2017-2018学年九年级(上)第二十一章《一元二次方程》检测题及答案
- 格式:doc
- 大小:80.00 KB
- 文档页数:6
人教版九年级数学上册第 21 章一元二次方程单元检测题(有答案)(6)一、选择题1.已知 x=1 是一元二次方程 x 2-2mx+1=0 的一个解,则 m 的值是()A .1B . 0C .0或 1D .0 或 -12.已知 a 、b 为一元二次方程 x 2 2x 9 0 的两个根, 那么 a 2 a b 的值为()(A )- 7(B )0(C )7(D ) 113.依据以下表格中二次函数yax 2 bxc 的自变量 x 与函数值 y 的对应值,判断方程ax 2 bx c0 ( a 0,a ,b , c 为常数)的一个解 x 的范围是( )x6.176.186.19 6.20y ax 2 bxc0.030.010.020.04A. 6x 6.17B. 6.17 x 6.18C. 6.18 x 6.19D. 6.19 x 6.204.等腰三角形的底和腰是方程x 2-6x+8=0 的两根,则这个三角形的周长为()A.8B.10C.8 或 10D.不可以确立5.新能源汽车节能、环保,愈来愈受花费者喜欢,各样品牌接踵投放市场,我国新能源汽车近几年销量全世界第一,2016 年销量为 50.7 万辆,销量逐年增添, 到 2018 年销量为 125.6 万辆.设年均匀增添率为x ,可列方程为( )A . 50.7( 1+x ) 2= 125.6B . 125.6( 1﹣ x ) 2= 50.7C . 50.7( 1+2x )= 125.62D . 50.7( 1+x )= 125.66.现定义某种运算 a b a(ab) ,若 (x 2) x 2 x 2 ,那么 x 的取值范围是 ()(A ) 1x 2 ( B ) x2 或 x1 (C ) x 2( D ) x17、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 228、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 229、对于 x 的一元二次方程 2x221 0 的一个根为2,则 a 的值是()3 x aA . 1B . 3C . 3D .310、一个等腰三角形的底边长是6,腰长是一元二次方程x 2﹣8x+15= 0 的一根, 则此三角形的周长是( )A . 16B .12C . 14D .12 或 16二、填空题11.已知一元二次方程有一个根是2,那么这个方程能够是(填上你以为正确的一个方程即可).12.已知实数 x 知足 4x2-4x+l=O ,则代数式2x+ 1的值为 ________.2x13.假如、是一元二次方程 x23x 1 0的两个根,那么2 +2的值是___________14.已知23是一元二次方程 x24x c0 的一个根,则方程的另一个根是.15.已知a0,a b, x 1是方程ax2bx10 0 的一个解,则a2b2的值是.2a 2b16.在实数范围内定义一种运算“*”,其规则为a* b a 2b2,依据这个规则,方程( x 2)*50 的解为17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,此中有一个数学识题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60 步,问它的长比宽多多少步?依据题意得,长比宽多步.18、已知三个连续奇数,此中较大的两个数的平方和比最小数的平方的 3 倍还小 25,则这三个数分别为 _________19、甲、乙两同学解方程22 和 7;乙看错了常数x +px+q=0,甲看错了一次项系数,得根为项,得根为 1 和 -10,则原方程为20、如图 1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为 1 米的正方形后,剩下的部分恰好能围成一个容积为15 米3的无盖长方体箱子,且此长方体箱子的底面长比宽多 2 米,现已知购置这类铁皮每平方米需20 元钱,问张大叔购回这张矩形铁皮共花了元钱?1 米1 米图 1三、解答题21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你以为适合的方法解这个方程.① x23x 1 0 ;② ( x 1)2 3 ;③ x23x 0 ;④ x22x 4 .22、关 x 的一元二次方程(x-2)(x-3)=m有两个不相等的实数根x1、 x2,则 m 的取值范围是;若 x1、x2满《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每题 3 分,共 24 分)1.在一元二次方程x 2x 6x 5中,二次项系数、一次项系数、常数项分别是() .A . 1、- 1、 5B . 1、 6、5C . 1、- 7、 5D .1、- 7、- 52.用配方法解方程x 2x 2 ,方程的两边应同时() .11A .加上B .加上42C .减去1D .减去 1423.方程 (x - 5)( x - 6)=x - 5 的解是()A . x=5B . x=5 或 x=6C . x=7D . x=5 或 x=74.餐桌桌面是长 160cm ,宽为 100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2 倍,且使周围垂下的边等宽, 小刚设周围垂下的边宽为 xcm ,则应列得的方程为 ().A .( 160+ x )( 100+ x )=160× 100× 2B .(160+ 2x )(100+ 2x ) =160× 100× 2C .( 160+ x )(100+ x ) =160× 100D .(160+ 2x )( 100+ 2x ) =160×1005.电流经过导线会产生热量,设电流强度为 I (安培),电阻为 R (欧姆),1 秒产生的热量为 Q (卡),则有 Q=0.24I 2R ,此刻已知电阻为 0.5 欧姆的导线, 1 秒间产生 1.08 卡的热量,则该导线的电流是() .A .2 安培B .3 安培C . 6安培D .9 安培6.对于 x 的方程 ax 2bx c0 ( a ≠0, b ≠ 0)有一根为- 1 ,则 b 的值为()a cA . 1B .- 1C . 22D .- 27.对于 x 的一元二次方程 (2m 3)x m 2 0 根的状况是() .xA .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的状况没法确立8.在解二次项系数为1 的一元二次方程时,马虎的甲、乙两位同学解同一道题,甲看错了常数项,获得两根分别是4 和 5;乙看错了一次项系数,获得的两根分别是-3 和- 2,则方程是()A . x 2 9 x 6 0B . x 2 9x 6 0C . x 29x 6 0D . x 29 x 6二、填一填,点睛之笔(每题 3 分,共 18 分)9.对于 x 的方程 (m2) x m 22(3 m)x2 0 是一元二次方程,则 m 的值为 _______.10.若对于 x 的一元二次方程x 2mx n0 有两个相等的实数根,则切合条件的一组m ,n 的实数值能够是m =_________, n =________.11.第二象限内一点 A ( x1 , x 2- 3),其对于 x 轴的对称点为B ,已知 AB=12,则点 A 的坐标为 __________.12.跟着人们收入的不停提升及汽车家产的迅速发展,汽车已愈来愈多地进入了一般家庭,成为居民花费新的增添点.据某市交通部门统计, 2008 年末全市汽车拥有量为 150 万 辆,而截止到 2010 年末,全市的汽车拥有量已达 216 万辆.则 2008 年末至2010 年末该市汽车拥有量的年均匀增添率为__________.13.拂晓同学在演算某正数的平方时,将这个数的平方误写成它的2 倍,使答案少了35,则这个数为 __________.a b a b14.将 4 个数 a ,b ,c , d 排成 2 行、2 列,两边各加一条竖直线记成d,定义dc cad bc ,上述记号就叫做 2 x 1 x 1______.阶队列式.若xx6 ,则 x1 1三、做一做,牵手成功(共58 分)15.(每题 3 分,共 9 分)用适合方法解以下方程:( 1)( x - 4) 2- 81=0;( 2) 3x ( x - 3) =2( x - 3);( 3) 2 x 2 1 6 x .16.( 5 分)已知 y 1 x 2x 3 , y 25( x 1) ,当 x 为什么值时, y 1 y 2 .17.( 6 分)飞机腾飞时,要先在跑道上滑行一段行程,这类运动在物理中叫做匀加快直线运动,其公式为 s v 0 t1at 2 ,若某飞机在腾飞前滑行了 400m 的距离,此中 v 0=30m/s ,2a=20m/s 2,求所用的时间 t .18.( 7 分)阅读资料:为解方程( x 2 1)2 5( x 2 1) 4 0 ,我们能够将 x 2 1 看作一个整体,而后设 x 21 y ,那么原方程可化为y 2 5y 40 ① .解得 y 1=1, y 2=4.当 y 1时, x 2 1 1 ,∴ x 2 2 ,∴ x 2 ;当 y4 时, x 2 1 4 ,∴ x 25 ,∴ x5 .故原方程的解为 x 12 , x 22 , x 22 , x 45 .解答问题:( 1)上述解题过程, 在由原方程获得方程①的过程中,利用 ________法达到认识方程的目的,表现了转变的数学思想;( 2)请利用以上知识解方程x 4- x 2- 6=0.19.( 7 分)设 a 、 b 、 c 是△ ABC 的三条边,对于 x 的方程 x 22 bx 2c a0 有两个相等的实数根,且方程 3cx 2b 2a 的根为 0.( 1)求证:△ ABC 为等边三角形;( 2)若 a 、 b 为方程 x 2mx 3m 0 的两根,求 m 的值 .20.( 7 分)在国家的宏观调控下,某市的商品房成交价由今年5 月份的14000元 /人教版九年级数学上册第21 章一元二次方程单元检测题(有答案) (10)一、选择题 (本大题共 6 小题, 每题 2 分,共 12 分.在每题所给出的四个选项中,恰 有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡相应地点上)1.( 2 分)计算 218 5 的结果是()。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。
第二十一章一元二次方程一、单选题1.方程x2-4=0的解是A.x=2B.x=-2C.x=±2D.x=±42.下列方程中,是一元二次方程的是()=1 A.xy=0B.x2+1=0C.x2=x(x−1)D.x2+1x3.方程3x2=5x+7的二次项系数、一次项系数,常数项分别为()A.3,5,7B.3,−5,−7C.3,−5,7D.3,5,−74.将方程x2−6x−1=0配方后,原方程可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=10D.(x+3)2=85.若关于x的一元二次方程(k−2)x2+4x+1=0有两个实数根则k的取值范围是( ) A.k<6B.k<6且k≠2C.k≤6且k≠2D.k>66.已知a是方程x2−2x−1=0的一个解,则代数式2a2−4a+3的值为()A.4B.-4C.5D.-57.已知m是一元二次方程x2−4x+1=0的一个根,则2023−m2+4m的值是()A.−2023B.2023C.2022D.20248.如果关于x的方程(m−2)x2−(2m−1)x+m=0只有一个实数根,那么方程mx2−(m+2)x+(4−m)=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.只有一个实数根9.2022年,新《医保目录》启用,部分药品实行降价.某药品经过两次降价,每瓶零售价由132元降为102元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.132(1+x)2=102B.132(1−x)2=102C.132(1−2x)=102D.132(1−x2)=10210.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为−4,3,则方程a(x+m−1)2 +n=0的两根分别为()A.2,−5B.−3,4C.3,−4D.−2,5二、填空题11.把下列方程中一元二次方程的序号填在横线上:.+5=0 ⑥3x3﹣4x2+1=0.①x2=4②2x2+y=5③3x+x2﹣1=0 ④5x2=0⑤3x2+x212.方程2(x+1)2=(x+2)(x﹣2)化为一般形式为.13.把方程x2+6x+3=0变形为(x+ℎ)2=k的形式,其中h,k为常数,则k=.14.关于x的一元二次方程x2+2x+4c=0有两个相等的实数根,则c=.15.连续两个奇数的乘积为483,则这两个奇数为.16.若关于x的一元二次方程mx2+x−1=0有两个不相等的实数根,则m的取值范围是.17.若ΔABC的两边长分别为3和4,第三边的长是方程x2−6x+5=0的根,则ΔABC的周长是.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边,且BC>AB).若花园的面积为192m2,则AB的长为m.三、解答题19.解方程:(1)x2−5x−6=0;(2)2x2−4x−1=0;(3)(x−7)2+2(x−7)=0;(4)(3x+2)2=4(x−3)2.20.已知关于x的一元二次方程x2+(2m+2)x+m2−4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.21.已知关于x的一元二次方程(a﹣c)x2+2bx+(a+c)=0.其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.22.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售250个,9月份销售360个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为25元/个,测算在市场中当售价为40元/个时,月销售量为400个,若在此基础上售价每上涨1元,则月销售量将减少10个,为使月销售利润达到7000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案:1.C2.B3.B4.B5.C6.C7.D8.C9.B10.B11.①③④⑤12.x 2+4x +6=013.614.14/0.2515.21,23或−23,−21.16.m >−14且m ≠017.1218.1219.(1)x 1=6,x 2=-1;(2)x 1=2+62,x 2=2−62;(3)x 1=7,x 2=5;(4)x 1=-8,x 2=45.20.(1) m >−52;(2)m =−2.21.(1)△ABC 为等腰三角形;(2)△ABC 为直角三角形22.(1)20%(2)45。
九年级数学上册第二十一章《一元二次方程》测试题-人教版(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
人教版九年级数学上册《第二十一章一元二次方程》测试卷-附带答案一、单选题1.下列方程是关于的一元二次方程的是()A.B.C.D.2.用配方法解一元二次方程变形后的结果正确的是()A.B.C.D.3.我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱倩人去买几株椽.每株脚钱三文足无钱准与一株椽.”其大意为:现请人代买一批椽这批椽的价钱为文.如果每株椽的运费是文那么少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱试问文能买多少株椽?设这批椽的数量为株则符合题意的方程是()A.B.C.D.4.一元二次方程的根是()A.B.C.D.5.若是关于的一元二次方程的解则的值为()A.B.C.D.6.若关于x的方程有实数根则实数k的取值范围是()A.B.C.D.且7.设a b是方程的两个实数根则的值是()A.2021 B.2020 C.2019 D.20188.为了庆祝教师节市教育工会组织篮球比赛赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛则这次参加比赛的球队个数为()A.8 B.9 C.10 D.11二、填空题9.三角形的每条边的长都是方程的根则三角形的周长是. 10.一元二次方程有一根为则k的值为.11.一元二次方程两个根为且则k= 。
12.随着互联网的迅速发展某购物网站的年销售额从2020年的300万元增长到2022年的507万元设平均每年销售额增长的百分率为x 则关于x的方程是.13.一个两位数十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调得到的两位数比原来的两位数小27 则原来的两位数是三、计算题14.解下列方程:(1)(2)15.已知关于的一元二次方程有实数根.(1)求的取值范围(2)如果方程的两个实数根为且求的取值范围.16.如图老李想用长为的栅栏再借助房屋的外墙(外墙足够长)围成一个矩形羊圈并在边上留一个宽的门(建在处另用其他材料).(1)当羊圈的长和宽分别为多少米时能围成一个面积为640的羊圈?(2)羊圈的面积能达到吗?如果能请你给出设计方案如果不能请说明理由.“4•20”雅安地震后某商家为支援灾区人民计划捐赠帐篷16800顶该商家备有2辆大货车、17.8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶大、小货车每天均运送一次两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损实际运送过程中每辆大货车每次比原计划少运200m顶每辆小货车每次比原计划少运300顶为了尽快将帐篷运送到灾区大货车每天比原计划多跑次小货车每天比原计划多跑m次一天恰好运送了帐篷14400顶求m的值.18.甲、乙两工程队合作完成某修路工程该工程总长为4800米原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米刚好按时完成任务.(1)求甲工程队每小时修的路面长度(2)通过勘察地下发现大型溶洞此工程的实际施工里程比最初的4800米多了1000米在实际施工中乙工程队修路效率保持不变的情况下时间比原计划增加了()小时甲工程队的修路速度比原计划每小时下降了米而修路时间比原计划增加m小时求m的值.参考答案:1.D2.D3.D4.D5.D6.B7.C8.C9.6或10或1210.211.112.13.7414.(1)解:∵∴∴∴(2)解:∵∴则∴15.(1)解:根据题意得解得(2)解:根据题意得而所以解得而所以的范围为.16.(1)解:设矩形的边则边.根据题意得.化简得.解得.当时当时.答:当羊圈的长为宽为或长为宽为时能围成一个面积为的羊圈.(2)解:不能理由如下:由题意得.化简得.∵∴一元二次方程没有实数根.∴羊圈的面积不能达到.17.(1)解:设小货车每次运送x顶则大货车每次运送(x+200)顶根据题意得:2×[2(x+200)+8x]=16800解得:x=800.∴大货车原计划每次运:800+200=1000顶答:小货车每次运送800顶大货车每次运送1000顶(2)解:由题意得2×(1000﹣200m)(1+ m)+8(800﹣300)(1+m)=14400解得:m1=2 m2=21(舍去).答:m的值为218.(1)解:设乙两工程队每小时铺设路面x米则甲工程队每小时铺设路面米根据题意得解得:则∴甲工程队每小时铺设的路面长度为110米(2)解:根据题意得整理得解得:(舍去)∴m的值为18。
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++=3.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=4.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -=B .()217x -=C .()214x -=D .()215x +=5.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=6.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根 D .没有实数根7.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( ) A .12B .16C .l2或16D .158.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( )日 一 二 三 四 五 六图1图2A .17B .18C .19D .209.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( ) A .a <-2 B .a >-2C .-2<a <0D .-2≤a <010.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根11.下列方程中是关于x 的一元二次方程的是( ) A .210x x+= B .ax 2+bx +c =0 C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2 12.方程23x x =的根是( ) A .3x =B .0x =C .123,0x x =-=D .123,0x x ==13.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75 B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7 14.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 15.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题16.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.17.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.18.一元二次方程(x +2)(x ﹣3)=0的解是:_____. 19.写出有一个根为1的一元二次方程是______.20.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 21.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____. 22.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____. 23.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.24.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____25.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________26.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题27.解方程:y(y-1)+2y-2=0.28.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0. (1)代数式22x -的不变值是________,A=________. (2)已知代数式231x bx -+,若A=0,求b 的值.29.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 30.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.。
《一元二次方程》单元检测题一、单选题1.为执行“均衡教育”政策,某区2016年投入教育经费2500万元,预计到2018年底三年累计投入1。
2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是A. 2500(1+2x)=12000 B。
2500(1+x)2=12000C. 2500+2500(1+x)+2500(1+2x)=12000 D。
2500+2500(1+x)+2500(1+x)2=12000 2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A. (x+4)2=17B. (x+4)2=15 C。
(x﹣4)2=17 D. (x﹣4)2=153.若方程x2﹣3x﹣1=0的两根也是方程x4+ax2+bx+c=0的根,则a+b﹣2c的值为( )A. ﹣13 B。
﹣9 C。
6 D. 04.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成()A. (x﹣n+5)2=1 B. (x+n)2=1 C。
(x﹣n+5)2=11 D。
(x+n)2=115.若α、β为方程2x2−5x−1=0的两个实数根,则2α2+3αβ+5β的值为()A. −13B. 12 C。
14 D。
156.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是( ).A. k<1B. k≤1C. k≤1且k≠0D. k<1且k≠07.一元二次方程2440x x-+=的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C。
无实数根 D。
无法确定8.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为( )A. ﹣4B. 4 C。
﹣2 D。
29.方程x2﹣2x=0的解为()A。
x1=0,x2=2 B. x1=0,x2=﹣2 C。
x1=x2=1 D. x=210.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A. ﹣2 B. 23C. 2 D。
第二十一章《一元二次方程》检测题
(满分:150分 时间:100分钟)
班级 姓名 学号
一、选择题(本大题共10小题,每小题4分,共40分)
1.关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )
A .a ≠1
B .a ≠-1
C .a ≠±1
D .为任意实数
2.用配方法解方程x 2-2x -5=0时,原方程应变形为( )
A .(x +1)2=6
B .(x -1)2=6
C .(x +2)2=9
D .(x -2)2=9
3.(2015毕节)若关于x 的一元二次方程x 2+(2k-1)x +k 2
-1=0有实根,则k 的取值范围是( )
A .K ≥ 5/4
B .k >5/4
C .k <5/4
D .K ≤5/4
4.(2015铜仁)关于x 的一元二次方程3x 2+4x -5=0,下列说法正确的是( )
A .方程有两个相等的实数根
B .方程有两个不相等的实数根
C .没有实数根 D. 无法确定
5.方程x 2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A .12
B .12或15
C .15
D .不能确定
6.对于任意实数k ,关于x 的方程x 2-2(k +1)x -k 2+2k -1=0的根的情况为( )
A .有两个相等的实数根
B .没有实数根
C .有两个不相等的实数根
D .无法确定
7.已知函数y =kx +b 的图象如图21-1,则一元二次方程x 2+x +k -1=0根的存在情况是( )
A .没有实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .无法确定 8.(2015黔东南)设21,x x 是一元二次方程0322=--x x 的两根,则2
221x x +=( )
A.6
B.8
C.10
D.12
图21-1 图21-2
9.如图21-2,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为( )
A .100×80-100x -80x =7644
B .(100-x )(80-x )+x 2=7644
C .(100-x )(80-x )=7644
D .100x +80x =356
10.图21-3是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
图21-3 A .32 B .126 C .135 D .144
二、填空题(本大题共6小题,每小题4分,共24分)
11.一元二次方程x 2-3=0的解为________________.
12.把一元二次方程(x -3)2=4化为一般形式为:________________,二次项为:________,一次项系数为:________,常数项为:________.
13.(2015遵义)关于x 的一元二次方程x 2+4x -b =0有两个不相等的实数根,则b 的取值范围是__________.
14.已知x1,x2是方程x2-2x-1=0的两个根,则1
x1+1
x2=__________.
15.(2015毕节)一个容器盛满纯药液40L,第一次倒数若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,每次倒出的液体是_______L.
16.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.
三、解答题(本大题共9小题,共78分)
17.(6分)用公式法解方程:2x2-4x-5=0.
18.(6分)用配方法解方程:x2-4x+1=0.
19.(6分)用因式分解法解方程:(y-1)2+2y(1-y)=0.
20.(8分)若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形状.21.(8分)如图21-4,在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?
图21-4
22.(10分2015黔东南)先化简,后求值:)2
52(6332--+÷--m m m m m ,其中m 是方程0322=-+x x 的根.
23.(10分)已知:关于x 的方程x 2-2(m +1)x +m 2=0.
(1)当m 取何值时,方程有两个实数根?
(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
24.(12分)已知下列n (n 为正整数)个关于x 的一元二次方程:
x 2-1=0,
x 2+x -2=0,
x 2+2x -3=0,
…
x 2+(n -1)x -n =0.
(1)请解上述4个一元二次方程;
(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可.
25.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
第二十一章参考答案
1.C 2.B 3.D 4.B 5.C 6.C 7.C 8.C 9.C 10.D
11.x =±3 12.x 2-6x +5=0 x 2 -6 5 13.b<9/4
14.-2 15.10
16.(x +100)(200-x )=20 000
17.解:∵a =2,b =-4,c =-5,
∴b 2-4ac =(-4)2-4×2×(-5)=56>0.
∴x =4±562×2
=4±2 144. ∴x 1=2+142,x 2=2-142
. 18.解:∵x 2-4x +1=0,
∴x 2-4x +4=4-1,即(x -2)2=3.
∴x 1=2+3,x 2=2- 3.
19.解:∵(y -1)2+2y (1-y )=0,
∴(y -1)2-2y (y -1)=0.∴(y -1)(y -1-2y )=0.
∴y -1=0或y -1-2y =0.∴y 1=1,y 2=-1.
20.解:将a 2-6a +b 2-10c +c 2=8b -50变形为a 2-6a +9+b 2-8b +16+c 2-10c +25=0, ∴(a -3)2+(b -4)2+(c -5)2=0.
∴a -3=0,b -4=0,c -5=0.∴a =3,b =4,c =5.
∵32+42=52,∴△ABC 为直角三角形.
21.解:设道路宽为x m ,
(32-2x )(20-x )=570,
640-32x -40x +2x 2=570,
x 2-36x +35=0,
(x -1)(x -35)=0,
x 1=1,x 2=35(舍去). 答:道路应宽1 m.
22.解:原式= 13(3)
m m +;解方程0322=-+x x 得x 1=1,x 2=-3(舍去) 当x=1时,原式=1/12。
23.解:(1)当Δ≥0时,方程有两个实数根,
∴[-2(m +1)]2-4m 2=8m +4≥0.∴m ≥-12
. (2)取m =0时,原方程可化为x 2-2x =0,
解得x 1=0,x 2=2.(答案不唯一)
24.解:(1)x 2-1=(x +1)(x -1)=0,∴x 1=-1,x 2=1.
x 2+x -2=(x +2)(x -1)=0,∴x 1=-2,x 2=1.
x 2+2x -3=(x +3)(x -1)=0,∴x 1=-3,x 2=1.
…
x 2+(n -1)x -n =(x +n )(x -1)=0,∴x 1=-n ,x 2=1.
(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.
25.解:(1)设每千克应涨价x 元,
则(10+x )(500-20x )=6000.
解得x =5或x =10.
为了使顾客得到实惠,所以x =5.
(2)设涨价x 元时总利润为y ,则
y =(10+x )(500-20x )
=-20x 2+300x +5000=-20(x -7.5)2+6125
当x=7.5时,取得最大值,最大值为6125.
答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。