形式。
具体而言,对于任意实数x和y,和差化积的公式如下:1) sin(x±y) = sinxcosy ± cosxsiny2) cos(x±y) = cosxcosy ∓ sinxsiny3) tan(x±y) = (tanx ± tany) / (1 ∓ tanxtany)其中,“±”代表正负号的两种可能,“∓”则表示正负号的相反情况。
通过和差化积,我们可以将一个复杂的三角函数表达式转化为一个较为简单的形式,从而更方便地进行计算和推导。
例如,当我们需要计算sin75°时,可以利用和差化积将其转化为sin(45°+30°),然后根据公式sin(x±y) = sinxcosy ± cosxsiny得到:sin75° = sin(45°+30°) = sin45°cos30° + cos45°sin30°我们知道sin45° = cos45° = √2/2,sin30° = 1/2,cos30° = √3/2,代入上式得到:sin75° = (√2/2)(√3/2) + (√2/2)(1/2) = (√6+√2)/4这样,我们成功地将sin75°的计算转化为了更简单的形式,并得到了精确的结果。
二、积化和差积化和差是和差化积的逆运算,它将一个三角函数的积表示为一个三角函数的和(或差)。
和差化积,积化和差公式一、引言在数学中,和差化积和积化和差是一类常用的公式,它们在代数运算中发挥着重要的作用。
本文将详细介绍和差化积和积化和差公式的定义、应用以及相关的例题,帮助读者更好地理解和掌握这一内容。
二、和差化积公式和差化积是将两个数的和或差转化为它们的乘积的方法。
其公式如下:1.两个数的和化为积:当两个数a和b相加得到c时,我们可以通过以下公式将其转化为积的形式:$c=a+b$则有:$a+b=(a+b)^2-b^2=a^2+2ab+b^2-b^2=a^2+2ab$2.两个数的差化为积:当两个数a和b相减得到c时,我们可以通过以下公式将其转化为积的形式:$c=a-b$则有:$a-b=(a-b)^2-a^2=a^2-2ab+b^2-a^2=-2a b+b^2$三、积化和差公式积化和差是将两个数的乘积转化为它们的和或差的方法。
其公式如下:1.两个数的积化为和:当两个数a和b相乘得到c时,我们可以通过以下公式将其转化为和的形式:$c=a b$则有:$a b=\f ra c{1}{4}[(a+b)^2-(a-b)^2]$2.两个数的积化为差:当两个数a和b相乘得到c时,我们可以通过以下公式将其转化为差的形式:$c=a b$则有:$a b=\f ra c{1}{4}[(a+b)^2-(b-a)^2]$四、应用举例下面通过几个实例来说明和差化积和积化和差公式的具体应用。
例题1将下面的式子用和差化积公式化简:$(a+b)^2-(a-b)^2$解答:根据和差化积公式,我们有:$(a+b)^2-(a-b)^2=(a^2+2a b+b^2)-(a^2-2a b+b^2)=4ab$因此,原式化简后为$4ab$。
例题2将下面的式子用积化和差公式化简:$12a b$解答:根据积化和差公式,我们有:$12a b=\f ra c{1}{4}[(12a+12b)^2-(12a-12b)^2]=\f ra c{1}{4}(144a^2+288ab+144b^2-144a^2+288ab-144b^2)=72ab$因此,原式化简后为$72a b$。
和差化积积化和差万能公式和差化积、积化和差以及和差万能公式是高中数学中较为重要的内容,它们在解题中具有重要的作用。
下面详细介绍这些内容。
一、和差化积和差化积是一种将两个角的和(或差)转化为一个角的积的方法。
这种方法适用于解决一些三角函数表达式的展开、简化和求值问题。
1.正弦的和差化积公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB从公式中可以看出,只需要知道sinA、sinB、cosA和cosB的值,就可以通过和差化积公式求得sin(A+B)和sin(A-B)的值。
2.余弦的和差化积公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB类似地,只需要知道sinA、sinB、cosA和cosB的值,就可以通过和差化积公式求得cos(A+B)和cos(A-B)的值。
3.正切的和差化积公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)通过和差化积公式,我们可以将两个角的和(或差)转化为一个角的正切值。
4.余切的和差化积公式:cot(A+B) = (cotAcotB - 1) / (cotA + cotB)cot(A-B) = (cotAcotB + 1) / (cotA - cotB)通过和差化积公式,我们可以将两个角的和(或差)转化为一个角的余切值。
和差化积的公式可以使得我们将复杂的三角函数表达式转化为简单的一步计算,节省了计算的时间和精力。
同时,它们也有助于我们更好地理解三角函数之间的关系。
二、积化和差积化和差是和差化积的逆过程,即将两个角的积转化为一个角的和(或差)。
这种方法适用于解决一些三角函数表达式的合并、求和和简化问题。
1.正弦的积化和差公式:sinAcosB = 1/2 * [sin(A+B) + sin(A-B)]从公式中可以看出,通过将sinAcosB转化为sin(A+B)和sin(A-B)的和的一半,可以实现两个角的积转化为一个角的和(或差)。
作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.13正、余弦和差化积公式指高中数学三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]编辑本段正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立编辑本段注意事项在应用和差化积时,必须是一次同名三角函数方可实行。
三角函数和差化积与积化和差公式,倍角公式和差化积sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)积化和差sinαsinβ=-1/2[cos(α+β)-cos(α-β)]cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2[sin(α+β)-sin(α-β)]三倍角sin3a=3sina-4sina^3cos3a=4cosa^3-3cosasin2α=2sinαcosαtan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)可别轻视这些字符,它们在数学学习中会起到重要作用.号外:tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinαtan(2α)=2tanα/[1-tan^2(α)]·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]其他一些公式·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA ^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tan A^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tan A^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA ^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cos A^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+ 45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)。
和差化积公式积化和差公式记忆口诀在咱们学习数学的过程中,和差化积公式与积化和差公式那可真是让人又爱又恨。
爱的是,一旦掌握了它们,解题的时候那叫一个顺畅;恨的是,要记住这些公式可真不容易。
今天,我就来跟大家分享一些记忆这些公式的口诀和小窍门。
先来说说和差化积公式,这几个公式是:sinα + sinβ = 2sin[(α + β)/2]cos[(α - β)/2]sinα - sinβ = 2cos[(α + β)/2]sin[(α - β)/2]cosα + cosβ = 2cos[(α + β)/2]cos[(α - β)/2]cosα - cosβ = -2sin[(α + β)/2]sin[(α - β)/2]为了记住这些公式,我给大家编了个小口诀:“正弦加正弦,正余积一半;正弦减正弦,余正积一半;余弦加余弦,余余积一半;余弦减余弦,负正积一半。
” 这口诀读起来是不是还挺顺口的?记得我当年上高中的时候,有一次数学考试,就考到了和差化积公式的运用。
我当时心里那个紧张啊,就怕自己记错了公式。
题目是这样的:已知 sin15°和 sin75°,求 sin15° + sin75°的值。
我心里默念着口诀,先把角度算出来,然后按照公式一步步地计算。
当我算出正确答案的时候,心里那叫一个激动,感觉自己像是打了一场胜仗。
咱们再来说说积化和差公式,它们是:sinαcosβ = [sin(α + β) + sin(α - β)]/2cosαsinβ = [sin(α + β) - sin(α - β)]/2cosαcosβ = [cos(α + β) + cos(α - β)]/2sinαsinβ = -[cos(α + β) - cos(α - β)]/2对于这几个公式,咱们也有口诀:“积化和差要记牢,正余正余正加正,余正余正负减负,余余正正负加负,正正余余负减正。
”我曾经给我的学生们讲过这两个公式,有个学生特别有意思。
sinαsinβ=-[cos(α+β)-cos(α-β)]/2cosαcosβ=[cos(α-β)+cos(α+β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。
结果除以2这一点最简单的记忆方法是通过三角函数的值域判断。
sin和cos的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)=2sinαsinβ故最后需要除以2。
使用同名三角函数的和差无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。
这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。
使用哪种三角函数的和差仍然要根据证明记忆。
注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。
所以反过来,同名三角函数的乘积,化作余弦的和差;异名三角函数的乘积,化作正弦的和差。
是和还是差?这是积化和差公式的使用中最容易出错的一项。
规律为:“小角”β以cosβ的形式出现时,乘积化为和;反之,则乘积化为差。
由函数的奇偶性记忆这一点是最便捷的。
如果β的形式是cosβ,那么若把β替换为-β,结果应当是一样的,也就是含α+β和α-β的两项调换位置对结果没有影响,从而结果的形式应当是和;另一种情况可以类似说明。
正弦-正弦积公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。
当然,也有其他方法可以帮助这种情况的判定,如[0,π]内余弦函数的单调性。
积化和差和差化积公式一、积化和差公式积化和差公式是将两个数的乘积转化为和或差的公式。
对于任意实数a和b,积化和差公式可表示为:a*b=(a+b)/2+(a-b)/2这个公式的推导可以通过以下步骤进行:设x=(a+b)/2,y=(a-b)/2,那么可以得到:a=x+yb=x-y将a和b代入乘积的表达式中得到:a*b=(x+y)*(x-y)=x²-y²通过这个公式,我们可以将两个数的乘积表达为两个数的平方之差。
应用举例:1.计算(7+3)*(7-3):根据公式,a=7,b=3,代入公式得:7*3=(7+3)*(7-3)=10*4=402.计算(12+8)*(12-8):根据公式,a=12,b=8,代入公式得:12*8=(12+8)*(12-8)=20*4=80差化积公式是将两个数的差转化为乘积的公式。
对于任意实数a和b,差化积公式可表示为:a-b=(a+b)*(a-b)/(a+b)该公式的推导可以通过以下步骤进行:设x=a+b,y=a-b,那么可以得到:a=(x+y)/2b=(x-y)/2将a和b代入差的表达式中得到:a-b=((x+y)/2-(x-y)/2)=y通过这个公式,我们可以将两个数的差表达为两个数的乘积除以和。
应用举例:1.计算7-3:根据公式,a=7,b=3,代入公式得:7-3=(7+3)*(7-3)/(7+3)=10*4/10=42.计算12-8:根据公式,a=12,b=8,代入公式得:12-8=(12+8)*(12-8)/(12+8)=20*4/20=4综上所述,积化和差和差化积公式是数学中非常重要的公式,通过这两个公式,我们可以将乘法运算转化为加法或减法运算,从而简化计算过程,提高计算效率。
同时,这两个公式也是解决复杂问题的有效工具之一,能够帮助我们更好地理解和应用数学知识。
[基本要求][知识要点]1、积化和差公式:sinαsinβ=-[cos(α+β)-cos(α-β)]cosαcosβ=[cos(α+β)+cos(α-β)]sinαcosβ=[sin(α+β)+sin(α-β)]cosαsinβ=[sin(α+β)-sin(α-β)]积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得。
其中后两个公式可合并为一个:sinαcosβ=[sin(α+β)+sin(α-β)]2、和差化积公式sinθ+sinφ=2sin cossinθ-sinφ=2cos sincosθ+cosφ=2cos coscosθ-cosφ=-2sin sin和差化积公式是积化和差公式的逆用形式,要注意的是:①其中前两个公式可合并为一个:sinθ+sinφ=2sin cos②积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。
③只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。
④合一变形也是一种和差化积。
⑤三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。
3、积化和差与积差化积是一种孪生兄弟,不可分离,在解题过程中,要切实注意两者的交替使用。
如在一般情况下,遇有正、余弦函数的平方,要先考虑降幂公式,然后应用和差化积、积化和差公式交替使用进行化简或计算。
和积互化公式其基本功能在于:当和、积互化时,角度要重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值。
正因为如此“和、积互化”是三角恒等变形的一种基本手段。
[例题选讲]1、求下列各式的值①cos40°+cos60°+cos80°+cos160°②cos23°-cos67°+2sin4°+cos26°③csc40°+ctg80°④cos271°+cos71°cos49°+cos249°解:①cos40°+cos60°+cos80°+cos160°=+cos80°+2cos100°cos60°=+cos80°-cos80°=②cos23°-cos67°+2sin4°cos26°=2sin45°sin22°+(sin30°-sin22°)=sin22°+-sin22°=③csc40°+ctg80°=+=======2cos30°=④解法一:cos271°+cos71°cos49°+cos249°=(cos71°+cos49°)2-cos71°cos49°=(2cos60°cos11°)2-(cos120°+cos22°)=cos211°+-cos22°=cos211°+-(2cos211°-1)=cos211°+-cos211°+=解法二:cos271°+cos71°cos49°+cos249°=+(cos120°+cos22°)+=+cos142°-+cos22°++=+(cos142°+cos98°)++cos22°=+cos120°cos22°+cos22°=解法三设x=cos271°+cos71°cos49°+cos249°y=sin271°+sin71°sin49°+sin249°则x+y=2(cos71°cos49°+sin71°sin49°)=2+cos22°x-y=(cos271°-sin271°)+(cos71°cos49°-sin71°sin49°)+(cos249°-sin249°) =cos142°+cos120°+cos98°=-+(cos142°+cos98°)=-+2cos120°cos22°=--cos22°联立二式得x=2、已知sinα+sinβ= cosα+cosβ=求tgαtgβ的值解:①2+②2得 2+2(sinαsinβ+cosαcosβ)=∴cos(α-β)=②2-①2得 cos2α+cos2β+2(cosαcosβ-sinαsinβ)=-∴2cos(α+β)cos(α-β)+2cos(α+β)=-∴2²cos(α+β)+2cos(α+β)=-∴cos(α+β)=-又sinαsinβ=-[cos(α+β)-cos(α-β)]=-(--)=cosαcosβ=[cosα+β)+cos(α-β)]=[-+]=-∴tgαtgβ==-=-3、设函数f(x)=asinωx+bcosωx+1 (a、b≠0 ω>0 )的周期是π,f(x)有最大值7且f()= +4(1)求a、b的值(2)若α≠kπ+β (k∈z) 且α、β是f(x)=0的两根求tg(α+β)的值。
和差化积积化和差万能公式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正、余弦和差化积公式指三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。
若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然生动的口诀:(和差化积)帅+帅=帅哥帅-帅=哥帅咕+咕=咕咕哥-哥=负嫂嫂反之亦然记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。
结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。
sin和cos 的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)]=2sinαsinβ故最后需要乘以2。
只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。
这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。
乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。
熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。
注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。
使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。
是否同名乘积,仍然要根据证明记忆。
注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。
所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。
(α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。
由函数的奇偶性记忆这一点是最便捷的。
如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。
余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。
当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。
因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。
但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。
积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2(注意:此时差的余弦在和的余弦前面)或写作:sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号)cosαcosβ=[cos(α-β)+cos(α+β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2证明积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。
即只需要把等式右边用两角和差公式拆开就能证明:sinαsinβ=-1/2[-2sinαsinβ]=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)] =-1/2[cos(α+β)-cos(α-β)]其他的3个式子也是相同的证明方法。
(参见和差化积)作用积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。
在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。
运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。
对数出现后,积化和差公式的这个作用由更加便捷的对数取代。
记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。
结果除以2这一点最简单的记忆方法是通过三角函数的值域判断。
sin和cos 的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)=2sinαsinβ故最后需要除以2。
使用同名三角函数的和差无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。
这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。
使用哪种三角函数的和差仍然要根据证明记忆。
注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。
所以反过来,同名三角函数的乘积,化作余弦的和差;异名三角函数的乘积,化作正弦的和差。
是和还是差这是积化和差公式的使用中最容易出错的一项。
规律为:“小角”β以cosβ的形式出现时,乘积化为和;反之,则乘积化为差。
由函数的奇偶性记忆这一点是最便捷的。
如果β的形式是cosβ,那么若把β替换为-β,结果应当是一样的,也就是含α+β和α-β的两项调换位置对结果没有影响,从而结果的形式应当是和;另一种情况可以类似说明。
正弦-正弦积公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。
当然,也有其他方法可以帮助这种情况的判定,如[0,π]内余弦函数的单调性。
因为这个区间内余弦函数是单调减的,所以cos(α+β)不大于cos(α-β)。
但是这时对应的α和β在[0,π]的范围内,其正弦的乘积应大于等于0,所以要么反过来把cos(α-β)放到cos(α+β)前面,要么就在式子的最前面加上负号。
万能公式【词语】:万能公式【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2} cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换。
【推导】:(字符版)sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2 +cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/2)^2]cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2)^2]/[1+(tanα/2)^2]tanα=tan[2*(α/2)]=2tan(α/2)/[1-ta n(α/2)^2]=[2tan(α/2)]/[1-(tanα/2)^2]。