最新常用温度测量技术及其接口电路
- 格式:doc
- 大小:238.00 KB
- 文档页数:6
温度检测电路工作原理及各器件的参数在空调整机上,常用到温度传感器检测室内、外环境温度和两器盘管温度,下面根据常用温度检测电路介绍其工作原理及注意事项。
1.电路原理图2. 工作原理简介温度传感器RT1(相当于可变电阻)与电阻R9形成分压,则T端电压为:5×R9/(RT1+R9);温度传感器RT1的电阻值随外界温度的变化而变化,T端的电压相应变化。
RT1在不同的温度有相应的阻值,对应T端有相应的电压值,外界温度与T端电压形成一一对应的关系,将此对应关系制成表格,单片机通过A/D采样端口采集信号,根据不同的A/D值判断外界温度。
3. 各元器件作用及注意事项3.1 RT1与R9组成分压电路,R9又称标准取样电阻,该电阻不可随意替换,否则会影响控温精度。
3.2 D7与D8为钳位二极管,确保输入T端电压不大于+5V、不小于0V;但并不是所有情况下均需要这两个二极管,当RT1引线较短时可根据实际情况不使用这两个二极管。
3.3 E5起到平滑波形的作用, 一般选10uF/16V电解电容,当RT1引线较长时,要求使用100uF/16V电解电容;若E5漏电,T端电压就会被拉低,导致:制冷时压缩机不工作,制热时压缩机不停机。
3.4 R11和C7形成RC滤波电路,滤除电路中的尖脉冲;C7同样会出现E5故障现象。
3.5 电路中,RT1就是我们常说的感温头,实际上它是一个负温度系数热敏电阻,当温度升高时它的阻值下降,温度降低时阻值变大。
50℃时,阻值为3.45KΩ。
25℃时,为10KΩ;0℃时,为35.2KΩ 。
具体温度与阻值的关系见附表。
若RT1开路或短路,空调器不工作,并显示故障代码;若RT1阻值发生漂移(大于或小于标准阻值)则空调器压缩机或关或常开或出现保护代码。
空调温度传感器原理及故障分析空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。
25℃时的阻值为标称值。
NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。
速度快、时间短、精度高的体温检测电路图!FR8016HA物联网开发板免费赠送开发板:2020富芮坤杯FR8016HA物联网开发板设计大赛-面包板社区体温是人体生命活动的关键指标之一,准确快速地测量出体温对疾病诊断和治疗有着十分重要的意义。
红外测温为测量人体体温提供了快速、非接触测量手段,与传统水银体温计相比,该测温方式具有反应速度快、测量时间短、精度高、使用简单等优点,可广泛、有效地用于密集人群的体温排查。
非接触红外测温计针对特定人群,比如儿童或老年人,有很好的效果。
随着生活节奏的变快,父母在忙碌中抽出时间帮助孩子测体温是一件非常麻烦的事,而且由于儿童不稳定、好动,通过非接触红外测温仪就可以快速准确地测出其体温;老年人活动不便,使用传统的体温计很不方便,而且由于人老眼花,也不能看清体温计汞柱的位置,通过非接触红外测温仪就可以很快得到体温,而且通过语音告知老人,有异常情况可及时发现。
本方案是基于FREQCHIP 的FR8016HA开发板为控制核心,采用红外测温传感器BM43THA80C进行温度的测量,通过开发板上240*240彩屏显示,测量的温度以扬声器进行播报。
功能框图图一 FR8016HA测温枪方案功能框图本方案设计的测温枪主要功能如下:按下按键后,唤醒FR8016HA,开始对体温的测量、显示、播报。
系统总体方案测温枪的系统结构框图如图2,主要有FR8016HA、BM43THA 热电堆传感器、放大电路、彩屏显示、语音播放、按键部分、电源部分组成,本方案基于FR8016HA开发板演示,未达到产品级方案,所以要做成产品方案,还要进一步做二次开发,例如优化功耗、校准精度、增加模式等等。
FR8016HA的16bit ∑Δ型ADC采样频率率最高可以到48KHz,主要负责采集传感器的弱电压信号放大后的信号,控制温度的计算、显示、播报。
BM43THA 热电堆传感器主要将人体辐射的热量转化为电压信号。
放大电路主要将传感器的弱电压信号放大,按键部分主要负责根据唤醒处理器,开启测量温度。
温度检测电路方案一、所需元件。
1. 温度传感器。
就像一个小探子,我们可以选择DS18B20这种数字温度传感器。
它可厉害啦,就像一个小小的温度精灵,能很精准地感知温度。
而且它是数字式的,和那些模拟传感器比起来,就像智能手机和老式大哥大的区别,使用起来简单方便,直接输出数字信号,不需要我们再费劲去做复杂的模拟信号处理。
2. 微控制器(MCU)这里可以用Arduino板,它就像是整个电路的大脑。
Arduino很友好哦,就算你是电路小白,也能轻松驾驭它。
它能接收温度传感器传来的信号,然后根据我们编写的程序做出各种反应。
就好比一个听话的小助手,你告诉它怎么做,它就怎么做。
3. 显示模块。
要是想看到温度是多少,那就得有个显示的东西。
液晶显示屏(LCD)就很不错,就像一个小窗口,能把温度明明白白地展示出来。
它可以是那种1602型号的,有两行显示,能清楚地显示温度数值啦。
二、电路连接。
1. 温度传感器与微控制器的连接。
把DS18B20的数据线(一般是一根线,很神奇吧)接到Arduino的一个数字引脚。
就像把小探子和大脑之间拉了一条小专线,这样温度信息就能顺利地从传感器传到Arduino这个大脑里啦。
然后再给传感器接上电源线(一般是3 5V)和地线,就像给小探子提供能量和扎根的地方,这样它才能好好工作。
2. 显示模块与微控制器的连接。
对于1602液晶显示屏,它有好几个引脚呢。
要把它的电源引脚接到合适的电源(一般也是3 5V)和地线上,就像给它吃饱饭、站好脚。
然后它的数据引脚要和Arduino的一些数字引脚连接起来,这样Arduino这个大脑就能把要显示的温度数据发送给它了。
就像大脑给小窗口发送消息,让它显示出来。
三、程序编写(以Arduino为例)1. 初始化部分。
要告诉Arduino我们用了哪些引脚。
就像告诉大脑哪些通道是和温度传感器、显示模块连接的。
定义DS18B20连接的引脚为一个常量,像`#define TEMP_SENSOR_PIN 2`(假设接在Arduino的2号引脚)。
中文摘要温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器(见下表)。
IC温度传感器又包括模拟输出和数字输出两种类型。
热电偶应用很广泛,因为它们非常坚固而且不太贵。
热电偶有多种类型,它们覆盖非常宽的温度范围,从 C200℃到2000℃。
它们的特点是:低灵敏度、低稳定性、中等精度、响应速度慢、高温下容易老化和有漂移,以及非线性。
另外,热电偶需要外部参考端。
RTD精度极高且具有中等线性度。
它们特别稳定,并有许多种配置。
但它们的最高工作温度只能达到400℃左右。
它们也有很大的TC,且价格昂贵(是热电偶的4~10倍),并且需要一个外部参考源。
模拟输出IC温度传感器具有很高的线性度 (如果配合一个模数转换器或ADC可产生数字输出)、低成本、高精度(大约1%)、小尺寸和高分辨率。
它们的不足之处在于温度范围有限(C55℃~+150℃),并且需要一个外部参考源。
数字输出IC温度传感器带有一个内置参考源,它们的响应速度也相当慢(100 ms数量级)。
虽然它们固有地会自身发热,但可以采用自动关闭和单次转换模式使其在需要测量之前将IC设置为低功耗状态,从而将自身发热降到最低。
与热敏电阻、RTD和热电偶传感器相比,IC温度传感器具有很高的线性,低系统成本,集成复杂的功能,能够提供一个数字输出,并能够在一个相当有用的范围内进行温度测量。
关键词比较器、热敏电阻传感器、电桥式测量电路、迟滞比较器、负反馈。
目录课程设计任务书............................................................................................. 错误!未定义书签。
任务书 ............................................................................................................ 错误!未定义书签。
温度检测电路温度检测电路1、电路图:优选电路: 图(a) 、图(b)。
温度传感器有一特性,即在不同的温度时有不同的电阻值,利用传感器的这一特性,可设计温度检测电路:图(a)为常见电路,图(b)在两个分压电阻上分别加了个稳压二极管,用于防静电箝位,主要用在大功率分体机、移动空调、抽湿机等容易产生静电的机型。
以前使用过的温度检测电路还有很多种,如图(c)是23常规机所用电路,C1与C2起到同样的滤波作用:柜机的电路是图(d),它的电容C1用的是47μF;变频机所用电路又有区别,如36变频为图(e),没有用C1,它的C2为223,45变频为图(f),R2为1K,50变频为图(g)。
空调器所用的温度检测电路中还有一种为排气温度检测电路,电路基本相同,如50变频所用的图(h)。
2、工作原理及电子元器件在电路中的作用:所有温度检测电路原理大致相同,现以空调器中常用的电路图(a)为例进行分析: 电路中,温度传感器RT(相当于可变电阻)与电阻R1形成分压,则A端电压为:5R1/(RT +R1),随着外界温度的变化,温度传感器RT的电阻值跟着变化,则A端的电压相应变化。
因为RT在不同的温度有相应的阻值,则不同的外界温度在A端有相应的电压值,外界温度与A端电压形成一一对应的关系,可以把此对应关系制成表格。
因此单片机可根据不同的电压值检测外界温度。
电路中,RT与R1组成分压电路,C1、C2和R2形成Π型RC滤波,C1对分压电路输出电压进行第一次滤波(平滑滤波),随后C1两端余下的交流杂波又被R2和C2分压。
这余下的交流成分大都降在R2上,而C2两端余下的交流成分就极小,于是起到了第二次滤波(高频滤波)的作用。
但是R2的阻值不能太大,它会使输出直流电压损失,通常取1K或2K, 所以这种滤波器多用于负载电流较小的场合。
此温度检测电路,RT与R1可互换,此时A端电压为5 RT /(RT +R1),C1亦可用47μF电容替代,在有些电路中,也把C1省去不用,考虑到性能可靠、规范性及编程方便,通常用图(a)所示电路,取R1为8.06K、R2为2K, C1为10μF、C2为贴片电容103或104(即0.01μF或0.1μF)。
1 工作原理本系统可以分为五大部分:热电阻温度采集、运行状态显示、继电器控制、键盘输入、风向步进电机控制。
2.1 热电阻温度采集热电阻传感器以其温度特性稳定、测量精图1 Pt1000热电阻温度测量电路度高的特点,在大型中央空调得到了广泛的应用。
采用Pt1000热电阻作为温度传感器的测量电路原理图如图1 所示。
热电阻Rt 与三个电阻接成电桥。
当温度变化时,使得运算放大器的同相输入端的电位发生变化,经过运算放大器放大之后输入到Atmega16单片机进行AD 转换。
由于单片机采用5V 电压作为ADC 的参考电源,而电桥在温度变化为0~100°C 时,输出电压范围为0~0.7V ,所以确定运算放大电路的放大倍数为7,以获得最佳的测量结果。
运算放大电路的电阻按以下公式确定:71045==iu u R R + 456//R R R =取Ω===860,1,6645R k R k R 。
输出电压变化范围大致是0~5V 。
由于ADC 的转换精度为10,故当输入电压为5V 时,其采样值为1023,根据电桥平衡原理,可得到以下公式:)21(1023750-+•=•t t R R R U N V (1) 其中,N ——ADC 数据寄存器的值,U ——电桥电源电压,0R ——Pt1000在0°C 时的电阻1000Ω。
Pt1000热电阻的阻值按以下公式计算::)1(20t B t A R R t ⋅+⋅+= (2)Rt ——温度为t 时铂热电阻的电阻值,Ω;t ——温度,℃;0R ——Pt1000在0°C 时的电阻1000Ω。
A ——分度常数,A =0.0038623139728B ——分度常数,B =-0.00000065314932626用Visual 根据以上公式(1)、(2)生成用N 来查找温度t 的程序表格,其代码如下:Private Sub Pt1000()Me .Cursor = Cursors.WaitCursortxtTab.Clear()Dim U As Integer = 9 '电桥电源电压'热电阻0度时的电阻值Dim Pt1000_R0 As Integer = 1000Dim n As IntegerDim sngT As SingleDim sngRt As SingletxtTab.AppendText("const float Pt1000Tab[]={" & Chr(13) & Chr(10))For n = 0 To 1023sngRt = (10000 * n + 7161000 * U) / (7161 * U - 10 * n)sngT = (-const_A + Sqrt(const_A ^ 2 - 4 * const_B * (1 - sngRt / Pt1000_R0))) / (2 * const_B)If n < 1023 Then txtTab.AppendText(Format(Abs(sngT), "0.0") & ", /* " & n &" */")Else txtTab.AppendText(Format(Abs(sngT), "0.0") & " /* " & n & " */" & Chr(13)& Chr(10) & "};")End IfIf n Mod 5 = 0 ThentxtTab.AppendText(Chr(13) & Chr(10))End IfNexttxtTab.SelectAll()txtTab.Copy()Me .Cursor = Cursors.DefaultEnd Sub生成的程序常数表格(1024个值)部分如下:const float Pt1000Tab[]={0.0, /* 0 */ 0.1, /* 1 */0.2, /* 2 */0.2,……63.4, /* 696 */63.5, /* 697 */……99.3, /* 1022 */99.4 /* 1023 */};2.2 运行状态显示本系统采用一块16×4的字符型液晶模块,这种类型的LCD应用很广泛,其控制驱动主芯片为HD44780及其扩展驱动芯片HD44100(或兼容芯片),少量阻、容元件,结构件等装配在PCB板上而成。
温湿度传感器的电路接口及使用方法概述说明1. 引言1.1 概述本文将详细介绍温湿度传感器的电路接口及使用方法。
温湿度传感器是一种能够测量环境中温度和湿度的设备,广泛应用于各个领域,如室内温湿度监测、农业温室环境控制以及工业生产过程中的温湿度监测等。
1.2 文章结构本文将分为五个主要部分来介绍温湿度传感器的电路接口及使用方法。
第一部分为引言,对文章主题进行概述说明;第二部分将深入探讨温湿度传感器的电路接口原理和常用类型;第三部分将详细介绍连接方式及硬件要求,以及编写代码和调试过程;第四部分将通过应用案例分析,分享室内温湿度监测系统实现方案、温室环境控制系统设计思路与实践经验以及工业生产过程中的技术应用研究;最后一部分为结论,总结全文内容。
1.3 目的本文旨在提供读者对于温湿度传感器电路接口和使用方法的全面了解。
通过本文的阅读,读者将能够掌握温湿度传感器的基本原理和工作方式,了解常用的温湿度传感器类型,并学会如何进行连接、编写代码和分析数据。
此外,通过应用案例分析部分,读者可以获取到关于室内温湿度监测系统、温室环境控制系统和工业生产过程中的技术应用实践经验。
最终,通过本文的阅读,读者将能够更好地应用温湿度传感器于实际项目中,提高环境监测和控制的效率与准确性。
2. 温湿度传感器的电路接口:2.1 温湿度传感器介绍温湿度传感器是一种能够测量环境中温度和湿度的设备。
它可以通过电子或光学方式来检测环境中的温湿度,并将其转换成相应的电信号输出。
2.2 电路接口原理温湿度传感器通常由一个含有感温元件和感湿元件的复合芯片组成。
这些元件可以通过改变其阻值、频率等方式来反映环境中的温度和湿度变化。
在设计温湿度传感器电路接口时,需要考虑以下几个方面:- 供电电压选择:根据不同型号的温湿度传感器,其供电需求可能会有所不同。
需要根据实际使用情况选择合适的供电电压。
- 信号采集:温湿度传感器输出的信号通常是模拟信号,在接口设计时,需要使用模拟信号输入模块进行采集,并进行相应的放大、滤波等处理。
常用温度测量技术及其接口电路
温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。
本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。
图1:热敏电阻器的电阻/温度曲线。
">
温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。
热敏电阻器
用来测量温度的传感器种类很多,热敏电阻器就是其中之一。
许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。
在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。
表1是一个典型的NTC热敏电阻器性能参数,这些数据是对
图2:热敏电阻测量温度的典型电路
热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。
其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。
以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。
图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。
虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。
如果想要知道两点之间某
一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:
这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。
热敏电阻一般有一个误差范围,用来规定样品之间的一致性。
根据使用的材料不同,误差值通常在1%至10%之间。
有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。
图2是利用热敏电阻测量温度的典型电路。
电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,V ref也将是5V。
热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。
图2:热敏电阻测量温度的典型电路。
◆自热问题
◆由于热敏电阻是一个电阻,电流流过它时会产生一定的热量,因此电路设计人员应确保拉升电阻足够大,以防止热敏电阻自热过度,否则系统测量的是热敏电阻发出的热,而不是周围环境的温度。
热敏电阻消耗的能量对温度的影响用耗散常数来表示,它指将热敏电阻温度提高比环境温度高1℃所需要的毫瓦数。
耗散常数因热敏电阻的封装、管脚规格、包封材料及其它因素不同而不一样。
系统所允许的自热量及限流电阻大小由测量精度决定,测量精度为±5℃的测量系统比精度为±1℃测量系统可承受的热敏电阻自热要大。
图3:对热敏电阻进行标定。
应注意拉升电阻的阻值必须进行计算,以限定整个测量温度范围内的自热功耗。
给定出电阻值以后,由于热敏电阻阻值变化,耗散功率在不同温度下也有所不同。
有时需要对热敏电阻的输入进行标定以便得到合适的温度分辨率,图3是一个将10~40℃温度范围扩展到ADC整个0~5V输入区间的电路。
运算放大器输出公式如下:
一旦热敏电阻的输入标定完成以后,就可以用图表表示出实际电阻与温度的对应情况。
由于热敏电阻是非线性的,所以需要用图表表示,系统要知道对应每一个温度ADC的值是多少,表的精度具体是以1℃为增量还是以5℃为增量要根据具体应用来定。
◆累积误差
用热敏电阻测量温度时,在输入电路中要选择好传感器及其它元件,以便和所需要的精度相匹配。
有些场合需要精度为1%的电阻,而有些可能需要精度为0.1%的电阻。
在任何情况下都应用一张表格算出所有元件的累积误差对测量精度的影响,这些元件包括电阻、参考电压及热敏电阻本身。
如果要求精度高而又想少花一点钱,则需要在系统构建好后对它进行校准,由于线路板及热敏电阻必须在现场更换,所以一般情况下不建议这样做。
在设备不能作现场更换或工程师有其它方法监控温度的情况下,也可以让软件建一张温度对应ADC变化的表格,这时需要用其它工具测量实际温度值,软件才能创建相对应的表格。
对于有些必须要现场更换热敏电阻的系统,可以将要更换的元件(传感器或整个模拟前端)在出厂前就校准好,并把
校准结果保存在磁盘或其它存储介质上,当然,元件更换后软件必须要能够知道使用校准
后的数据。
图4:RTD与热敏电阻的电阻/温度曲线的比较。
总的来说,热敏电阻是一种低成本温度测量方法,而且使用也很简单,下面我们介绍电阻温度探测器和热电偶温度传感器。
电阻温度探测器
电阻温度探测器(RTD)实际上是一根特殊的导线,它的电阻随温度变化而变化,通常RTD 材料包括铜、铂、镍及镍/铁合金。
RTD元件可以是一根导线,也可以是一层薄膜,采用电镀或溅射的方法涂敷在陶瓷类材料基底上。
RTD的电阻值以0℃阻值作为标称值。
0℃100Ω铂RTD电阻在1℃时它的阻值通常为100.39Ω,50℃时为119.4Ω,图4是RTD电阻/温度曲线与热敏电阻的电阻/温度曲线的比较。
RTD的误差要比热敏电阻小,对于铂来说,误差一般在0.01%,镍一般为0.5%。
除误差和电阻较小以外,RTD与热敏电阻的接口电路基本相同。
热电偶
热电偶由两种不同金属结合而成,它受热时会产生微小的电压,电压大小取决于组成热电偶的两种金属材料,铁-康铜(J型)、铜-康铜(T型)和铬-铝(K型)热电偶是最常用的三种。
图5:热点偶温度测量接口电路。
热电偶产生的电压很小,通常只有几毫伏。
K型热电偶温度每变化1℃时电压变化只有大约40μV,因此测量系统要能测出4μV的电压变化测量精度才可以达到0.1℃。
由于两种不同类型的金属结合在一起会产生电位差,所以热电偶与测量系统的连接也会产生电压。
一般把连接点放在隔热块上以减小这一影响,使两个节点处以同一温度下,从而降低误差。
有时候也会测量隔热块的温度,以补偿温度的影响(图5)。
测量热电偶电压要求的增益一般为100到300,而热电偶撷取的噪声也会放大同样的倍数。
通常采用测量放大器来放大信号,因为它可以除去热电偶连线里的共模噪声。
市场上还可以买到热电偶信号调节器,如模拟器件公司的AD594/595,可用来简化硬件接口。
表1:典型NTC热敏电阻器性能参数。
固态热传感器
最简单的半导体温度传感器就是一个PN结,例如二极管或晶体管基极-发射极之间的PN 结。
如果一个恒定电流流过正向偏置的硅PN结,正向压降在温度每变化1℃时会降低1.8mV。
很多IC利用半导体的这一特性来测量温度,包括美信的MAX1617、国半的
LM335和LM74等等。
半导体传感器的接口形式多样,从电压输出到串行SPI/微线接口都可以。
温度传感器种类很多,通过正确地选择软件和硬件,一定可以找到适合自己应用的传感器。