高数(上)前三章知识点总结
- 格式:doc
- 大小:169.00 KB
- 文档页数:6
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 000㈡无穷大量和无穷小量 1.无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。
3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。
0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。
高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。
(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。
大一高数前3章知识点归纳大学数学是一门基础性很强的学科,而高等数学更是大学数学的核心内容之一。
作为大一学生,我们初次接触高等数学,往往面临着许多困惑和挑战。
为了更好地掌握前3章的知识点,下面将对这些内容进行归纳和总结。
一、函数与极限函数与极限是高等数学的基石,对于后续章节的学习具有重要的指导作用。
在函数与极限这一章中,主要包括函数的概念、极限的定义、极限的性质以及极限的计算方法等内容。
函数是数学中一个非常重要的概念,它描述了两个数集之间的一种对应关系。
可以通过函数的定义域、值域和图象来描述函数的特征。
而极限是函数研究的核心问题之一,它描述了函数在某一点无论如何接近该点,函数值始终趋于某个确定的值。
在极限的定义中,有三种常见的情况:无穷大(正无穷大、负无穷大)、正向无穷小和负向无穷小。
此外,极限还有一些重要的性质,如保序性、夹逼准则等。
而在计算极限过程中,可以使用一些常见的方法,如代入法、夹逼法、洛必达法则等。
二、连续与间断连续与间断是函数的一个重要性质,它描述了函数在某个点上是否存在间断点。
连续性是函数在某个点上的性质,它要求函数在该点的函数值与极限值相等。
而间断则表示函数在某点上的函数值与极限值不一致。
在连续与间断这一章中,我们需要了解的主要内容有:连续函数的概念、间断点的分类、间断点的性质以及连续函数的运算法则。
连续函数的概念很简单,即函数在定义域上的每个点都是连续的。
而间断点则根据函数在该点处的不连续程度进行分类,有可去间断点、跳跃间断点和无穷间断点。
我们需要掌握的一些连续函数的运算法则包括:连续函数与常数的和差、积、商仍然是连续函数;连续函数的复合函数还是连续函数等。
三、导数与微分导数与微分是高等数学中的重要概念,也是数学中最具实用性的内容之一。
它描述了函数在某一点上的变化率以及函数图象在该点上的切线斜率。
导数与微分在自然科学、工程技术和经济管理等领域都有广泛的应用。
在导数与微分这一章中,我们需要了解的主要内容有:导数的概念、导数的性质、导数与函数图象的几何关系以及导数的计算方法等。
大一高数前3章知识点总结大一高数前三章知识点总结大一的高数课程是大多数理工科学生必修的一门课程,它是学习数学的基础和桥梁,对于后续学习其他高级数学课程和专业课程都具有重要的意义。
在这三章里,我们学习了导数与微分、函数的极限与连续以及导数的应用这几个重要的概念和方法。
导数与微分是高数课程的重点内容之一。
它们描述了函数在某一点的变化率和局部线性近似,并具有广泛的应用。
在学习导数与微分的过程中,我们首先了解了导数的定义和性质。
所谓导数,是函数在一点处的变化率,通常用极限表示。
我们可以用导数来求解函数的极值、判断函数的增减性以及描绘图像的形状等。
在实际应用中,导数与微分可以用于物理、经济、工程等领域,如速度、加速度、最优化等问题的求解。
接下来,我们学习了函数的极限与连续。
函数的极限是描述函数在某一点附近的取值特性,是微积分的基础。
通过对极限的研究,我们可以掌握函数在数轴上的局部和整体行为。
在学习函数的极限时,我们需要掌握一些基本的计算技巧和性质。
例如,通过夹逼准则可以求解复杂极限,通过极限的四则运算可以简化计算等。
连续是函数在全局范围内的取值特性,它意味着函数在整个定义域内没有断裂或跳跃,是一种理想的状态。
我们可以通过连续性来判断函数的可导性、区间上的最值等。
最后,我们学习了导数的应用。
导数的应用涉及到很多实际问题,如切线和法线的求解、最值问题、函数的图像分析等。
其中,切线和法线的求解是导数应用的基础,通过求导与分析函数的图像可以求解切线和法线的方程。
最值问题是导数应用的核心内容,我们可以通过分析函数导数的正负性、极值点和最值点来求解函数在一定范围内的最值。
此外,函数的图像分析可以通过导数的中间值定理和导数的符号特征来研究函数的特点,包括极值、拐点、单调性等。
总体来说,大一的高数前三章内容涵盖了导数与微分、函数的极限与连续以及导数的应用等重要知识点。
这些知识点不仅具有学科内部的逻辑性和严谨性,而且在实际问题中具有广泛的应用。
高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。
〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。
第一章函数与极限第一节映射与函数一、集合1、集合概念(1)通常用大写拉丁字母A、B、C……表示集合(简称集),用小写拉丁字母a、b、c……表示元素(简称元)。
(2)含有有限个元素的集合为有限集,不是有限集的集合成为无限集。
(3)表示集合的方法通常有列举法和描述法。
(4)习惯上,全体非负整数即自然数的集合记作N,全体正整数的集合为N+,全体整数的集合记作Z,全体有理数的集合记作Q,全体实数的集合记作R。
(5)设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B 的子集,记作A⊂B或B⊃A。
如果A⊂B且B⊃A,则称集合A与集合B 相等,记作A≡B。
(6)若A⊂B且A≠B,则称A是B的真子集,记作A⊆B(7)不含任何元素的集合成为空集。
2、集合的运算(1)集合的基本运算有并、交、差。
A⋃B={x/x∈A或x∈b}A⋂B={x/x∈A且x∈B}A\B={x/x∈A且x∉B}(2)若集合I为全集或基本集,称I/A为A的余集或补集,记作A C(3)集合的并、交、余运算满足交换律、结合律、分配律、对偶律。
3、区间和邻域(1)开区间、闭区间、半开区间都称为有限区间,此外还有无限区间。
(2)以点a为中心的任何开区间称为点a的邻域,记作U(a)。
(3)点a 的δ邻域记作U(a,δ),点a 称为这邻域的中心,δ称为这邻域的半径。
(4)点a 的去心δ邻域记作U O(a,δ)。
二、映射1、映射概念(1)映射定义:设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作 f:X→Y=Y,则称f为X到Y上的映射或满射;(2)设f是从集合X到Y上的映射,若Rf若对X中任意两个不同元素的像不相等,则称f为X到Y上的单射;若映射f既是单射又是满射,则称f为一一映射或双射。
2、逆映射与复合映射(1)只有单射才存在逆映射(2)若g:X→Y1,f:Y2→Z ,则这个映射称为映射g和f构成的复合映射,记作f g 即f g:X→Z 。
大一高数前三章知识点归纳导言:大一高数是理工科学生必修的一门重要课程。
在大一的学期里,学生通常会学习高等数学的前三章内容,这些内容为以后更深入的学习打下了基础。
本文将对大一高数前三章的主要知识点进行归纳,希望能够帮助学生更好地理解和掌握这些知识。
一、极限与连续1. 函数的极限极限的定义和性质无穷小与无穷大自变量趋于无穷时的极限两个重要极限:正弦函数与指数函数2. 连续函数连续函数的定义和性质间断点与可去间断点第一类和第二类间断点闭区间上的连续函数二、导数与微分1. 导数的定义和几何意义导数的定义与极限的关系导数的几何意义函数的可导性与连续性的关系2. 基本导数公式常数函数、幂函数、指数函数、对数函数等的导数复合函数的导数乘积、商法则3. 高阶导数高阶导数的定义和性质可导函数的泰勒展开式凹凸性与函数的导数之间的关系三、不定积分与定积分1. 不定积分不定积分的定义和性质基本不定积分公式三角函数的不定积分分部积分法、换元积分法2. 定积分定积分的定义和性质牛顿-莱布尼兹公式反常积分计算定积分的方法结语:大一高数前三章是建立数学基础的重要阶段,学生要理解和掌握好这些知识点。
通过本文对这些知识点的归纳,相信可以帮助大家更好地学习和应用高等数学。
除了掌握基本概念和方法外,同学们还应注重实际应用和解题技巧的训练,同时也要注意形成系统的思维方式和数学思维习惯。
希望本文能给大家带来帮助,祝愿大家在高等数学的学习中取得好成绩!。
高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim1l = 0,称f x 是比gx 高阶的无穷小,记以f x = 0)(x g ,称gx 是比fx 低阶的无穷小; 2l ≠ 0,称f x 与gx 是同阶无穷小;3l = 1,称f x 与gx 是等价无穷小,记以f x ~ gx 2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1 cos x ~ 2/2^x , x e 1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.夹逼定理设gx ≤ f x ≤ hx 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:10)(lim 0=→x f x x ,0)(lim 0=→x F x x ;2)(x f 与)(x F 在0x3)()(lim 0x F x f x x ''→存在或为无穷大,则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达H L 'ospital 法则.例1计算极限0e 1lim x x x→-.解 该极限属于“0”型不定式,于是由洛必达法则,得0e 1lim x x x →-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx→.解 该极限属于“0”型不定式,于是由洛必达法则,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: 1∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;2)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;3)()(lim 0x F x f x x ''→存在或为无穷大,则 注:上述关于0x x →时未定式∞∞∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点: 1洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; 2只要条件具备,可以连续应用洛必达法则;3洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆如果存在8.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n 如果存在三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f x 的间断点;如果f x 在间断点0x 处的左、右极限都存在,则称0x 是f x 的第一类间断点;第一类间断点包括可去间断点和跳跃间断点; 2第二类间断点第一类间断点以外的其他间断点统称为第二类间断点;常见的第二类间断点有无穷间断点和振荡间断点;四.闭区间上连续函数的性质在闭区间a ,b 上连续的函数f x ,有以下几个基本性质;这些性质以后都要用到;定理1.有界定理如果函数f x 在闭区间a ,b 上连续,则f x 必在a ,b 上有界;定理2.最大值和最小值定理如果函数f x 在闭区间a ,b 上连续,则在这个区间上一定存在最大值M 和最小值m ;定理3.介值定理如果函数f x 在闭区间a ,b 上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数c ,在a ,b 上至少存在一个ξ ,使得f ξ = c推论:如果函数f x 在闭区间a ,b 上连续,且f a 与f b 异号,则在a ,b 内至少存在一个点ξ ,使得f ξ = 0这个推论也称为零点定理第二章 导数与微分1.复合函数运算法则设y = f u ,u = x ,如果 x 在x 处可导,f u 在对应点u 处可导,则复合函数y = f x 在x 处可导,且有)('))(('x x f dxdudu dy dx dy φφ==对应地dx x x f du u f dy )('))((')('φφ==,由于公式du u f dy )('=不管u 是自变量或中间变量都成立;因此称为一阶微分形式不变性; 2.由参数方程确定函数的运算法则设x = t ,y =)(t ϕ确定函数y = yx ,其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 二阶导数3.反函数求导法则设y = f x 的反函数x = gy ,两者皆可导,且f ′x ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g4 隐函数运算法则可以按照复合函数理解设y = yx 是由方程Fx , y = 0所确定,求y ′的方法如下:把Fx , y = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式允许出现y 变量 5 对数求导法则 指数类型 如x x y sin =先两边取对数,然后再用隐函数求导方法得出导数y ′; 对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数注意定义域 P106 例6关于幂指函数y = f xg x 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行; 6 可微与可导的关系f x 在0x 处可微 f x 在0x 处可导;7 求n 阶导数n ≥ 2,正整数先求出 y ′, y ′′,…… ,总结出规律性,然后写出yn ,最后用归纳法证明;有一些常用的初等函数的n 阶导数公式 (1) x n x e y e y ==)(, (2) n x n x a a y a y )(ln ,)(== (3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n +=5x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 罗尔定理 设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;3 f a = f b 则存在ξ ∈a ,b ,使得f ′ξ = 0二 ★拉格朗日中值定理证明不等式 P134 9、10设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;则存在ξ ∈a ,b ,使得)(')()(ξf ab a f b f =-- 推论1.若f x 在a ,b 内可导,且f ′x ≡ 0,则f x 在a ,b 内为常数;推论2.若f x , gx 在a ,b 内皆可导,且f ′x ≡ g ′x ,则在a ,b 内f x = gx + c ,其中c 为一个常数; 三 柯西中值定理设函数f x 和gx 满足:1在闭区间a ,b 上皆连续;2在开区间a ,b 内皆可导;且g ′x ≠0则存在ξ ∈a ,b 使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ注:柯西中值定理为拉格朗日中值定理的推广,特殊情形gx = x 时,柯西中值定理就是拉格朗日中值定理;四 ★泰勒公式① 估值 ② 求极限麦克劳林 P145 T10 定理 1.皮亚诺余项的n 阶泰勒公式 设f x 在0 x 处有n 阶导数,则有公式,称为皮亚诺余项对常用的初等函数如x e ,sin x ,cos x ,ln1+ x 和α)1(x + α 为实常数等的n 阶泰勒公式都要熟记;定理2拉格朗日余项的n 阶泰勒公式设f x 在包含0 x 的区间a ,b 内有n +1阶导数,在a ,b 上有n 阶连续导数,则对x ∈a ,b ,有公式,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式;当0x =0 时,也称为n 阶麦克劳林公式;导数的应用一 基本知识设函数f x 在0x 处可导,且0x 为f x 的一个极值点,则0)('0=x f ;我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然;极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断; 极值点判断方法)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.② 第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.二 凹凸性与拐点 1.凹凸的定义设f x 在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有 则称f x 在I 上是凸凹的;在几何上,曲线y = f x 上任意两点的割线在曲线下上面,则y = f x 是凸凹的;如果曲线y = f x 有切线的话,每一点的切线都在曲线之上下则y = f x 是凸凹的; 2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点; 3 凹凸性的判别和拐点的求法 设函数f x 在a ,b 内具有二阶导数)(''x f ,如果在a ,b 内的每一点x ,恒有)(''x f > 0,则曲线y = f x 在a ,b 内是凹的; 如果在a ,b 内的每一点x ,恒有)(''x f < 0,则曲线y = f x 在a ,b 内是凸的; 求曲线y = f x 的拐点的方法步骤是: 第一步:求出二阶导数)(''x f ;第二步:求出使二阶导数等于零或二阶导数不存在的点k x x x ,...2,1 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标; 第四步:求出拐点的纵坐标; 四 渐近线的求法 五 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法 换元积分法1第一类换元法凑微分:[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2第二类换元法变量代换:[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ分部积分法使用分部积分法时被积函数中谁看作)(x u 谁看作)('x v 有一定规律;记住口诀,反对幂指三为)(x u ,靠前就为)(x u ,例如xdx e x arcsin ⎰,应该是x arcsin 为)(x u ,因为反三角函数排在指数函数之前,同理可以推出其他; 三 有理函数积分 有理函数:)()()(x Q x P x f =其中)()(x Q x P 和是多项式; 简单有理函数: ⑴21)()(,1)()(x x P x f x x P x f +=+=⑵))(()()(b x a x x P x f ++=⑶ba x x P x f ++=2)()()(1、“拆”;2、变量代换三角代换、倒代换、根式代换等.第五章 定积分一概念与性质1、 定义:∑⎰=→∆=ni ii bax f dx x f 1)(lim )(ξλ2、 性质:10条(3)3 基本定理变上限积分:设⎰=Φxadtt f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ N —L公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰4 定积分的换元积分法和分部积分法第六章 定积分的应用(一)平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二)体积1、 旋转体体积: a 曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=ba xdx x f V )(2πb 曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=baydx x xf V )(2π 柱壳法2、 平行截面面积已知的立体:⎰=badx x A V )((三)弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()( 极坐标:[][]⎰'+=βαθθρθρd s 22)()(第七章 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdux u dx dy +=;或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dxx P )()()((五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''不显含有y ,令p y =',则p y '='';3、),(y y f y '=''不显含有x ,令p y =',则dy dppy =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程1、)()(x P e x f m x λ=设特解)(*x Q e x y m x k λ=,其中⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]xx R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。
大一高数知识点各章总结第一章:函数与极限在高数的第一章中,我们学习了函数与极限的概念与性质。
函数是自变量和因变量之间的关系,它可以用图像、表格或者公式来表示。
而极限则是函数在某个点上的趋近值,它描述了函数在接近某个点的情况。
我们研究了函数的连续性与间断点的性质。
连续函数在其定义域内的任意一点都具有连续性,而间断点则可以分为可去间断点、跳跃间断点和无穷间断点三种情况。
我们还学习了导数的概念与计算方法。
导数可以理解为函数在某一点上的变化率,它可以用极限的方法来定义和计算。
我们学习了常见函数的导数公式,并通过求导技巧来简化计算过程。
第二章:导数的应用在第二章中,我们探讨了导数的应用。
导数可以用来研究函数的增减性、极值与凹凸性。
通过求导并分析导数的符号,我们可以确定函数的单调区间、极值点和拐点。
我们还学习了泰勒公式与函数的局部线性化近似。
泰勒公式可以将一个函数在某一点附近进行多项式展开,从而可以用多项式来近似原函数的值。
第三章:定积分在第三章中,我们学习了定积分的概念与计算方法。
定积分可以理解为曲线下的面积,它描述了函数在某一区间上的累积效应。
我们探讨了定积分的几何意义与性质。
通过定积分,我们可以计算曲线下的面积、曲线的弧长和旋转体的体积等问题。
我们还学习了定积分的计算方法,包括基本的积分法和换元积分法。
通过合理选择积分方法,我们可以简化计算过程,得到定积分的解析表达式。
第四章:微分方程在第四章中,我们研究了微分方程的基本概念与解法。
微分方程是描述变量之间关系的方程,其中包含了未知函数的导数或微分。
我们学习了常微分方程的解法,包括可分离变量方程、一阶线性方程和一阶齐次方程等。
通过将微分方程转化为可积的形式,我们可以通过积分来求解微分方程。
我们还学习了常系数线性微分方程的解法,包括特征根法和常数变易法。
通过找到方程的特征根或者适当选取常数,我们可以得到线性微分方程的通解。
第五章:多元函数微分学在第五章中,我们讨论了多元函数的概念与性质。
高数前三章知识点总结公式一、函数与极限1. 函数的概念函数是数学中的一个重要概念,它描述了一个自变量和因变量之间的映射关系。
在高等数学中,函数通常表示为f(x),其中x为自变量,f(x)为因变量。
函数的定义域、值域、奇偶性、周期性等性质都是我们研究函数的重要内容。
2. 极限的概念极限是微积分中一个基本概念,它描述了一个函数在某一点或者无穷远处的趋势。
在高等数学中,我们主要讨论函数在某一点的极限和无穷远处的极限。
极限的定义、性质、计算方法是我们学习的重点内容。
3. 极限存在的条件在高等数学中,我们学习了许多函数的极限存在的条件,比如数列的极限、函数的左右极限、无穷极限等。
这些条件对我们理解函数的性质和应用都有着重要的意义。
4. 极限的运算法则在计算函数的极限时,我们通常会用到极限的四则运算法则、复合函数的极限、夹逼准则等方法。
这些运算法则是我们计算极限时的重要工具。
5. 无穷小与无穷大在研究极限时,我们会遇到无穷小和无穷大的概念。
无穷小是当自变量趋于某一点时,因变量趋于零的量,而无穷大是当自变量趋于某一点时,因变量趋于无穷的量。
无穷小和无穷大的性质和计算是我们学习的重点内容。
6. 泰勒公式泰勒公式是微积分中的一个重要定理,它描述了一个函数在某一点附近的近似表达式。
泰勒公式的推导和应用是我们学习的重要内容。
7. 函数的连续性连续性是函数的一个重要性质,它描述了函数图像的平滑程度。
在高等数学中,我们学习了函数的间断点、可导性、连续函数的性质和应用。
8. 函数的单调性单调性是函数的一个重要性质,它描述了函数在定义域上的增减性。
在高等数学中,我们学习了函数的单调递增和单调递减的判定方法和应用。
二、导数与微分1. 导数的概念导数是微积分中的一个重要概念,它描述了一个函数在某一点的变化率。
在高等数学中,我们学习了导数的定义、性质、几何意义和物理意义。
2. 导数的计算在计算函数的导数时,我们通常会用到导数的四则运算法则、复合函数的导数、高阶导数、隐函数的导数等方法。
大一高数前三章知识点大一高数是大部分理工科专业学生在大学期间必修的一门课程,也是一个学生从中学数学过渡到大学数学的一道门槛。
在大一高数的前三章中,我们学习了一些基本的数学知识和计算方法。
本文将围绕这一主题,探讨大一高数前三章的知识点。
第一章:函数与极限在第一章中,我们学习了函数的概念以及与之相关的性质和分类。
函数是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的唯一元素上。
我们学习了函数的定义、定义域、值域、图像等基本概念,并通过例题来深入理解。
同时,我们还学习了一些常见的函数类型,如多项式函数、指数函数、对数函数等。
在函数的基础上,我们引入了极限的概念。
极限是函数在某一点趋于某个值的过程。
学习了函数极限的计算方法,如代入法、夹逼准则、无穷小量等。
通过对极限的研究,我们能够更好地理解函数的性质和行为,为后续章节的学习打下基础。
第二章:导数与微分在第二章中,我们学习了导数和微分的概念。
导数是函数在某一点的变化率,它表示了函数曲线在该点的切线斜率。
我们探讨了导数的定义、计算方法和性质。
通过导数的计算,我们可以研究函数的变化趋势、极值问题等。
微分是对函数进行局部近似的一种方法。
我们学习了微分的定义、计算方法和应用,如利用微分求函数的近似值、求函数的最值等。
微分在实际问题中有广泛的应用,它通过线性逼近的方式使得复杂问题的求解变得简单。
第三章:不定积分与定积分第三章介绍了不定积分和定积分的概念。
不定积分是导数的逆运算,它可以求解函数的原函数。
我们学习了不定积分的定义、基本公式和基本性质,并通过例题进行了实践。
通过不定积分,我们能够求出函数的原函数,从而求解更加复杂的问题。
定积分是将函数在一定区间上的面积或曲线长度进行求解的一种方法。
我们学习了定积分的定义、计算方法和性质,如区间的分割和极限过程、函数图像与定积分的关系等。
定积分在几何学、物理学和工程学等领域有着广泛的应用。
总结与展望大一高数前三章的知识点是我们学习数学的基础,是后续章节学习的重要基础。
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学前三章知识点总结高等数学前三章知识点总结上学的时候,看到知识点,都是先收藏再说吧!知识点也可以通俗的理解为重要的内容。
为了帮助大家更高效的学习,下面是小编为大家收集的高等数学前三章知识点总结,希望对大家有所帮助。
高等数学前三章知识点总结11、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的.展开问题。
高数知识点总结(上册).doc 高等数学知识点总结(上册)第一章:函数、极限与连续性1.1 函数定义:变量之间的依赖关系。
性质:单调性、奇偶性、周期性、有界性。
1.2 极限定义:函数在某一点或无穷远处的趋势。
性质:唯一性、局部有界性、保号性。
1.3 无穷小与无穷大无穷小:当自变量趋于某一值时,函数值趋于零。
无穷大:函数值趋于无限。
1.4 连续性定义:在某点的极限值等于函数值。
性质:连续函数的四则运算结果仍连续。
第二章:导数与微分2.1 导数定义:函数在某一点的切线斜率。
几何意义:曲线在某点的瞬时速度。
2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。
2.3 高阶导数定义:导数的导数,用于描述函数的凹凸性。
2.4 微分定义:函数在某点的线性主部。
第三章:导数的应用3.1 切线与法线几何意义:曲线在某点的切线和法线方程。
3.2 单调性与极值单调性:导数的符号与函数的增减性。
极值:导数为零的点可能是极大值或极小值。
3.3 曲线的凹凸性与拐点凹凸性:二阶导数的符号。
拐点:凹凸性改变的点。
第四章:不定积分4.1 不定积分的概念定义:原函数,即导数等于给定函数的函数。
4.2 基本积分公式幂函数、三角函数、指数函数、对数函数的积分。
4.3 积分技巧换元积分法:凑微分法、代换法。
分部积分法:适用于积分中存在乘积形式的函数。
第五章:定积分5.1 定积分的概念定义:在区间上的积分,表示曲线与x轴围成的面积。
5.2 定积分的性质线性:可加性、可乘性。
区间可加性:积分区间的可加性。
5.3 定积分的计算数值计算:利用微积分基本定理计算定积分。
5.4 定积分的应用面积计算:曲线与x轴围成的面积。
物理意义:质量、功、平均值等。
第六章:多元函数微分学6.1 多元函数的极限与连续性定义:多元函数在某点的极限和连续性。
6.2 偏导数与全微分偏导数:多元函数对某一变量的局部变化率。
全微分:多元函数的微分。
6.3 多元函数的极值定义:多元函数在某点的最大值或最小值。
大学高数上册知识点总结第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的'基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
4.掌握不定积分的换元积分法。
第五章:定积分1.理解定积分的概念,掌握定积分的性质及定积分中值定理。
2.掌握定积分的换元积分法与分步积分法。
大一高数各章知识点总结高等数学是大一学生必修的一门课程,它是数学的基础,也是以后学习更高级数学的重要基石。
下面是对大一高数各章的知识点总结,帮助大家复习和梳理知识。
第一章:函数与极限1. 函数的概念与性质函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数的性质包括定义域、值域、单调性、奇偶性等。
2. 极限的概念与性质极限是函数在某一点或无穷远处的趋势或趋近情况。
极限的性质包括有界性、单调性、保号性、极值等。
3. 函数极限的计算方法通过代入法、夹逼准则、柯西收敛准则等方法可以计算函数的极限。
第二章:微分学1. 导数的概念与性质导数是函数在某一点的变化率或斜率,代表函数曲线上某一点的切线斜率。
导数的性质包括可导性、对称性、四则运算法则等。
2. 导数的计算方法通过基本导数公式、求导法则、链式法则等方法可以计算函数的导数。
3. 高阶导数与隐函数求导高阶导数表示导数的导数,通过连续求导可以求得函数的高阶导数。
隐函数求导是一种通过方程求导的方法。
第三章:积分学1. 不定积分的概念与性质不定积分是导数的逆运算,表示函数的原函数。
不定积分具有线性性、积分换元法、分部积分法等性质。
2. 定积分的概念与性质定积分是函数在一定区间上的累积量,表示曲线下的面积或变量的累积。
定积分具有线性性、区间可加性、积分中值定理等性质。
3. 积分的计算方法通过不定积分的基本公式、换元积分法、分部积分法等可以计算函数的积分。
第四章:微分方程1. 微分方程的概念与分类微分方程是含有未知函数及其导数的方程,分为常微分方程和偏微分方程两类。
常微分方程涉及未知函数和自变量的一阶或高阶导数,偏微分方程涉及未知函数和多个自变量的各种导数。
2. 一阶常微分方程一阶常微分方程是只涉及未知函数的一阶导数的常微分方程,通过分离变量、变量代换等方法可以求解。
3. 二阶常微分方程二阶常微分方程是涉及未知函数的二阶导数的常微分方程,通过特征方程法、变量代换法等方法可以求解。
第一章函数与极限
第一节映射与函数
一、集合
1、集合概念
(1)通常用大写拉丁字母A、B、C……表示集合(简称集),用小写拉丁字母a、
b、c……表示元素(简称元)。
(2)含有有限个元素的集合为有限集,不是有限集的集合成为无限集。
(3)表示集合的方法通常有列举法和描述法。
(4)习惯上,全体非负整数即自然数的集合记作N,全体正整数的集合为N+,
全体整数的集合记作Z,全体有理数的集合记作Q,全体实数的集合记作
R。
(5)设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B 的子集,记作A⊂B或B⊃A。
如果A⊂B且B⊃A,则称集合A与集合B 相等,记作A≡B。
(6)若A⊂B且A≠B,则称A是B的真子集,记作A⊆B
(7)不含任何元素的集合成为空集。
2、集合的运算
(1)集合的基本运算有并、交、差。
A⋃B={x/x∈A或x∈b}
A⋂B={x/x∈A且x∈B}
A\B={x/x∈A且x∉B}
(2)若集合I为全集或基本集,称I/A为A的余集或补集,记作A C
(3)集合的并、交、余运算满足交换律、结合律、分配律、对偶律。
3、区间和邻域
(1)开区间、闭区间、半开区间都称为有限区间,此外还有无限区间。
(2)以点a为中心的任何开区间称为点a的邻域,记作U(a)。
(3)点a 的δ邻域记作U(a,δ),点a 称为这邻域的中心,δ称为这邻域的半径。
(4)点a 的去心δ邻域记作U O(a,δ)。
二、映射
1、映射概念
(1)映射定义:设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则
称f为从X到Y的映射,记作 f:X→Y
=Y,则称f为X到Y上的映射或满射;(2)设f是从集合X到Y上的映射,若R
f
若对X中任意两个不同元素的像不相等,则称f为X到Y上的单射;若映射f既是单射又是满射,则称f为一一映射或双射。
2、逆映射与复合映射
(1)只有单射才存在逆映射
(2)若g:X→Y
1,f:Y
2
→Z ,则这个映射称为映射g和f构成的复合映
射,记作f g 即f g:X→Z 。
三、函数
1、函数概念
(1)设数集D⊂R,则称映射f:D→R为定义在D上的函数,通常简记为 y=f(x) , x∈D
其中x称为自变量,y称为因变量,D称为定义域,记作D
f ,即D
f
=D
(2)构成函数的要素是定义域和对应法则。
(3)函数的定义域通常按以下两种情形来确定:一种是对有实际背景的函数,另一种是对抽象地用算式表达的函数。
(4)表示函数的主要方法有三种:表格法、图形法、解析法(公式法)。
2、函数的几种特性
(1)函数的有界性
(2)函数的单调性
单调增加和单调减少的函数统称为单调函数
(3)函数的周期性
对于函数f(x)的定义域为D,若存在正数l,使得
f(x+l)=f(x)
恒成立,则称f(x)为周期函数,l称为f(x)的周期。
L一般指最小正周期。
(4)函数的奇偶性
设函数f的定义域关于原点对称,
若对于任一x∈D,f(-x)=f(x)恒成立,则称f(x)为偶函数;
若对于任一x∈D,f(-x)=-f(x)恒成立,则称f(x)为奇函数。
偶函数的图形关于y轴是对称的。
奇函数的图形关于原点是对称的。
3、反函数与复合函数
(1)对于函数 f 来说,y=f1-(x)为其反函数,f(x)称为直接函数。
直接函数与反函数的图形关于直线y=x是对称的。
(2)设函数y=f(u)的定义域为D
f
,函数u=g(x)的定义域为D g,且其值域
R
g ⊂D
f
,则由下式确定的函数
Y=f【g(x)】,x∈D
称为由函数u=g(x)和函数y=f(u)构成的复合函数,变量u极为中间变
量。
4、函数的运算(和差商积)
5、初等函数
(1)幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数。
(2) 有常数和基本初等函数经过有限次的四则运算和有限次的函数复合
步骤所构成并可用一个式子表示的函数,称为初等函数。
第二节 数列的极限
一、
数列极限的定义 二、 收敛数列的性质
定理一(极限的唯一性)如果数列{x n }收敛,那么它的极限唯一。
定理二(收敛数列的有界性)如果数列{x n }收敛,那么数列{x n }一定有界。
定理三(收敛数列的保号性)如果数列{x n }存在极限且极限大于零(或小于
零),那么存在正整数N 0,当n N 时,都有x n 0(或x n 0)
定理四(收敛数列与其子数列间的关系)如果数列{x n }收敛于a ,那么它的
任一子数列也收敛,且极限也是a
第三节 函数的极限
一、 函数极限的定义
1、自变量趋于有限值时函数的极限
2、自变量趋于无穷大时函数的极限
二、 函数极限的性质
定理一(函数极限的唯一性)如果函数存在极限,那么这极限唯一。
定理二(函数极限的局部有界性)如果函数的极限为a ,那么存在常数M 0和
0 δ,使得当0δ 0x x -时,有M x f ≤)(。
定理三(函数极限的局部保号性)
定理四(函数极限与数列极限的关系)
第四节 无穷小与无穷大
一、无穷小的定义
二、无穷大的定义
三、若函数f(x)为无穷大,则)
(1x f 为无穷小; 若函数f(x)为无穷小,则
)(1x f 为无穷大。
第五节 极限运算法则
定理1 有限个无穷小的和也是无穷小
定理2 有界函数与无穷小的乘积是无穷小
推论1 常数与无穷小的乘积是无穷小
推论2 有限个无穷小的乘积也是无穷小
定理3 关于无穷小的乘除运算
定理4 两个存在极限的数列之间的乘除运算符合一般乘除运算 定理5 复合函数的极限运算法则
第六节 极限存在准则 两个重要极限
一、 夹逼准则(准则I 及准则I ’) 1sin lim 0=→x
x x 1cos lim 0
=→x x
二、 准则II 单调有界数列必有极限
e x x x =+∞
→)11(lim 三、 柯西极限存在准则(也叫柯西审敛原理)
第七节 无穷小的比较
一、 高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小
二、 定理一、定理二
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
一、连续函数的和、差、积、商的连续性
二、反函数与复合函数的连续性
三、初等函数的连续性
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理
二、零点定理与介值定理
三、一致连续性
第二章导数与微分
第一节导数概念
一、导数的定义
单侧导数:左导数和右导数统称为单侧导数
二、导数的几何意义
三、函数可导性与连续性的关系
如果函数y=f(x)在点x处可导,则函数在该点必连续;另一方面,一个函数在某点连续却不一定在该点可导。
第二节函数的求导法则
一、函数的和、差、积、商的求导法则
二、反函数的求导法则
三、复合函数的求导法则
四、基本求导法则与导数公式
1、常数和基本初等函数的导数公式(共十六道,详见95页)
2、函数的和、差、积、商的求导法则(共四道,详见95页)
3、反函数的求导法则
4、复合函数的求导法则
第三节高阶导数
一般的,(n-1)阶导数的导数叫做n阶导数
第四节隐函数及由参数方程所确定的函数的导数相关变化率
一、隐函数的导数
可以用函数十字表达的函数叫做显函数
二、由参数方程所确定的函数的导数
三、相关变化率
第五节函数的微分
一、微分的定义
二、微分的几何意义
三、基本初等函数的微分公式与微分运算法则
1、基本初等函数的微分公式(详见116页)
2、函数的和、差、积、商的微分法则(详见117页)
3、复合函数的微分法则
四、微分在近似计算中的应用
1、函数的近似计算
2、误差估计
第三章微分中值定理与导数的应用
第一节微分中值定理
一、罗尔定理
二、拉格朗日中值定理
三、柯西中值定理
第二节洛必达法则
第三节泰勒公式
第四节函数的单调性与曲线的凹凸性
一、函数单调性的判定法
二、曲线的凹凸性与拐点
第五节函数的极值与最大值最小值
一、函数的极值及其求法
二、最大值最小值问题
第六节函数图形的描绘
第七节曲率
一、弧微分
二、曲率及其计算公式
三、曲率圆与曲率半径
四、曲率中心的计算公式渐屈线与渐伸线
第八节方程的近似解
一、二分法
二、切线法。