分式方程应用题专项练习50题
- 格式:doc
- 大小:39.50 KB
- 文档页数:6
初二数学分式方程应用题50题1. 一桶水5天可以完全蒸发,如果蒸发速度增加20%,几天可以蒸发完?2. 一辆汽车以每小时60千米的速度行驶,行驶了一定时间后,速度减半,继续行驶同样的距离需要多长时间?3. 一个长方形的花园,长是宽的2倍,如果宽是x米,求花园的面积。
4. 甲乙两人共同完成一项工作,甲单独做需要4天,乙单独做需要6天,两人合作需要多少天?5. 一家电器店购入一批电视机,每台成本2000元,售价2500元,如果卖出了1/4的电视机,求老板的利润。
6. 一个农场有鸡和鸭共100只,鸡的数量是鸭的3倍,求农场里鸡和鸭各有多少只?7. 甲乙两辆汽车从相距360千米的两地同时出发相向而行,甲的速度是每小时60千米,乙的速度是每小时80千米,求两车相遇需要多少时间?8. 一个水池的容量是1200升,每天注入水100升,每天蒸发水40升,求几天后水池的容量是1500升?9. 甲乙两人共同完成一项工作,甲单独做需要5天,乙单独做需要7天,求甲乙合作每天完成工作的几分之几?10. 一个班级有男生和女生共60人,女生是男生的2/3,求女生有多少人?11. 一辆汽车以每小时80千米的速度行驶,行驶了x小时后,速度减少到每小时60千米,再行驶了2小时,求汽车总共行驶了多少千米?12. 一家工厂生产一批产品,每件成本100元,如果售价是每件150元,工厂卖出了300件,求工厂的利润总额。
13. 一个长方形的花园,长比宽多10米,如果宽是x米,求花园的周长。
14. 甲乙两辆火车从相距480千米的两地同时出发相向而行,甲的速度是每小时100千米,乙的速度是每小时120千米,求两火车相遇需要多少时间?15. 一个水池容量是V升,每天注入的水量是a升,蒸发的水量是b升,求几天后水池剩余的水量。
16. 甲乙两人共同完成一项工作,甲单独做需要8天,乙单独做需要10天,求甲乙合作完成工作的效率。
17. 一辆汽车以每小时100千米的速度行驶,行驶了t小时后,速度减少到每小时80千米,再行驶了t小时,求汽车总共行驶的距离。
分式方程应用题及答案1甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一, 这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天2甲安装队为小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 3有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 4轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是_________5南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 ________ .6某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度. 若设原计划每小时修x m ,则根据题意可得方程 ________7、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
分式方程应用题训练(有答案)1.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A. =B. =C. =D. =2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1003.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠24(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=105.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.26.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.9.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.10(2018•齐齐哈尔)若关于x的方程+=无解,则m的值为.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:1至11题答案:1A 2B 3.D 4A 5C 6A 7A 8C 9.410.﹣1或5或﹣11. =×(1﹣10%)行程12.(2018•徐州)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.行程13. (2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.13.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/行程14.某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?14.解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.行程15.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.15解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得: =+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.行程.16.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.17.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,AC=5cm.点D在AC上,AD=1,点P 从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.任务.18. (2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天解:(1)设二号施工队单独施工需要x天,根据题意得: +=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.任务19.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.任务20.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件利润21.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.利润.22.(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得, =,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.与方程结合23.(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得: =,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.与不等式结合24.(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
(完整版)分式方程应用题专项练习50题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
专题5.5 分式方程应用(4大类型)(专项训练)1.(2022春•涟水县期末)某校为美化校园环境,计划对面积为1200m2的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360m2区域的绿化时,甲队比乙队少用2天.求甲、乙两工程队每天能绿化的面积分别是多少m2?2.(2022春•瑶海区期末)某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?3.(2022•桂林模拟)为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.(1)求乙队每天能完成多少米?(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?4.(汕尾)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.(2021秋•道县期中)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?6.(2021秋•江北区期末)市级重点工程盘溪立交改造正在进行中,某建筑公司承建了修筑其中一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费144000元,如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队每天的施工费用各需多少元?(2)甲、乙两队单独完成此项工程,各需多少天?7.(2021秋•花都区期末)某校推行“新时代好少年•红心向党”主题教育读书工程建设活动,原计划投资10000元建设几间青少年党史“读书吧”,为了保证“读书吧”的建设的质量,实际每间“读书吧”的建设费用增加了10%,实际总投资为15400元,并比原计划多建设了2间党史“读书吧”.(1)原计划每间党史“读书吧”的建设费用是多少元?(2)该校实际共建设了多少间青少年党史“读书吧”?8.(2021秋•东莞市校级期末)某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?9.(2021秋•芜湖期末)为积极创建全国文明城市,甲、乙两工程队承包了我市某街道路面改造工程.若由甲、乙两工程队合做20天可以完成;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可以完成.求甲、乙两工程队单独完成此项工程各需要多少天?10.(2021秋•宁远县校级月考)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?11.(2021•桃江县模拟)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?12.(2021•北碚区校级开学)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?13.(2012•山西模拟)列方程或方程组解应用题:为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.14.(2021•扬州模拟)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.15.(2021秋•正定县期中)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?16.(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.17.(2020秋•红谷滩区校级期末)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?18.(2020秋•朝阳区校级期末)从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为900km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.19.(2021•黄石模拟)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.20.(2021•长春模拟)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?21.(哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?22.(泰安)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?23.(2022春•济阳区期末)某商场在“六一”儿童节来临之际用3000元购进A、B两种玩具1100个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共2600个,已知A、B两种玩具的进价不变,求A种玩具最多能购进多少个?24.(2022•朝阳区校级模拟)2022年2月6日晚,中国女足在第20届亚洲杯决赛中以3:2逆转夺冠!全国各地纸起了一股学女足精神的热潮.某学校准备购买一批足球,第一次用8000元购进A类足球若干个,第二次又用5000元购进B类足球,购进数量比第一次多了30个,已知A类足球的单价是B类足球单价的2.5倍.求B类足球的单价是多少元?25.(2022春•辽阳期末)“双减”政策背景下,某校为增加学生的课外活动时间,现决定增购两种体育器材:跳绳和毽子,已知跳绳的单价比毽子的单价多3元,用800元购买的跳绳数量和用500元购买的键子数量相同.(1)求跳绳和毽子的单价分别是多少元?(2)如果学校计划购买跳绳和毽子共80个,总费用不超过460元,那么最多能买多少个跳绳?26.(2021•天宁区校级一模)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?27.(2021•沙坪坝区校级开学)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?28.(2021春•滨海县期中)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?29.(2021•中宁县模拟)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?12.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B 两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?31.(2020秋•恩施市期末)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.32.(2021春•兴庆区校级期中)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.33.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.(1)求A,B两款手机的进货单价分别是多少元?(2)某周末两天销售单上的数据,如表所示:日期A款手机(部)B款手机(部)销售总额(元)星期六5840100星期日6741100求A,B两款手机的销售单价分别是多少元?(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.34.(2021•碧江区二模)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?35.(2021•郑州模拟)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?36.(2021•罗湖区校级开学)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同.(1)求A、B两种型号电脑每台价格各为多少万元?(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?37.(2021春•方城县期中)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?38.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?39.(2021•罗湖区校级模拟)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?。
一、行程问题:1.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.2.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.3.A、B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,逆流返回所用时间是顺流航行所用时间的2倍,已知水流速度为4千米/时.求:该轮船在静水中的速度多少?4.甲、乙两地相距135千米,大小两辆汽车从甲地开往乙地,大汽车比小汽车早出发4小时,小汽车比大汽车早到30分钟,小汽车和大汽车的速度之比为5∶2,求两车的速度.5.某人骑摩托车从甲地出发,去90km外的乙地执行任务,出发1h后,发现按原来速度前进,就要迟到40min,于是立即将车速增加一倍,因此提前20min到达,求摩托车的原来速度是多少?二、工程问题:6.为进一步加快脱贫攻坚步伐,确保到2021年实现国家标准摘帽目标,旺田村准备用120平方公顷的河滩地发展大棚蔬菜,负责承建大棚的工程队为了不耽误农时,工作效率比原计划提高了1.5倍,结果提前20天完工.求工程队原计划每天建多少公顷大棚?7.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?8.有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务.已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件?9.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.10.目前,我区正在实施的“同城一体化”工程进展顺利区招投标中心在对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,区招投标中心根据甲、乙两队的投标书测算,应有三种施工方案:⑴甲队单独做这项工程刚好如期完成;⑵乙队单独做这项工程,要比规定日期多5天;⑶若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.三、商品买卖问题:11.某服装店销售一种服装,若按原价销售,则每月销售额为10000元,若按八五折销售,则每月多卖出20件,且月销售额增加1900元,每件服装的原价为多少元?12.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?13.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.14.某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?15.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?16.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?17.某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:四、其它:18.某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的19.某校九年级两个班各为武汉灾区捐款1 800元,已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%,求两个班人均捐款各多少元?20.为厉行节能减排,倡导绿色出行,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B 两种不同款型,甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8a+240a辆“小黄车”,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.21.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表去年销售总额为80000元,今年A型智能手表的售价每只比去年降低了600元,若售出的数量与去年相同,销售总额将比去年减少了25%. (1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价格与销售价格如表.若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?答案解析部分一、行程问题1. 解:设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得:解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m。
分式方程应用题专题分式方程应用题专题专题一、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元。
求混合后的单价每千克是多少元?2、A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同。
其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少。
问选用谁的购货方式合算?3、某商场销售某种商品,一月份销售了若干件,共获得利润元;二月份把这种商品的单价降低了0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元。
调价前每件商品的利润是多少元?专题二、工程类应用性问题1、甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
已知乙队单独做所需天数是甲队单独做所需天数的倍数。
求甲乙单独做各需多少天?2、甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?3、某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务。
试求原计划一天的工作量及原计划的天数。
4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的需付甲、丙两队共5500元。
⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由。
5、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。
现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成。
问规定日期是多少天?6、甲乙两人做某种机器零件。
已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1(111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187);6yue28 (188);(189);(190).(191)=;(192).(193)=1;(194).(195)+=(196)=1;(197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x﹣2),整理得:﹣2x+3x=2﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x ﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣3(x ﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x(2x+5)﹣2(2x﹣5)=(2x+5)(2x﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1)=﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得6x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解(110)解:﹣=1﹣=1(4分)=1,∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+,方程的两边同乘(2x﹣1),得x﹣1=2x﹣1+2,解得x=﹣2.检验:把x=﹣2代入(2x﹣1)=﹣5≠0.∴原方程的解为x=﹣2(112)解:.=,=,(x﹣1)2+9=3(x+2)x2﹣5x+4=0,x1=4,x2=1检验:把x1=4分别代入(x+2)(x﹣1)=18≠0,∴x1=4是原方程的解;把x2=1分别代入(x+2)(x﹣1)=0,∴x2=1不是原方程的解,∴x=4是原方程的解(113)解:原方程可化为:﹣=1,方程的两边同乘(a﹣1)2,得(a﹣1)(a+1)﹣a2=(a﹣1)2,﹣1=(a﹣1)2,因为(a﹣1)2是非负数,故原方程的无解(114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x﹣3)=﹣4(x+3)(x﹣3),去括号,整理,得2x2+5x﹣18=0,即(2x+9)(x﹣2)=0,解得x1=﹣,x2=2,经检验,当x=﹣或2时,5(x+3)(x﹣3)≠0,所以,原方程的解为x1=﹣,x2=2(115)解:方程的两边同乘15(m2﹣3+7m),得15(m﹣9)=﹣7(m2﹣3+7m),整理,得7m2+64m﹣156=0,解得m1=2,m2=﹣.检验:把m1=2代入15(m2﹣3+7m)≠0,则m1=2是原方程的根;把m2=﹣代入15(m2﹣3+7m)≠0,则m2=﹣是原方程的根.故原方程的解为:m1=2,m2=﹣(116)解:方程两边同乘以(x+1)(x﹣1),得(x+1)2﹣12=(x+1)(x﹣1),x2+2x+1﹣12=x2﹣1x2+2x﹣11﹣x2+1=0,2x﹣10=02x=10x=5,经检验:x=5是原分式方程的解,所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x2﹣4=﹣3≠0,方程成立,∴原方程的解为:x=1(118)方程两边同乘最简公分母x(x﹣1),得x+4=3x,解得x=2,检验:当x=2时,x(x﹣1)=2×(2﹣1)=2≠0,∴x=2是原方程的根,故原分式方程的解为x=2(119)方程两边都乘以(x﹣1)(x+1)得,(x﹣2)(x+1)+3(x﹣1)=(x﹣1)(x+1),x2﹣x﹣2+3x﹣3=x2﹣1,2x=4,x=2,检验:当x=2时,(x﹣1)(x+1)≠0,所以,原分式方程的解x=2(120)方程的两边同乘2(x﹣2)(x+2),得3(x+2)﹣2x(x﹣2)=(x﹣2)(x+2),3x+6﹣2x2+4x=x2﹣4,3x2﹣7x﹣10=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解(121)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x(x+2)﹣x﹣14=2x(x﹣2)﹣x2+4,去括号得:x2+2x﹣x﹣14=2x2﹣4x﹣x2+4,移项合并得:5x=18,解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x﹣3)得2x+9=3(4x﹣7)+6(x﹣3)解得x=3经检验x=3是原方程增根,∴原方程无解(124)方程两边同乘6(x﹣2),得3(5x﹣4)+3(x﹣2)=2(2x+5),整理得:15x﹣12+3x﹣6=4x+10,解得:x=2.检验:将x=2代入6(x﹣2)=6(2﹣2)=0.∴可得x=2是增根,原方程无解.(125)方程化为:=+1,方程两边都乘以(x+3)(x﹣1)得:x+3=4+(x+3)(x﹣1),整理得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x1=﹣2,x2=1,检验:当x=1时,(x+3)(x﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x(x﹣1)得3(x﹣1)+2x=x+5,3x﹣3+2x=x+5,4x=8,x=2,经检验知:x=2是原方程的解(127).+=x2+2x+5(x+1)=(x+4)(x﹣1)4x=﹣9x=﹣检验:x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原分式方程的解(128)解:原方程变形为,,,,∴x2﹣13x+42=x2﹣9x+20,∴x=,检验知x=是方程的根(129)方程的两边同乘x(x+1),得x2+x(x+1)=(2x+2)(x+1),解得x=﹣.检验:把x=﹣代入x(x+1)=﹣≠0.∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=﹣5,解得x=﹣.检验:把x=﹣代入(x+1)(x﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x﹣3),得2(x﹣2)=x﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x﹣1)(x﹣2),解得x=﹣1.检验:把x=﹣1代入(x+2)(x﹣2)=﹣3≠0.∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x),得:(2﹣x)+3(x+1)=0;整理,得:2x+5=0,解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解.(147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x2+12x+35=x2+4x+3,解得x=﹣4;经检验,x=﹣4是原方程的解(148)去分母得:7(x﹣1)+3(x+1)=x(x2﹣1)﹣x(x2﹣7),去括号得:7x﹣7+3x+3=x3﹣x﹣x3+7x,移项合并得:4x=4,解得:x=1,经检验x=1是增根,原分式方程无解(149)方程的两边同乘(2x﹣3),得:x﹣5=4(2x﹣3),解得:x=1.检验:把x=1代入(2x﹣3)=﹣1≠0,即x=1是原分式方程的解.则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x﹣2),得:x(x﹣2)﹣(x+2)2=8,解得:x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0,即x=﹣2不是原分式方程的解.则原方程无解(151)方程的两边同乘(2x﹣1)(x﹣2),得2x(x﹣2)+(x﹣1)(2x﹣1)=2(2x﹣1)(x﹣2),解得x=3.检验:把x=﹣1代入(2x﹣1)(x﹣2)=5≠0.∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x﹣3),得2(x﹣3)﹣(x+3)=3x﹣5,解得x=﹣2.检验:把x=﹣2代入2(x+3)(x﹣3)=﹣10≠0.∴原方程的解为:x=﹣2(153)方程的两边同乘(4x2﹣8)(1﹣2x),得:8(1﹣2x)+(2x+3)(4x2﹣8)=﹣(4x2﹣8)(1﹣2x),即2x2﹣2x﹣3=0,解得:x=.检验:把x=代入(4x2﹣8)(1﹣2x)≠0,故原方程的解为:x=.(154)方程的两边同乘x(x﹣1),得:3(x﹣1)+6x=7,解得:x=.检验:把x=代入x(x﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x﹣8),得:6=3x﹣8+(4x ﹣7),解得:x=3.检验:把x=3代入(3x﹣8)=1≠0,即x=3是原分式方程的解,则原方程的解为:x=3(156)去分母得:x(x﹣2)﹣(x+2)2=8,去括号得:x2﹣2x﹣x2﹣4x﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3,移项合并得:2x=﹣3,解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x﹣2)得3(x+2)=2(x﹣2),解得x=﹣10.检验:把x=﹣10代入(x+2)(x﹣2)=96≠0.∴原方程的解为:x=﹣10.(159)方程的两边同乘(y﹣2),得1=y﹣1﹣3(y﹣2),解得y=2.检验:把y=2代入(y﹣2)=0.y=2是原方程的增根,∴原方程无解.(160)方程的两边同乘(x+2)(x﹣2)得(x﹣2)2﹣(x+2)2=16,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.∴x=﹣2是原方程的增根,∴原方程无解.(161)原方程可化为:﹣20=,方程的两边同乘x,得3000﹣20x=2500,解得x=25.经检验:x不为0,x=25是原方程的解(162)方程两边都乘以(4x﹣8)(3x﹣6)得:9x﹣18=4x﹣8,9x﹣4x=﹣8+18,5x=10,x=2,检验:把x=2代入(4x﹣8)(3x﹣6)=0,即x=2是增根,即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x﹣1)(x﹣3)得:﹣2(x﹣3)+x(x﹣1)=x2﹣4x+3﹣(2x﹣1),去括号得:﹣2x+6+x2﹣x=x2﹣4x+3﹣2x+1,整理得:3x=﹣2,x=﹣,检验:把x=﹣代入(x﹣1)(x﹣3)≠0,即x=﹣是原方程的解(164)方程两边都乘以2(x﹣2)得,1+x﹣2=6,解得x=7,检验:当x=7时,2(x﹣2)=2×(7﹣2)=10≠0,所以x=7是分式方程的解,故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x﹣2)得,x﹣2+4x=2(x+2),解得x=2,检验:当x=2时,(x+2)(x﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根,故原分式方程无解(166)方程变形得:﹣3=,去分母得:1﹣3(x﹣2)=1﹣x,去括号得:1﹣3x+6=1﹣x,移项合并得:﹣2x=﹣6,解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x(x+3)(x﹣3),去分母得:x﹣3=2x+x+3,移项合并得:2x=﹣6,解得:x=﹣3,将x=﹣3代入得:x(x+3)(x﹣3)=0,则x=﹣3是增根,原分式方程无解(168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣,整理得:+=+,即﹣=﹣,化简得:=,可得x2﹣3x+2=x2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解(170)方程的两边同乘(x﹣3),得2x+1=4x﹣5+2(x﹣3),解得x=3.检验:把x=3代入(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(171)方程的两边同乘(x﹣1)2,得x2﹣3x﹣(x+1)(x﹣1)=2(x﹣1),解得x=.检验:把x=代入(x﹣1)2=≠0.∴原方程的解为:x=(172)方程的两边同乘(x+3)(x﹣3),得x﹣3﹣2(x+3)=12,解得x=﹣21.检验:把x=﹣21代入(x+3)(x﹣3)≠0.∴原方程的解为:x=﹣21.(173)方程的两边同乘(x2﹣1),得x2﹣3x+2(x2﹣1)﹣3x(x+1)=0,解得x=﹣.检验:把x=﹣代入(x2﹣1)=﹣≠0.∴原方程的解为:x=﹣(174)方程两边同乘3(x+1),得:3x=2x+3x+3,解得:x=﹣1.5.检验:把x=﹣1.5代入3(x+1)=﹣1.5≠0.所以原方程的解为:x=﹣1.5;(175)方程两边同乘x(x+2)(x﹣2),得:3(x﹣2)﹣(x+2)=0,解得x=4.检验:把x=4代入x(x+2)(x﹣2)=48≠0,故原方程的解为:x=4(176)方程的两边同乘(x﹣2),得1=x﹣1﹣3(x﹣2),解得x=2.检验:把x=2代入(x﹣2)=0.∴x=2是原方程的解为增根解,∴原方程无解;(177)方程的两边同乘(x+4)(x﹣4),得5(x+4)(x﹣4)+96=(2x﹣1)(x﹣4)+(3x﹣1)(x+4),解得x=8.检验:把x=8代入(x+4)(x﹣4)=48≠0.∴原方程的解为:x=8(178)(179).(178)方程两边同时乘以x﹣4得:x﹣4+(x﹣5)=1,则x﹣4+x﹣5=1解得:x=5,检验:当x=5时,x﹣4=1≠0,则方程的解是x=5.(179)原方程即:+=,方程两边同时乘以6(x﹣2)得:3(5x﹣4)+3=2(2x+5)解得:x=,检验:当x=时,6(x﹣2)≠0,则方程的解是:x=(180)(181).(180)去分母得:10x﹣5=4x﹣2,移项合并得:6x=3,解得:x=0.5,经检验x=0.5是分式方程的解;(181)去分母得:5x2﹣80+96=(2x﹣1)(x﹣4)+(3x ﹣1)(x+4),去括号得:5x2﹣80+96=5x2+2x,移项合并得:2x=16,解得:x=8,经检验x=8是分式方程的解(182)原方程可化为:+=1+方程两边乘x(x+1)(x﹣1)得,7(x﹣1)+3(x+1)=x(x+1)(x﹣1)+x(7﹣x2)化简得,4x=4∴x=1检验:把x=1代入x(x+1)(x﹣1)=0∴x=1是原方程的增根.∴原方程无解(183)去分母得:5x+2=3x,移项合并得:2x=﹣2,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(184)去分母得:2x2﹣4x﹣x2﹣2x=x2﹣4﹣x﹣11,移项合并得:﹣5x=﹣15,解得:x=3,经检验x=3是分式方程的解(185)去分母得:3﹣2x=x+1,移项合并得:3x=2,解得:x=;(186)去分母得:(x﹣1)2﹣x(x+2)=9,整理得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解(187)方程两边都乘(x+4)(x﹣4),得x+4=4解得x=0.检验:当x=0时,(x+4)(x﹣4)≠0.∴x=0是原方程的解.(188)方程两边都乘x(x﹣1),得3x﹣(x+2)=0,解得x=1.检验:当x=1时,x(x﹣1)=0.∴原方程无解.(189)方程两边都乘(x﹣3),得2﹣x﹣1=3(x﹣3),解得x=.检验:当x=时,x﹣3≠0.∴x=是原方程的解.(190)方程两边都乘6(x﹣2),得3(5x﹣4)=2(2x+5)﹣3×6(x﹣2),解得x=2.检验:当x=2时,6(x﹣2)≠0.∴x=2是原方程的解(191)原方程可化为:,方程两边都乘(x﹣2)(x﹣3),得:x(x﹣3)﹣(1﹣x2)=2x(x﹣2),解得x=1检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解.(192)原方程可化为:,方程两边都乘(x+3)(x﹣2)(x﹣4),得5x(x﹣4)+(2x﹣5)(x﹣2)=(7x﹣10)(x+3),解得x=1.检验:当x=1时,(x+3)(x﹣2)(x﹣4)≠0.∴x=1是原方程的解(193)=1,方程两边同乘以(1﹣x)(3﹣x),得2(3﹣x)﹣x(1﹣x)+(2x﹣1)=(1﹣x)(3﹣x),去括号,得6﹣2x﹣x+x2+2x﹣1=3﹣3x﹣x+x2,整理,得3x=﹣2,解得:x=﹣.检验:当x=﹣时,(1﹣x)(3﹣x)≠0,∴x=﹣是原方程的解.(194),原方程可化为,约分,得,方程两边同乘以(x+3)(x﹣4),得:3(x﹣4)=4(x+3),3x﹣12=4x+12,﹣x=24,∴x=﹣24,检验:当x=﹣24时,(x+3)(x﹣4)≠0,∴x=﹣24是原方程的解(195)方程两边都乘(1+3x)(1﹣3x),得:(1﹣3x)2﹣(1+3x)2=12,解得x=﹣1.检验:当x=﹣1时,(1+3x)(1﹣3x)≠0∴x=﹣1是原方程的解(196)方程两边都乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),解得x=1.检验:当x=1时,(x+1)(x﹣1)=0.∴原方程无解.(197)方程两边都乘(3x﹣5)(2x﹣3),得(3x+4)(2x﹣3)+(3x﹣5)(2x﹣3)=(4x+1)(3x ﹣5),解得x=.检验:当x=时,(3x﹣5)(2x﹣3)≠0.∴x=是原方程的解(198)解:两边同乘以2(3x﹣1),得3(3x﹣1)﹣2=5,解得.经检验,是原方程的解.(199)解:两边同乘以x(x+1),得m(x+1)﹣nx=0,解得:.经检验是方程的解(200)方程两边同乘(x+1)(1﹣2x),得(x﹣1)(1﹣2x)+2x(x+1)=0,整理解得:x=.经检验:x=是原方程的解.(201)方程两边同乘(x﹣2),得3﹣x=﹣2(x﹣2),解得:x=1.经检验:x=1是原方程的解。
列分式方程解应用题60题(有答案)1.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.2.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.3.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程.已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?4.甲,乙两组学生去距学校4.5km的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少.5.甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、乙两队单独完成此项工程各需多少天?6.某校师生为爱心基金捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天多50人,且两天人均捐款数相等.问这两天共有多少人捐款?人均捐款额是多少?7.甲做90个零件所用的时间和乙做120个零件所用的时间相同,又知每小时甲、乙两人共做35个机器零件.求甲、乙每小时各做多少个零件.8.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务.甲、乙两队独做各需几天才能完成任务?9.甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.10.甲乙两地相距360km,新修的高速公路开通后,在甲乙两地行驶的汽车的平均速度提高了50%,而从甲地到乙地的时间缩短了2h.求汽车提速后的平均车速?11.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台?12.一个工人生产奥运会吉祥物“福娃欢欢”,计划30天完成,若每天多生产5个,则在26天完成且多生产了14个.则这个工人原计划每天生产多少个福娃欢欢?13.孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清点10本.已知孙明清点完200本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.14.某人骑自行车的速度比步行的速度每小时多走8千米,已知步行12千米所用的时间和骑自行车36千米所用的时间相等,这个人步行每小时走多少千米?15.甲、乙两班同学参加“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵,甲班种60棵树所用的时间与乙班种66棵所用的时间相等,问:甲、乙两班每小时各种多少棵树?16.甲、乙合打一份稿件,4小时后,甲有事离去,由乙继续打6小时完成.已知甲打4小时的稿件乙需5小时完成.求甲、乙独打这份稿件各需多少小时?17.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?18.甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.19.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期4天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?20.某货车在发生交通事故后,沿一条小路向高速公路逃离,交警巡逻车立即沿另一公路向高速追击,在货车刚进入高速公路路口时,将它截住.已知警车的速度比货车快40千米/时,警车驶到高速公路行驶的路程是货车的2倍,求警车的速度.21.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤所需的时间相同.问现在平均每天采煤多少吨?22.甲、乙两人从学校出发,前往距学校12千米的新华书店.甲每小时比乙多走2千米,乙比甲提前1小时出发,结果两人同时到达.求甲、乙两人每小时各走多少千米?23.甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?25.某工程要在规定日期内完成.若由甲单独做,则刚好如期完成;若由乙单独做,则要超过3天完成,现在先由甲、乙合做2天,剩下的工程由乙单独做,结果刚好按时完成.求规定的天数.26.“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?27.2010年春季我国西南五省持续干旱,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划生产1500桶纯净水支援灾区人民,在生产了300桶纯净水后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天生产多少桶纯净水?28.小颖和几位同学去文具店购买练习本,该文具店规定,如果购买达到一定的数量,则可以按批发价购买,于是他们凑到60元钱以批发价购买,这样购得的练习本数量比用零售价购得的练习本数量多30本,若每本练习本的批发价是零售价的,问每本练习本的零售价是多少元?29.某工厂引进新技术后,平均每小时比原来多生产30个零件.若现在生产900个零件所需时间与原来生产600个零件所需时间相等,现在平均每小时生产多少个零件?30.为了帮助灾区重建家园,学校号召同学们自愿捐款.已知第一次捐款总数为4 800元,第二次捐款总数为5 000元,第二次捐款人数比第一次捐款人数多20人,且恰好相等.问第一次捐款人数是多少?31.某公园在2008年北京奥运花坛的设计中,有一个造型需要摆放1800盆鲜花,为奥运作奉献的精神促使公园园林队的工人们以原计划1.2倍的速度,提前一小时完成了任务,工人们实际每小时摆放多少盆鲜花?32.某顾客第一次在商店买若干件小商品花去4元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,购买一打以上可以拆零买,这样,第二次花去4元买同样小商品的件数量是第一次的1.5倍.问他第一次买的小商品是多少件?33.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?34.某工厂加工495件产品,在加工了90件后进行了技术改造,使每天生产的产品数量是原来的1.5倍,结果共用了12天圆满完成了任务,问原来每天加工多少件产品?35.阅读下面一段文字:高圆带了9元去商店买笔记本,她想买一种软面抄,正好需付9元,但售货员建议她买另一种质量更好的硬面抄,只是这种笔记本的价格比软面抄要高出一半,因此她只能少买一本笔记本.请你根据以上信息确定:这种软面抄和硬面抄的价格各是多少?高圆原来打算买多少本笔记本?36.为加强防汛工作,市工程队准备对长江堤岸一段长为2500米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加固的长度是多少米?37.甲、乙两名志愿者为灾后重建搬运物资.已知甲、乙两人每小时共搬运1500 kg物资,且甲搬运300 kg物资的时间与乙搬运200 kg物资所用的时间相同.求甲每小时比乙多搬运多少物资?38.今年全国“助残日”期间,某中学学生踊跃捐款,奉献自己的一份爱心、其中八年级一班学生共捐款450元,二班学生共捐款390元.已知一班平均每人捐款金额是二班平均每人捐款金额的1.2倍,且二班比一班多2人,那么这两个班各有多少人?39.一件工程甲单独做15天可以完成,乙单独做12天可以完成,甲,乙,丙三人合作4天可以完成,那么丙单独做,几天可以完成?40.2009年12月,相距1050公里的A、B两市的高速铁路建成通车,高速铁路上的旅客列车时速是原普通铁路的3.5倍,运行在两市间的旅客列车运行时间因此缩短7.5小时,求高速铁路的时速.41.应用题:已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?42.某市教育局向一贫困山区县赠送3600个学生用的科学记算器以满足学生学习的需要、现用A,B两种不同的包装箱进行包装,单独用B型包装箱比单独用A型包装箱少用15个,已知每个B型包装箱装计算器的个数是A型包装箱的1.5倍,求A,B两种包装箱每个各能装计算器多少个?43.某市为处理污水需要铺设一条长为3000米的管道、为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务,求实际施工时每天铺设管道的长度.44.今年我国西南地区遭受严重旱灾,受灾人口达6130多万.为了帮助灾区重建家园,某学校号召师生自愿捐款,第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数.45.甲乙两站相距480千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车的2.5倍,结果客车比货车早6小时到达乙站,求两种车的速度各是多少?46.某养鱼专业户要想估计鱼塘里大概有多少条鱼,他进行了如下操作:先从鱼塘里捞上来200条鱼,分别做上记号后,又放回鱼塘,一段时间后,他又从鱼塘捞上来200条鱼,发现有4条是做了记号的,由此他就知道了鱼塘大概有多少条鱼,请你说明其中的道理,并求出该鱼塘里大概多少条?47.1罐咖啡甲、乙两人一起喝10天喝完,甲单独喝则需12天喝完,1包茶叶甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完,假如甲在有茶叶的情况下决不喝咖啡,而乙在有咖啡的情况下决不喝茶,问两人一起喝完1包茶叶和1罐咖啡需要多少天?48.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.49.某商店销售一种书包,七月份的销售额为6000元.为了让附近的孩子们在新学期能背上新书包,店主决定让利销售,在八月份将每个书包按原价的8折销售,结果销售量比七月份增加了50个,销售额比七月份增加了800元.求七月份每个书包的售价.50.“我国水资源形势非常严峻”,为了节约用水.某市今年3月1日起调整居民用水价格,每立方水费上涨25%.已51.某小组学生准备外出春游,预计共需费用120元,临出发时,有2人因故不能参加,但总费用不变,这样春游的学生人均费用增加,问原计划每人付费多少元?52.某厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合,其平均价值比甲种原料每斤少3元,比乙种原料每斤多1元,问混合后的单价每斤多少元?53.先锋中学九年级学生由距江南10km的学校出发前往参观,一部分同学骑自行车先走,过了20min后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为xkm/h,利用速度,时间,路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程,并求出问题的解.速度(千米/时)所用时间(时)所走的路程(千米)骑自行车x 10乘汽车1054.阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.55.2008年初,我国南方地区遭受雪灾,为保持道路畅通,市政府决定用铲雪机铲去扬威大道上的积雪.如果只用﹣台A型铲雪机单独工作,需要10小时才能全部铲完,在该铲雪机工作2小时后,一台B型铲雪机加入合作,然后一起工作了3小时将扬威大道上的积雪全部铲完,求B型铲雪机单独工作需要多少小时铲完?56.北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心.无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:信息一:(1)班共捐款540元,(2)班共捐款480元.请你根据以上三条信息,求出八(1)班平均每人捐款多少元?57.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系;(2)原计划若干天卸载完这批货物,但由于后一批货物要提前2天到达,则实际每天卸货数量比原计划每天多20%,恰好按时卸载完毕,求原计划每天卸载多少货物?58.2008年夏季奥运会的主办国于2001年7月13日揭晓.当时,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000千米处会合,并同时向北京进发,绿队走完2000千米时,红队走完1800千米,随后红队的速度比原来提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两队的速度比.(2)问红绿两支车队能否同时到达北京并说明理由.(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京求出第一支车队到达北京时,两支车队的距离.(单位:千米)59.列方程或方程组解应用题:某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元商场第二个月共销售多少件?60.阅读并解答:先阅读下列计算方法:某商店将甲乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=(元/千克),其中m1、m2分别为甲乙两种糖果的重量(千克),a1、a2分别为甲乙两种糖果的单价(元/千克).再解答下列问题:已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克.(1)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,已知混合糖果的单价为18.4元/千克,问:这箱甲种糖果有多少千克?(2)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再出售时,混合糖果的单价为17.5元/千克.问:这箱甲种糖果有多少千克?参考答案:1.解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时2.解:设船在静水中的速度是x千米/时.由题意得:.解得:x=21.经检验:x=21是原方程的解.答:船在静水中的速度是21千米/时3.解:设乙队单独完成所需天数x 天,则甲队单独完成需x天,由题意,得即=1 解得x=6 经检验,x=6是原方程的根x=6时,x=4答:甲、乙两队单独完成分别需4天、6天4.解:设甲组速度为xkm/小时,则乙组速度为3xKm/小时.列方程:.解得:x=6.经检验:x=6是方程的解.∴3x=18.答:步行速度为6km/小时,骑自行车的速度为18km/小时5.解:设甲队单独完成此项工程需2x天,则乙队需要3x天.由题意得:.解之得:x=2.经检验;x=2是所列分式方程的根.∴2x=2×2=4,3x=3×2=6.答:甲队单独完成需4天,乙队需6天6.解:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程.解得x=200.检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款=24(元).答:两天共参加捐款的有450人,人均捐款24元7.解:设甲每小时做x个零件,则乙每小时做(35﹣x)个零件.根据题意列方程得:.解得:x=15.经检验,x=15是原方程的解.答:甲每小时做15个零件,乙每小时做20个零件8.解:设甲独做需要x天完成任务,根据题意得:×9+(﹣)×(9+21)=1,解得:x=24,经检验:x=24是方程的解,∴1÷(﹣)=48,答:甲、乙两队独做分别需要24天和48天完成任务9.解:设步行速度为x千米/时,那么骑车速度是4x千米/时,10.解:设提速前的平均车速为x km/h,根据题意得:﹣=2 解得:x=60 经检验:x=60是原方程的解,所以,(1+50%)x=90(km/h)答:汽车提速后的平均车速为90km/h.11.解:设原来每天装配机器x台,依题意得:,解这个方程得:x=6,经检验:x=6是原方程的解,答:原来每天装配机器6台12.解:设原计划每天生产x个零件.依题意可列:,解得x=29.经检验,x=29是原方程的根.答:这个工人原计划每天生产29个福娃欢欢13.解:设孙明平均每分钟清点图书x本.根据题意得:.解这个方程得:x=20.经检验:x=20是原方程的解.答:孙明平均每分钟清点图书20本14.解:设这个人步行每小时走x千米.依题意得:=.方程两边同乘以x(x+8)得:12(x+8)=36x.解得:x=4.经检验:x=4是原分式方程的解.(6分)答:这个人步行每小时走4千米.15.解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵,根据题意得:,解这个方程得:x=20,经检验:x=20是原方程的根.所以当x=20时,x+2=20+2=22.所以甲班每小时种20棵树,乙班每小时种22棵树16.解:设甲单独打这份稿件需要4x小时,则乙单独打这份稿件需要5x小时.依题意,列方程:()×=1.解方程得:x=3.经检验:x=3符合题意.∴4x=12,5x=15.答:独打这份稿件,甲需12小时,乙需15小时.17.解:设大队的速度是x千米/时,先遣队的速度是1.2x千米/时,由题意得,解得x=5,经检验,x=5是原方程的解,∴1.2x=6,答:先遣队和大队的速度分别是6千米/时,5千米/时18.解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.答:甲的速度为4.5千米/时,乙的速度为6千米/时19.解:设规定日期是x天.根据题意得:+=1.解这个分式方程得:x=12.经检验:x=12是原方程的解,并且符合题意.由题意得:=.解之得:x=80.经检验:x=80是原方程的解.答:警车的速度为80千米/时21.解:设现在平均每天采煤x吨,依题意得,解得x=1100经检验,x=1100是方程的解.答:现在平均每天采煤1100吨22.解:设甲每小时走x千米,根据题意列方程得:=﹣1 整理得:x2﹣2x﹣24=0(3分)解这个方程得:x1=6x2=﹣4 经检验,x1x2是原方程的解,但x2<0不符合题意舍去,取x=6∴x﹣2=4(1分)答:甲每小时走6千米,乙每小时走4千米.(1分)23.解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解 1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时24.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件25.解:设规定天数为x天,依题意得,2×(+)+(x﹣2)×=1,解得:x=6,经检验x=6是原方程的解,答:规定的天数是6天26.解:设原来车辆的平均速度为x千米/小时.由题意可得:.解这个方程得:x=60.经检验:x=60是原方程的解.答:原来车辆的平均速度为60千米/小时27.解:设原来每天生产x桶纯净水,依题意得:,解这个方程,得x=100,经检验,x=100是原方程的解.答:原来每天生产100桶纯净水.28.解:设每本练习本的零售价是x元,则每本练习本的批发价是x,根据题意得:,解得x=0.5.将x=0.5代入检验得是方程的解.答:每本练习本的零售价是0.5元.29.解:设现在平均每小时生产x个零件,依题意得:解得:x=90 经检验,x=90是方程的解且符合题意.答:现在平均每小时生产90个零件.30.解:设第一次捐款人数是x,则第二次捐款人数是(x+20).依题意得:.解方程得:x=480.经检验:x=480是原方程的解.答:第一次捐款人数是48031.解:设工人原计划每小时摆放x盆鲜花,则实际每小时摆放1.2x盆鲜花.依题意得:=+1,解这个方程得:x=300.经检验:x=300是原方程的解.∴1.2x=360.答:工人们实际每小时摆放360盆鲜花32.解:设他第一次买的小商品是x 件.﹣=,解得:x=20,经检验x=20是原方程的解.答:他第一次买的小商品是20件33.解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.34.解:设:原来每天加工x件,则进行技术改造后,每天生产的产品数量为1.5x件.依题意列出方程:=12,解得:x=30,经检验,x=30是原分式方程的解.答:原来每天加工30件产品35.解:设每本软面抄的价格为x元,则每本硬面抄的价格为1.5x元.由题意得:.解之得:x=3.∴1.5×3=4.5(元),9÷3=3(本).答:软面抄单价3元/本,硬面抄单价4.5元/本,高原原计划买3本笔记本36.解:设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=米列方程:∴x=100 经检验:x=100是原方程的解.所以x(1+50%)==150米答:现在每天加固的长度是150米37.解:设甲、乙每小时搬运物资分别为xkg和(1500﹣x)kg,由题意得,解得x=900,经检验x=900是原方程的解,也符合实际意义.由900﹣(1500﹣900)=300(千克∕小时),知甲比乙每小时多搬运300kg物资38.解:设一班有x 人,根据题意得,解得:x=50,经检验,x=50是原分式方程的解,答:一班有50人,二班有52人39.解:设丙单独做x天可以完成.依题意列方程得:4(++)=1.解得:x=10.经检验,x=10是方程的根,也符合题意.答:丙单独做10天可以完成40.解:设普通列车时速为x公里/时,则,解之得:x=100,经检验:x=100是原方程的解,∴3.5x=350.答:高速铁路的时速为350公里/时41.解:设江水每小时的流速是x千米.根据题意,得,解得x=4.经检验,x=4是原方程的根.则江水每小时的流速是4千米42.解:设每个A型包装箱能够装x个计算器,则B型包装箱能装1.5x个计算器,依题意有:解这个方程,得x=80,经检验x=80是原方程的根,∴1.5x=120,答:每个A型包装箱能装80个计算器,每个B型包装箱能装120个计算器.43.解:设原计划施工时每天铺设管道xm,则实际施工时每天铺设管道1.5xm.据题意得:=25 解得x=40.经检验x=40是原方程的解. 1.5x=60答:实际施工时每天铺设管道60m.44.解:设第一次捐款人数为x,则解得x=400 经检验x=400是方程的解,答:第一次捐款人数为40045.解:设货车的速度为x千米/时,则客车的速度为2.5x千米/时,根据题意可列关于时间的方程式:﹣=6,解得:x=48(千米/时)故可知,货车的速度为48千米/时,客车的速度是120千米/时46.解:设该鱼塘里大概有x条鱼,依题意得,解之得:x=10000,经检验x=10000是方程的解,答:该鱼塘里大概有10000条鱼47.解:设甲单独喝茶叶的时间为x天,乙单独喝咖啡的时间为y天,根据题意列方程得,,解得y=60;,解得x=30.因此30天后甲喝完茶叶而乙只喝完咖啡的一半(),故剩下的咖啡变成两人合喝,由题意可知,他们两人还能喝÷()=5天.所以两人用30+5=35天才全部喝完.答:两人一起喝完1包茶叶和1罐咖啡需要35天48.解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480 经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人49.解:设7月份每个书包售价为x元,则8月份每个书包售价为0.8x元,根据题意得﹣=50,解得x=50(元),经检验:x=50是所列方程的根且符合题意,答;7月份每个书包售价为50元。
分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进展招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;假设由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进展了技术改良,提高了生产效率,每天比原方案增产25%,结果提前10天完成了任务.原方案每天生产多少个零件3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,那么要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完 成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 假设工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间一样,水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王教师家、学校在同一条路上,小明家到王教师家的路程为3km ,王教师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典〞第一线,为了使他能按时到校,王教师每天骑自行车接小明上学.王教师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王教师的步行速度及骑自行车的速度各是多少9、一小船由A 港到B 顺流航行需6小时,由B 港到A 港逆流航行需8小时,小船从早晨6时由A 港到B 港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
问:〔1〕假设小船顺水由A港漂流到B港需要多少小时?〔2〕救生圈是何时掉入水中的?10.将总价为200元的甲种糖果与总价值为480元的乙种糖果混合后,其单价比甲种糖果的单价低0.30元,而比乙种糖果的单价高0.10元.问混合后的单价是多少元11.某商店经销一种商品,由于进货价降低了6.4%,使利润率提高了8%,求原来经销这种商品的利润率是多少?12.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;假设甲、丙两车合运一样次数运完这批货物时,甲车共运了180吨;假设乙、丙两车合运一样次数运完这批货物时,乙车共运了270吨。
问:〔1〕乙车每次所运货物是甲车每次所运货物量的几倍?〔2〕现甲、乙、丙合运一样次数把这批货物运完时,货主应付车主运费各多少元?〔按每运1吨付运费20元计算〕。
13、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?14、.某空调厂的装配车间,原方案用假设干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原方案多组装6台,问原方案每天组装多少台?15、京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间一样.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?16、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?17、甲乙两人分别从A、B两地同时出发,相向而行。
甲走8米后两人第一次相遇,然后甲继续向前到B立即返回,乙继续向前走到A立即返回,两人在距离B地6米处第二次相遇,求A、B两地的距离。
18、重量一样的两种商品,分别价值900元和1500元,第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
19、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
20、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
B的速度是A的速度的3倍,求两车的速度。
21、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?22、A做90个零件所需要的时间和B做120个零件所用的时间一样,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
23、A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
24、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。
问原方案这项工程用多少个月。
25、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
26、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间一样。
水流的速度是3千米/时,求轮船在静水中的速度。
27、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?28、某人现在平均每天比原方案多加工33个零件,现在加工3300个零件所需的时间和原方案加工2310个零件的时间一样,问现在平均每天加工多少个零件。
29、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原方案的1.5倍,才能按要求提前2小时到达,求急行军的速度。
30、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
31、一个批发兼零售的文具店规定:凡一次购置铅笔300枝以上,〔不包括300枝〕,可以按批发价付款,购置300枝以下,〔包括300枝〕只能按零售价付款。
小明来该店购置铅笔,如果给八年级学生每人购置1枝,那么只能按零售价付款,需用120元,如果购置60枝,那么可以按批发价付款,同样需要120元,这个八年级的学生总数在什么范围内?假设按批发价购置6枝与按零售价购置5枝的款一样,那么这个学校八年级学生有多少人?32、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进展,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?33、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应到达多少?34、对甲乙两班学生进展体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?35、某种商品价格,每千克上涨1/3,上回用了15元,而这次那么是30元,这次比上回多买5千克,求这次的价格。
36、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?37、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。
38、某商品每件售价15元,可获利25%,求这种商品的本钱价。
39、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额一样,这包甲糖果有多少千克?40、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度41、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?42、某化肥厂方案在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原方案生产120吨的时间相等,求方案每天生产多少吨化肥?43、A做90个零件所需要的时间和B做120个零件所用的时间一样,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
44、陈明同学准备在课外活动时间组织局部同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原方案少4元,求原定的人数是多少?45、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,甲队与乙队完成此工作时间比是2:3,求甲、 乙两队单独完成此项工程各需多少天46、市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原方案提前5天完成。
求该公司完成这项工程实际的天数。
47、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,那么刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,那么刚好如期完成。