2018年高考数学江苏专版三维二轮专题复习教学案:专题八 二项式定理与数学归纳法(理科) Word版含答案
- 格式:doc
- 大小:836.43 KB
- 文档页数:20
二项式定理教学设计教案第一章:导入1.1 教学目标让学生了解二项式定理的背景和意义。
引导学生通过实际例子发现问题,激发学习兴趣。
1.2 教学内容引入二项式定理的概念,解释其在数学中的重要性。
通过具体的例子,如完全平方公式,引导学生观察和总结一般规律。
1.3 教学活动利用多媒体展示完全平方公式的例子,引导学生观察和总结。
组织小组讨论,让学生分享自己的发现和思考。
1.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理的理解程度。
第二章:二项式定理的表述2.1 教学目标让学生掌握二项式定理的表述和公式。
引导学生理解二项式定理的推导过程。
2.2 教学内容给出二项式定理的表述和公式,解释各项的系数和指数的含义。
通过示例,引导学生理解二项式定理的推导过程。
2.3 教学活动通过示例和练习,让学生熟悉二项式定理的表述和公式。
引导学生参与推导过程,加深对二项式定理的理解。
2.4 教学评价通过练习和问题解答,评估学生对二项式定理的掌握程度。
第三章:应用二项式定理3.1 教学目标让学生学会运用二项式定理解决实际问题。
引导学生运用二项式定理进行组合计数和概率计算。
3.2 教学内容解释二项式定理在组合计数和概率计算中的应用。
提供实际问题,引导学生运用二项式定理解决问题。
3.3 教学活动通过示例和练习,让学生掌握二项式定理在组合计数和概率计算中的应用。
组织小组讨论,让学生分享自己的解题方法和经验。
3.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理应用的掌握程度。
第四章:拓展与深化4.1 教学目标让学生了解二项式定理的拓展和深化内容。
引导学生思考二项式定理在数学中的广泛应用和意义。
4.2 教学内容介绍二项式定理的拓展内容,如多项式定理和整数定理。
探讨二项式定理在数学中的广泛应用,如组合数学、概率论等领域。
4.3 教学活动通过示例和练习,让学生了解二项式定理的拓展内容。
组织小组讨论,让学生思考二项式定理在数学中的应用和意义。
—————————— 教育资源共享 步入知识海洋 ————————第2讲 计数原理、随机变量、数学归纳法[考情考向分析] 1.考查分类计数原理、分步计数原理与排列、组合的简单应用,B 级要求. 2.考查n 次独立重复试验的模型及二项分布、离散型随机变量的数学期望与方差,B 级要求.3.考查数学归纳法的简单应用,B 级要求.热点一 计数原理与二项式定理例1 (2018·苏州调研)已知f n (x )=⎝⎛⎭⎪⎫x 2+3a x 3n ,n ∈N *.(1)当a =1时,求f 5(x )展开式中的常数项;(2)若二项式f n (x )的展开式中含有x 7的项,当n 取最小值时,展开式中含x 的正整数次幂的项的系数之和为10,求实数a 的值.解 二项式⎝⎛⎭⎪⎫x 2+3a x 3n的展开式通项为T r +1=C r n ()x 2n -r ⎝ ⎛⎭⎪⎫3a x 3r =C r n (3a )r x2n -5r(r =0,1,2,…,n ), (1)当n =5,a =1时,f (x )的展开式的常数项为T 3=9C 25=90. (2)令2n -5r =7,则r =2n -75∈N ,所以n 的最小值为6,当n =6时,二项式⎝⎛⎭⎪⎫x 2+3a x 36的展开式通项为T r +1=C r 6(3a )r x12-5r(r =0,1,2,…,6), 则展开式中含x 的正整数次幂的项为T 1,T 2,T 3,它们的系数之和为 C 06+C 16(3a )+C 26(3a )2=135a 2+18a +1=10, 即15a 2+2a -1=0,解得a =-13或15.思维升华 涉及二项式定理的试题要注意以下几个方面:(1)某一项的二项式系数与这一项的系数是两个不同的概念,必须严格加以区别. (2)根据所给式子的结构特征,对二项式定理的逆用或变用,注意活用二项式定理是解决二项式问题应具备的基本素质.(3)关于x 的二项式(a +bx )n(a ,b 为常数)的展开式可以看成是关于x 的函数,且当x 给予某一个值时,可以得到一个与系数有关的等式,所以,当展开式涉及到与系数有关的问题时,可以利用函数思想来解决.跟踪演练1 (2018·江苏丹阳高级中学期中)设n ≥3,n ∈N *,在集合{}1,2,…,n 的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a ,较小元素之和记为b . (1)当n =3时,求a ,b 的值;(2)求证:对任意的n ≥3,n ∈N *,b a为定值.(1)解 当n =3时,集合{}1,2,3的所有元素个数为2的子集为{}1,2, {}1,3,{}2,3,所以a =2+3+3=8,b =1+1+2=4.(2)证明 当n ≥3,n ∈N *时,依题意,b =1×C 1n -1+2×C 1n -2+3×C 1n -3+…+()n -2×1(2)C n n --+()n -1×1(1)C n n --, a =2×C 11+3×C 12+4×C 13+…+()n -1×C 1n -2+n ×C 1n -1=2×1+3×2+4×3+…+()n -1×()n -2+n ×()n -1.则a2=C 22+C 23+C 24+…+C 2n =C 33+C 23+C 24+…+C 2n =C 34+C 24+…+C 2n =…=C 3n +1, 所以a =2C 3n +1.又a +b =(n -1)(1+2+3+…+n )=n ()n +12×()n -1=3C 3n +1,所以b =C 3n +1.故b a =12.热点二 随机变量及其概率分布例2 (2018·南京师大附中考前模拟)如图,设P 1,P 2,…,P 6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S .(1)求S =32的概率; (2)求S 的概率分布及数学期望E (S ).解 (1)从六个点中任选三个不同点构成一个三角形共有C 36种不同选法, 其中S =32的为有一个角是30°的直角三角形,(如△P 1P 4P 5),共6×2=12种,所以P ⎝ ⎛⎭⎪⎫S =32=12C 36=35. (2)S 的所有可能取值为34,32,334. S =34的为顶角是120°的等腰三角形(如△P 1P 2P 3), 共6种,所以P ⎝ ⎛⎭⎪⎫S =34=6C 36=310. S =334的为等边三角形(如△P 1P 3P 5), 共2种,所以P ⎝⎛⎭⎪⎫S =334=2C 36=110.又由(1)知P ⎝ ⎛⎭⎪⎫S =32=12C 36=35,故S 的概率分布为所以E (S )=34×310+32×35+334×110=9320. 思维升华 求解一般的随机变量的数学期望的基本方法先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出概率分布,根据数学期望公式计算.跟踪演练2 (2018·南通、徐州、扬州等六市模拟)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3×3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元.(1)求概率P ()X =600;(2)求X 的概率分布及数学期望E (X ).解 (1)从3×3表格中随机不重复地点击3格,共有C 39种不同情形,则事件“X =600”包含两类情形:第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含C 34种情形,第二类包含C 11·C 14·C 14种情形. ∴P ()X =600=C 34+C 11·C 14·C 14C 39=521. (2)X 的所有可能值为300,400,500,600,700. 则P ()X =300=C 34C 39=484=121,P ()X =400=C 14·C 24C 39=2484=27,P ()X =500=C 11·C 24+C 14·C 24C 39=3084=514, P (X =600)=521,P ()X =700=C 11·C 24C 39=684=114.∴X 的概率分布为∴E ()X =300×121+400×27+500×514+600×521+700×114=500.热点三 数学归纳法例3 (2018·江苏姜堰、溧阳、前黄中学联考)已知数列{}a n 满足a n =C 0n +C 1n +12+C 2n +222+C 3n +323+…+C nn +n 2n ,n ∈N *. (1)求a 1, a 2, a 3的值;(2)猜想数列{}a n 的通项公式,并证明. 解 (1)a 1=2, a 2=4, a 3=8. (2)猜想: a n =2n (n ∈N *). 证明如下:①当n =1时,由(1)知结论成立; ②假设当n =k (k ∈N *,k ≥1)时结论成立, 则有a k =C 0k +C 1k +12+C 2k +222+C 3k +323+…+C kk +k 2k =2k.则当n =k +1时,a k +1=C 0k +1+C 1k +1+12+C 2k +1+222+C 3k +1+323+…+C k +1k +1+k +12k +1.由C k +1n +1=C k +1n +C kn 得a k +1=C 0k +C 1k +1+C 0k +12+C 2k +2+C 1k +222+C 3k +3+C 2k +323+…+C k k +k +C k -1k +k 2k+C k +1k +1+k +12k +1 =2k+C 0k +12+C 1k +222+C 2k +323+…+C k -1k +k 2k +C k +1k +1+k +12k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +k 2k -1+C k +1k +1+k +12k =2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k +C k +1k +1+k 2k . 又Ck +1k +1+k=()2k +1!k !()k +1!=()2k +1!()k +1()k +1k !()k +1!=12()2k +1!()2k +2()k +1!()k +1!=12C k +1k +1+k +1, a k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k 2k +C k +1k +1+k +12k +1,于是a k +1=2k+12a k +1.所以a k +1=2k +1,故n =k +1时结论也成立.由①②得,a n =2n,n ∈N *.思维升华 在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.跟踪演练3 (2018·常州期末)记()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1n (n ≥2且n ∈N *)的展开式中含x 项的系数为S n ,含x 2项的系数为T n . (1)求S n ;(2)若T nS n=an 2+bn +c 对n =2,3,4成立,求实数a ,b ,c 的值; (3)对(2)中的实数a ,b ,c 用数学归纳法证明:对任意n ≥2且n ∈N*, T nS n=an 2+bn +c 都成立. (1)解 S n =1+2+…+nn != n +12()n -1!.(2)解T 2S 2=23, T 3S 3=116, T 4S 4=72,则⎩⎪⎨⎪⎧23=4a +2b +c ,116=9a +3b +c ,72=16a +4b +c ,解得a =14, b =-112, c =-16,(3)证明 ①当n =2时,由(2)知等式成立; ②假设n =k (k ∈N *,且k ≥2)时,等式成立,即T k S k =14k 2-112k -16. 当n =k +1时,由f (x )=()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎣⎢⎡⎦⎥⎤()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎝ ⎛⎭⎪⎫1k !+S k x +T k x 2+…⎝ ⎛⎭⎪⎫x +1k +1,知T k +1=S k +1k +1T k =k +12()k -1!·⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16,所以T k +1S k +1= k +12()k -1!⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16k +1+12k !=k k +2⎝ ⎛⎭⎪⎫k +1+3k 2-k -212=k ()3k +512,又14()k +12-112()k +1-16 =k ()3k +512, 等式也成立;综上可得,对任意n ≥2且n ∈N *,都有T n S n =n 24-n 12-16成立.1.(2018·全国大联考江苏卷)(1)求4C 47-7C 36+k C k n n C k -1n -1(n ≥k ,且n ,k ∈N *)的值.(2)设f (n )=1·C 1n ·3+2·C 2n ·32+…+n C n n ·3n (n ∈N *),求方程f (n )=3 840的所有解. 解 (1)因为4C 47=4×35=140, 7C 36=7×20=140,k C k n =k ·n !k !(n -k )!= n ·(n -1)!(k -1)![(n -1)-(k -1)]!=n C k -1n -1(n ≥k ,且n ,k ∈N *). 所以4C 47-7C 36+k C knn C k -1n -1=1.(2)由(1)知k C k n =n C k -1n -1对1≤k ≤n ,且n ,k ∈N *成立. 所以f (n )=n (C 0n -13+C 1n -132+…+C n -1n -13n), 所以f (n )=3n (C 0n -1+C 1n -13+…+C n -1n -13n -1)=3n (1+3)n -1=3n ·4n -1(n ∈N *).又因为f (n +1)f (n )=3(n +1)·4n 3n ·4n -1 =4(n +1)n =4+4n>1,即f (n +1)>f (n )对n ∈N *成立, 所以f (n )是关于n (n ∈N *)的递增函数. 又因为f (n )=3 840=3×5×44=f (5),所以当且仅当n =5时才满足条件,即n =5是方程f (n )=3 840的唯一解.2.(2018·江苏)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解 (1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以f n (0)=1. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22,因此,当n ≥5时,f n (2)=n 2-n -22.3.已知实数数列{a n }满足:a 1=3,a n =n +23n·(a n -1+2),n ≥2. 证明:当n ≥2时,{a n }是单调减数列. 证明 当n ≥1时,有a n +1-a n =⎣⎢⎡⎦⎥⎤n +33(n +1)-1a n +2(n +3)3(n +1)=23(n +1)(n +3-na n).下面用数学归纳法证明:a n >1+3n(n ≥2,n ∈N *).(1)当n =2时,a 2=46(3+2)=103>1+32;(2)假设当n =k (k ∈N *,k ≥2)时,结论成立,即a k >1+3k.那么,a k +1=k +33(k +1)(a k +2)>k +33(k +1)⎝ ⎛⎭⎪⎫1+3k +2=1+3k >1+31+k.故由(1)(2)知,a n >1+3n(n ≥2,n ∈N *).因此,当n ≥2,n ∈N *时,a n +1-a n =23(n +1)(n +3-na n )<0,即当n ≥2时,{a n }是单调减数列.4.(2018·江苏盐城中学模拟)某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为a (a 为常数),演唱一首经典歌曲观众与乐队的互动指数为2a .求观众与乐队的互动指数之和X 的概率分布及数学期望.解 (1)设“至少演唱1首原创新曲”为事件A ,则事件A 的对立事件A 为“没有1首原创新曲被演唱”.所以P (A )=1-P (A )=1-C 45C 48=1314.所以该乐队至少演唱1首原创新曲的概率为1314.(2)设随机变量x 表示被演唱的原创新曲的首数,则x 的所有可能值为0,1,2,3. 依题意知,X =ax +2a (4-x ),故X 的所有可能值依次为8a,7a,6a,5a .则P (X =8a )=P (x =0)=C 45C 48=114,P (X =7a )=P (x =1)=C 13C 35C 48=37,P (X =6a )=P (x =2)=C 23C 25C 48=37,P (X =5a )=P (x =3)=C 33C 15C 48=114.从而X 的概率分布为所以X 的数学期望E (X )=8a ×114+7a ×37+6a ×37+5a ×114=132a .A 组 专题通关1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E (X ). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33×3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13, P (X =k )=C k5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5. 所以X 的概率分布为所以X 的数学期望E (X )=5×13=53.2.(2018·江苏省南京师大附中模拟)设集合A ,B 是非空集合M 的两个不同子集.(1)若M ={a 1,a 2},且A 是B 的子集,求所有有序集合对(A ,B )的个数;(2)若M ={a 1,a 2,a 3,…,a n },且A 的元素个数比B 的元素个数少,求所有有序集合对(A ,B )的个数.解 (1)若集合B 含有2个元素,即B ={a 1,a 2}, 则A =∅,{}a 1,{}a 2,则(A ,B )的个数为3;若集合B 含有1个元素,则B 有C 12种,不妨设B ={a 1},则A =∅,此时(A ,B )的个数为C 12×1=2.综上,(A ,B )的个数为5.(2)集合M 有2n个子集,又集合A ,B 是非空集合M 的两个不同子集, 则不同的有序集合对(A ,B )的个数为2n (2n-1).若A 的元素个数与B 的元素个数一样多,则不同的有序集合对(A ,B )的个数为 C 0n (C 0n -1)+C 1n (C 1n -1)+C 2n (C 2n -1)+…+C n n (C nn -1)= ()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2-(C 0n +C 1n +C 2n +…+C nn ),又(x +1)n(x +1)n的展开式中x n的系数为()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2,且(x +1)n (x +1)n =(x +1)2n 的展开式中x n 的系数为C n2n , 所以()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2=C n2n .因为C 0n +C 1n +C 2n +…+C n n =2n,所以当A 的元素个数与B 的元素个数一样多时, 有序集合对(A ,B )的个数为C n 2n -2n.所以,A 的元素个数比B 的元素个数少时,有序集合对(A ,B )的个数为 2n (2n -1)-(C n 2n -2n )2=22n -C n2n2.3.已知()1+x 2n +1=a 0+a 1x +a 2x 2+…+a 2n +1x2n +1,n ∈N *.记T n =∑nk =0()2k +1a n -k .(1)求T 2的值;(2)化简T n 的表达式,并证明:对任意的n ∈N *,T n 都能被4n +2整除. 解 由二项式定理,得a i =C i2n +1(i =0,1,2,…,2n +1). (1)T 2=a 2+3a 1+5a 0=C 25+3C 15+5C 05=30. (2)∵()n +1+k C n +1+k2n +1=()n +1+k ·()2n +1!()n +1+k !()n -k !=()2n +1·()2n !()n +k !()n -k !=()2n +1C n +k2n ,∴T n =∑nk =0()2k +1a n -k =∑nk =0()2k +1Cn -k 2n +1=∑nk =0()2k +1C n +1+k2n +1=∑nk =0[]2()n +1+k -()2n +1C n +1+k2n +1=2∑nk =0()n +1+k Cn +1+k 2n +1-()2n +1∑nk =0C n +1+k2n +1=2()2n +1∑nk =0Cn +k 2n-()2n +1∑nk =0C n +1+k 2n +1=2()2n +1·12·()22n +C n 2n -()2n +1·12·22n +1=()2n +1C n 2n .∴T n =()2n +1C n2n =()2n +1()C n -12n -1+C n2n -1=2()2n +1C n2n -1.∵C n 2n -1∈N *,∴T n 能被4n +2整除.4.是否存在正整数m 使得f (n )=(2n +7)·3n+9对任意正整数n 都能被m 整除?若存在,求出最大的m 的值,并证明你的结论;若不存在,说明理由.解 由f (n )=(2n +7)·3n+9,得f (1)=36,f (2)=3×36,f (3)=10×36,f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: ①当n =1时,结论显然成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立,即f (k )能被36整除, 设f (k )=(2k +7)·3k +9=t ·36. 当n =k +1时,f (k +1)=[2(k +1)+7]·3k +1+9=(2k +7)·3k +1+2·3k +1+9=3[(2k +7)·3k+9]+18(3k -1-1)=3·36t +18·2s =36(3t +s ). 所以当n =k +1时结论成立.由①②可知,对一切正整数n ,存在正整数m ,使得f (n )=(2n +7)·3n +9都能被m 整除,m 的最大值为36.B 组 能力提高5.(2018·常州模拟)已知正四棱锥P -ABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求P ()ξ=0的值;(2)求随机变量ξ的概率分布及数学期望E ()ξ.解 根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到△PAC ,△PBD 为等腰直角三角形, ξ的可能取值为: 0, π3, π2,共C 28=28种情况,其中,当ξ=0时,有2种;当ξ=π3时,有3×4+2×4=20(种);当ξ=π2时,有2+4=6(种).(1)P ()ξ=0=228=114. (2)P ⎝ ⎛⎭⎪⎫ξ=π3=2028=57, P ⎝ ⎛⎭⎪⎫ξ=π2=628=314, 根据(1)的结论,随机变量的概率分布如下表:根据上表, E ()ξ=0×114+π3×57+π2×314=2984π. 6.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.(1)解 当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k=1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C nn +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明 P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ). 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.7.已知数列{a n }是等差数列,且a 1,a 2,a 3是⎝ ⎛⎭⎪⎫1+12x m展开式的前三项的系数.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)当n ≥2时,试比较1a n +1a n +1+1a n +2+…+1a n 2与13的大小.解 (1)⎝ ⎛⎭⎪⎫1+12x m =1+C 1m ⎝ ⎛⎭⎪⎫12x +C 2m ⎝ ⎛⎭⎪⎫12x 2+…+C m m ⎝ ⎛⎭⎪⎫12x m,依题意a 1=1,a 2=12m ,a 3=m (m -1)8,由2a 2=a 1+a 3,可得m =1(舍去)或m =8.所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)由(1)知,a n =3n -2,当n =2时,1a n +1a n +1+1a n +2+…+1a n 2=1a 2+1a 3+1a 4=14+17+110=69140>13;当n =3时,1a n +1a n +1+1a n +2+…+1a n 2=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝ ⎛⎭⎪⎫110+113+116+⎝ ⎛⎭⎪⎫119+122+125 >18+⎝ ⎛⎭⎪⎫116+116+116+⎝ ⎛⎭⎪⎫132+132+132 =18+316+332>18+316+116>13. 猜测:当n ≥2时,1a n +1a n +1+1a n +2+…+1a n 2>13.以下用数学归纳法加以证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,1a k +1a k +1+1a k +2+…+1a k 2>13,则当n =k +1时,1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2=⎣⎢⎡⎦⎥⎤1a k +1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a k 2+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +1a (k +1)2-1a k=13+2k +13(k +1)2-2-13k -2=13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2) =13+3k 2-7k -3[3(k +1)2-2](3k -2). 由k ≥3可知,3k 2-7k -3>0, 即1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2>13. 综合①②,可得当n ≥2时, 1a n +1a n +1+1a n +2+…+1a n 2>13. 8.设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2·tan nθ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)12n -tan nθ.(2)求证:对任意正整数n ,S 2n =12sin 2θ·[1+(-1)n +1·tan 2nθ].证明 (1)因为a n =sinn π2tan nθ.当n 为偶数时,设n =2k (k ∈N *),a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2kθ=0,a n =0.当n 为奇数时,设n =2k -1(k ∈N *),a n =a 2k -1 =sin (2k -1)π2tan 2k -1θ=sin ⎝ ⎛⎭⎪⎫k π-π2·tan 2k -1θ.当k =2m (m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-π2·tan 4m -1θ=sin ⎝ ⎛⎭⎪⎫-π2·tan 4m -1θ=-tan 4m -1θ,此时n -12=2m -1,a n =a 2k -1=-tan 4m -1θ=(-1)2m -1tan 4m -1θ=(-1)12n -tan nθ.当k =2m -1(m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-3π2·tan 4m -3θ =sin ⎝ ⎛⎭⎪⎫-3π2·tan 4m -3θ=tan 4m -3θ,此时n -12=2m -2,a n =a 2k -1=tan4m -3θ=(-1)2m -2tan4m -3θ=(-1)12n -tan nθ.综上,当n 为偶数时,a n =0; 当n 为奇数时,a n =(-1)12n -tan nθ.(2)当n =1时,由(1)得S 2=a 1+a 2=tan θ, 12sin 2θ[1+(-1)n +1tan 2n θ]=12sin 2θ(1+tan 2θ) =sin θ·cos θ·1cos 2θ=tan θ. 故当n =1时,命题成立.假设当n =k (k ∈N *,k ≥1)时命题成立, 即S 2k =12sin 2θ·[1+(-1)k +1tan 2kθ].当n =k +1时,由(1)得S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[1+(-1)k +1tan 2k θ]+(-1)k tan 2k +1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+1tan2kθ+(-1)k·2sin 2θtan2k+1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-1tan2θ+2sin 2θtan θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-cos2θsin2θ+1sin2θ=12sin 2θ·[1+(-1)k+2·tan2k+2θ].即当n=k+1时命题成立.综上所述,对正整数n,命题成立.。
1.5二项式定理课题 1.5二项式定理解决二项展开式有关的简单问题第二课时教学目标知识与技能:进一步掌握二项式定理和二项展开式的通项公式过程与方法:能解决二项展开式有关的简单问题情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点教学难点二项式定理和二项展开式的通项公式。
解决二项展开式有关的简单问题。
教具准备:与教材内容相关的资料。
教学设想:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学过程:学生探究过程:一.复习: (a+b) n = (n ),这个公式N ∈表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b) n 的 ,其中(r=0,1,2,……,n )叫做 , 叫做二项展开rn C 式的通项,通项是指展开式的第 项,展开式共有 个项.二.例题例1选择题(1)的展开式中,第五项是………………………………………( )62)x a a x(- A . B . C . D .x 15-32ax 6-x 20x 15(2)的展开式中,不含a 的项是第……………………………( )项153)a 1a (- A .7 B .8 C .9 D .6(3)(x-2)9的展开式中,第6项的二项式系数是……………………………( )A . 4032B .-4032C .126D .-126(4)若的展开式中的第三项系数等于6,则n 等于………………( )n )111x (- A .4 B .4或-3 C .12 D .3(5)多项式(1-2x)5(2+x)含x 3项的系数是………………………… ………( )A .120B .-120C .100D .-100例2.求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中x 2的系数.例3.求二项式的展开式中的有理项.73)213(+例4.二项式的展开式中第三项系数比第二项系数大44,求第4项的系数.n 4)x 1x x (+巩固练习:1. 展开式中第9项是常数项,则n 的值是………………… ( )n )22x 3(- A.13 B.12 C.11 D.102.的展开式中的整数项是…………………………………( )2475)53(+ A.第12项 B. 第13项 C. 第14项 D. 第15项3. 在(x 2+3x+2)5的展开式中,x 的系数为…………………………( )A .160B .240C .360D .8004.(1-x)5(1+x+x 2)4的展开式中,含x 7项的系数是 .5. 展开式的常数项是 .3)2|x |1|x (|-+课外作业:第36页 习题1.5 4, 5,6教学反思:二项式定理是指 +++++=+---r r n r n n n n n n n b ab a b a a b a C C C )(22211这样一个展开式的公式.它是(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3…等等n nn b C +展开式的一般形式,在初等数学中它各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y =x n 的导数公式y ′=nx n -1,同时=e ≈2.718281…也正是由二项式定理的展开规律所确定,而e 在高等n n n)11(lim +∞→数学中的地位更是举足轻重,概率中的正态分布,复变函数中的欧拉公式e iθ=cos θ+i sin θ,微分方程中二阶变系数方程及高阶常系数方程的解由e 的指数形式来表达.且直接由e 的定义建立的y =ln x 的导数公式y =与积分公式=d x ln x +c 是分x 1⎰x1析学中用的最多的公式之一.而由y =x n 的各阶导数为基础建立的泰勒公式;f (x )=f (x 0)+(x -x 0)2+…(x -x 0)!1)(0x f '!)(0n x f n n +(θ∈(0,1))以及由此建立的幂级数理论,更1000)1()()!1()]([++-+-⋅+n n x x n x x x f θ是广泛深入到高等数学的各个分支中.怎样使二项式定理的教学生动有趣正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a +b )4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?怎样才能使得在这节课上学生获得主动?采用课前预习;自学辅导;还是学生讨论,或读,议、讲,练,或目标教学,还是设置发现情境?看来这些办法遇到真正困难时都会无能为力,因为这些方法都无法改变算式的冗长,证法的呆板,课堂上的新情境与学生的认知结构中的图式不协调的事实.而MM 教育方式即数学方法论的教育方式却能根据习题理论注意到充分利用数学方法与数学技术把所要证明或计算的形式变换得十分简洁,心理学家皮亚杰一再强调“认识起因于主各体之间的相互作用”1]只有客体的形式与学生主体认知结构中的图式取得某种一致的时候,才能完成认识的主动建构,也就是学生获得真正的理解.MM 教育方式遵循“兴趣与能力的同步发展规律”和“教,学,研互相促进的规律”2]在教学中追求简易,重视直观,并巧妙地在应用抽象使问题变得十分有趣,学生学得生动主动,充分发挥其课堂上的主体作用.。
江苏新高考本部分内容在高考中基本年年都考,并以压轴题形式考查. ,主要考查组合计数;考复合函数求导和数学归纳法;考查计数原理为主,又涉及到数学归纳法;考查组合数及其性质等基础知识,考查考生的运算求解能力和推理论证能力;考查概率分布与期望及组合数的性质,既考查运算能力,又考查思维能力.近年高考对组合数的性质要求较高,常与数列、函数、不等式、数学归纳法等知识交汇考查.第1课时计数原理与二项式定理(能力课)[常考题型突破]计数原理的应用[例1]{1,2,3,…,3n}的子集中所有“好集”的个数为f(n).(1)求f(1),f(2)的值;(2)求f(n)的表达式.[解](1)①当n=1时,集合{1,2,3}中的一元好集有{3},共1个;二元好集有{1,2},共1个;三元好集有{1,2,3},共1个,所以f(1)=1+1+1=3.②当n=2时,集合{1,2,3,4,5,6}中一元好集有{3},{6},共2个;二元好集有{1,2},{1,5},{2,4},{3,6},{4,5},共5个;三元好集有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6},共8个;四元好集有{3,4,5,6},{2,3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4,5},共5个;五元好集有{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n +2,3n+3.故f(n+1)的组成有以下几部分:①原来的f(n)个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合, 含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合, 含有元素是3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合. 合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合.合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以f (n +1)=2f (n )+2×23n +1. 两边同除以2n +1, 得f (n +1)2n +1-f (n )2n =4n +12n +1. 所以f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n (n ≥2).又f (1)21也符合上式, 所以f (n )=2n (4n -1)3+2n-1.[方法归纳](1)深化对两个计数原理的认识,培养“全局分类”和“局部分步”的意识,并在操作中确保:①分类不重不漏;②分步要使各步具有连续性和性. 解决计数应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而解决实际问题.(2)本题是有关数论问题,其难度较大,求解关键是得出f (n +1)与f (n )的关系,求解中用到归纳法和分类讨论思想.(·苏北三市三模)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”).(1)写出f (2),f (3),f (4)的值; (2)求f (n ).解:(1)f (2)=1,f (3)=6,f (4)=25.(2)法一:设集合A 中有k 个元素,k =1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n -k -1个. 于是f (n )=12∑k =1n -1C k n (2n -k -1)=12(∑k =1n -1C k n 2n -k -∑k =1n -1C kn ).因为∑k =1n -1C k n 2n -k =∑k =0nC k n 2n -k -C 0n 2n -C n n 20=(2+1)n -2n -1=3n -2n-1,∑k =1n -1C k n =∑k =0n C k n -C 0n -C n n =2n -2, 所以f (n )=12[(3n -2n -1)-(2n -2)]=12(3n -2n +1+1).法二:任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中, 则这n 个元素在集合A ,B ,C 中,共有3n 种, 其中A 为空集的种数为2n ,B 为空集的种数为2n , 所以A ,B 均为非空子集的种数为3n -2×2n +1. 又(A ,B )与(B ,A )为同一组“互斥子集”, 所以f (n )=12(3n -2n +1+1).二项式定理的应用[例2] (·--(1)求(1+x )2n-1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[解] (1)(1+x )2n-1的展开式中含x n 的项的系数为C n 2n -1,由(1+x )n -1(1+x )n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)·(C 0n +C 1n x +…+C n nx n ), 可知(1+x )n -1(1+x )n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1.(2)证明:当k ∈N *时,k C k n =k ×n !k !(n -k )!=n !(k -1)!(n -k )!=n ×(n -1)!(k -1)!(n -k )!=n C k -1n -1.所以(C 1n )2+2(C 2n )2+…+n (C n n )2=∑k =1n[k (C k n )2]=∑k =1n (k C k n C k n )=∑k =1n (n C k -1n -1C kn )=n ∑k =1n(C k -1n -1C k n )=n ∑k =1n(C n -k n -1C kn ).由(1)知C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1,即∑k =1n(C n -k n -1C k n )=C n 2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[方法归纳]二项式定理中的应用主要是构造一个生成相应二项式系数的函数,通过研究函数关系证明恒等式、不等式和整除性问题.将二项式定理(a +b )n =C\o\al(0,n )a n +C\o\al(1,n )a n -1b +…+C\o\al(r ,n )a n -r b r +…+C\o\al(n ,n )b n 中的a ,b 进行特殊化就会得到很多有用的有关组合数的相关和的结果,这是研究有关组合数的和的问题的常用方法.还可以利用求函数值的思想进行赋值求解.(·南京、盐城一模)设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C k n -n C k -1n -1;②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n . 解:(1)①k C k n -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0.②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1=k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝⎛⎭⎫k k -1-1-1k -1=0.(2)法一:由(1)可知,当k ≥2时,(k +1)2C k n =(k 2+2k +1)C k n =k 2C kn +2k C k n +C k n =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C k n =n (n -1)C k -2n -2+3n C k -1n -1+C k n .故12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C n n)=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).法二:当n ≥3时,由二项式定理,有(1+x )n =1+C 1n x +C 2n x 2+…+C k n x k +…+C n n x n , 两边同乘以x ,得(1+x )n x =x +C 1n x 2+C 2n x 3+…+C k n x k +1+…+C n n xn +1, 两边对x 求导,得(1+x )n +n (1+x )n -1x =1+2C 1n x +3C 2n x 2+…+(k +1)C k n x k +…+(n +1)C n n x n,两边再同乘以x ,得(1+x )n x +n (1+x )n -1x 2=x +2C 1n x 2+3C 2n x 3+…+(k +1)C k n xk +1+…+(n +1)C n n xn +1, 两边再对x 求导,得(1+x )n +n (1+x )n -1x +n (n -1)(1+x )n -2x 2+2n (1+x )n -1x =1+22C 1n x +32C 2n x 2+…+(k +1)2C k n x k +…+(n +1)2C n n x n.令x =1,得2n +n ·2n -1+n (n -1)2n -2+2n 2n -1=1+22C 1n +32C 2n +…+(k +1)2C kn +…+(n+1)2C n n ,即12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =2n -2(n 2+5n +4).组合数的性质应用[例3] (·苏北四市调研)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,这个三角形数阵开头几行如图所示.(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n ,r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r +3n不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n , k =0,1,2,…,n 组成.如果第n 行中有C k -1nC k n =k n -k +1=34,C k nC k +1n=k +1n -k =45, 那么3n -7k =-3,4n -9k =5, 解得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5. (2)证明:若有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列,则2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)(r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),化简整理得,n 2-(4r +5)n +4r (r +2)+2=0, n 2-(4r +9)n +4(r +1)(r +3)+2=0. 两式相减得,n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列.而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列的性质矛盾,从而要证明的结论成立.[方法归纳](1)对于组合数问题,需要熟记并能灵活运用以下两个组合数公式:C k n =C n -k n ,C k n +1=C k n+C k -1n .(2)对于二项式定理问题,需掌握赋值法和二项式系数的性质,并能将二项式系数与二项展开式系数区别开来.设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)若n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求⎪⎪⎪⎪S m C m n -1的值.解:(1)因为a k =(-1)k C k n ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)b k =k +1n -k a k +1=(-1)k +1k +1n -k C k +1n =(-1)k +1C k n , 当1≤k ≤n -1时, b k =(-1)k +1C k n =(-1)k+1()C k n -1+C k -1n -1=(-1)k +1C k -1n -1+(-1)k +1C k n -1 =(-1)k -1C k -1n -1-(-1)k C k n -1.当m =0时,⎪⎪⎪⎪S m C m n -1=⎪⎪⎪⎪b 0C 0n -1=1.当1≤m ≤n -1时,S m =-1+∑k =1m[(-1)k -1C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)m C m n -1, 所以⎪⎪⎪⎪S mC m n -1=1.综上,⎪⎪⎪⎪S mC m n -1=1.[课时达标训练]1.设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数; (2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数. 解:(1)110.(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A ⊆B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A ⊆B 的有序集合对(A ,B )有∑k =1nC k n (2k-1)=∑k =0nC k n 2k -∑k =0nC k n =3n -2n个. 同理,满足B ⊆A 的有序集合对(A ,B )有3n -2n 个.故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n . 2.(·南京、盐城二模)现有n (n +1)2(n ≥2,n ∈N *)个给定的不同的数随机排成一个下图所示的三角形数阵:******………………………………**…………**…………第1行…………第2行…………第3行…………第n 行设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *.记M 1<M 2<…<M n 的概率为p n . (1)求p 2的值; (2)证明:p n >C 2n +1(n +1)!.解:(1)由题意知p 2=2A 22A 33=23,即p 2的值为23.(2)证明:先排第n 行,则最大数在第n 行的概率为n n (n +1)2=2n +1;去掉第n 行已经排好的n 个数,则余下的n (n +1)2-n =n (n -1)2个数中最大数在第n -1行的概率为n -1n (n -1)2=2n;…故p n =2n +1×2n×…×23=2n -1(n +1)×n ×…×3=2n(n +1)!.由于2n =(1+1)n =C 0n +C 1n +C 2n +…+C n n ≥C 0n +C 1n +C 2n >C 1n +C 2n =C 2n +1,故2n (n +1)!>C 2n +2(n +1)!,即p n >C 2n +1(n +1)!. 3.记1,2,…,n 满足下列性质T 的排列a 1,a 2,…,a n 的个数为f (n )(n ≥2,n ∈N *).性质T :排列a 1,a 2,…,a n 中有且只有一个a i >a i +1(i ∈{1,2,…,n -1}).(1)求f (3); (2)求f (n ).解:(1)当n =3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i ∈{1,2,3},使得a i >a i +1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f (3)=4.(2)在1,2,…,n 的所有排列(a 1,a 2,…,a n )中,若a i =n (1≤i ≤n -1),从n -1个数1,2,3,…,n -1中选i -1个数按从小到大的顺序排列为a 1,a 2,…,a i -1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i -1n -1.若a n =n ,则满足题意的排列个数为f (n -1). 综上,f (n )=f (n -1)+∑i =1n -1C i -1n -1=f (n -1)+2n -1-1.从而f (n )=23(1-2n -3)1-2-(n -3)+f (3)=2n -n -1.4.(·江苏高考)(1)求7C 36-4C 47的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)·C m m +1+(m +3)C m m +2+…+n C mn -1+(n +1)C m n =(m +1)C m +2n +2.解:(1)7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2)证明:当n =m 时,结论显然成立.当n >m 时,(k +1)C mk =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n . 又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)] =(m +1)C m +2n +2.5.设a n 是满足下述条件的自然数的个数:各数位上的数字之和为n (n ∈N *),且每个数位上的数字只能是1或2.(1)求a 1,a 2,a 3,a 4的值; (2)求证:a 5n -1(n ∈N *)是5的倍数.解:(1)当n =1时,只有自然数1满足题设条件,所以a 1=1; 当n =2时,有11,2两个自然数满足题设条件,所以a 2=2; 当n =3时,有111,21,12三个自然数满足题设条件,所以a 3=3; 当n =4时,有1 111,112,121,211,22五个自然数满足题设条件,所以a 4=5. 综上所述,a 1=1,a 2=2,a 3=3,a 4=5.(2)证明:设自然数X 的各位数字之和为n +2,由题设可知,X 的首位为1或2两种情形.当X 的首位为1时,则其余各位数字之和为n +1.故首位为1,各位数字之和为n +2的自然数的个数为a n +1; 当X 的首位为2时,则其余各位数字之和为n .故首位为2,各位数字之和为n +2的自然数的个数为a n .所以各位数字之和为n +2的自然数的个数为a n +1+a n ,即a n +2=a n +1+a n . 下面用数学归纳法证明a 5n -1是5的倍数.①当n =1时,a 4=5,所以a 4是5的倍数,命题成立; ②假设n =k (k ≥1,n ∈N *)时,命题成立,即a 5k -1是5的倍数. 则a 5k +4=a 5k +3+a 5k +2 =2a 5k +2+a 5k +1 =2(a 5k +1+a 5k )+a 5k +1 =3a 5k +1+2a 5k =3(a 5k +a 5k -1)+2a 5k=5a 5k +3a 5k -1.因为5a 5k +3a 5k -1是5的倍数,即a 5k +4是5的倍数.所以n =k +1时,命题成立. 由①②可知,a 5n -1(n ∈N *)是5的倍数.6.(·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x )2n =(1+x )n (1+x )n (n ∈N *),左边x n 的系数为C n 2n ,而右边(1+x )n(1+x )n =(C 0n +C 1n x +…+C n n x n )(C 0n +C 1n x +…+C n n x n ),x n 的系数为C 0n C n n + C 1n C n -1n +…+C n n C 0n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2,因此可得到组合恒等式C n 2n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2.(1)根据恒等式(1+x )m +n =(1+x )m (1+x )n (m ,n ∈N *),两边x k (其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:第2课时数学归纳法(能力课)[常考题型突破]用数学归纳法证明等式[例1] (·苏锡常镇一模)设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2tan n θ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ;(2)求证:对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[证明] (1)因为a n =sin n π2tan n θ.当n 为偶数时,设n =2k ,k ∈N *,a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2k θ=0,a n =0.当n 为奇数时,设n =2k -1,k ∈N *,a n =a 2k -1=sin (2k -1)π2tan n θ=sin ⎝⎛⎭⎫k π-π2·tan nθ. 当k =2m ,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-π2·tan n θ=sin ⎝⎛⎭⎫-π2·tan n θ=-tan nθ, 此时n -12=2m -1,a n =a 2k -1=-tan n θ=(-1)2m -1tan n θ=(-1)n -12tan n θ.当k =2m -1,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-3π2·tan n θ=sin ⎝⎛⎭⎫-3π2·tan n θ=tan nθ, 此时n -12=2m -2,a n =a 2k -1=tan n θ=(-1)2m -2·tan n θ=(-1)n -12tan n θ.综上,当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ.(2)当n =1时,由(1)得,S 2=a 1+a 2=tan θ, 等式右边=12sin 2θ(1+tan 2θ)=sin θ·cos θ·1cos 2θ=tan θ.故n =1时,命题成立,假设n =k (k ∈N *,k ≥1)时命题成立,即S 2k =12sin 2θ·[1+(-1)k +1tan 2k θ].当n =k +1时,由(1)得:S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[]1+(-1)k +1tan 2k θ+(-1)k tan 2k +1θ=12sin 2θ·1+(-1)k +1tan 2k θ+(-1)k ·2sin 2θtan 2k +1θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·-1tan 2θ +2sin 2θtan θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·⎝⎛⎭⎫-cos 2θsin 2θ+1sin 2θ =12sin 2θ·[1+(-1)k +2·tan 2k +2θ ]. 即当n =k +1时命题成立.综上所述,对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[方法归纳](1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.(·扬州期末)已知F n (x )=(-1)0C 0n ,f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )(n ∈N *,x >0),其中f i (x )(i ∈{0,1,2,…,n })是关于x 的函数. (1)若f i (x )=x i (i ∈N),求F 2(1),F 2 017(2)的值; (2)若f i (x )=xx +i (i ∈N),求证:F n (x )=n !(x +1)(x +2)·…·(x +n )(n ∈N *). 解:(1)因为f i (x )=x i (i ∈N),所以F n (x )=(-1)0C 0n x 0+(-1)1C 1n x 1+…+(-1)n C n n x n =(1-x )n ,所以F 2(1)=0, F 2 017(2)=(1-2)2 017=-1.(2)证明:因为f i (x )=xx +i(x >0,i ∈N), 所以F n (x )=(-1)0C 0n f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )=∑i =0n⎣⎡⎦⎤(-1)i C i n x x +i (n ∈N *). ①当n =1时,F n (x )=∑i =0n =1⎣⎡⎦⎤(-1)i C i 1x x +i =1-x x +1=1x +1,所以n =1时结论成立.②假设n =k (k ∈N *)时结论成立, 即F k (x )=∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i=k !(x +1)(x +2)·…·(x +k ),则n =k +1时,F k +1(x )=∑i =0k +1 ⎣⎡⎦⎤(-1)i C i k +1x x +i=1+∑i =1k⎣⎡⎦⎤(-1)i C i k +1x x +i +(-1)k +1C k +1k +1x x +k +1 =1+∑i =1k ⎣⎡⎦⎤(-1)i (C i k +C i -1k )x x +i +(-1)k +1·C k +1k +1x x +k +1 =∑i =0k⎣⎡⎦⎤(-1)i C i k x x +i +∑i =1k +1 ⎣⎡⎦⎤(-1)i C i -1k x x +i =F k (x )-∑i =1k +1 ⎣⎡⎦⎤(-1)i -1C i -1k x x +i=F k (x )-∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i +1=F k (x )-∑i =0k⎣⎢⎡⎦⎥⎤(-1)i C ikx +1x +i +1·x x +1=F k (x )-x x +1F k (x +1)=k !(x +1)(x +2)·…·(x +k )-k !(x +2)(x +3)…(x +1+k )·xx +1=(x +1+k )·k !-x ·k !(x +1)(x +2)…(x +k )(x +1+k )=(k +1)!(x +1)(x +2)(x +3)…(x +1+k ),所以n =k +1时,结论也成立. 综合①②可知,F n (x )=n !(x +1)(x +2)…(x +n )(n ∈N *).用数学归纳法证明不等式[例2] (·南京模拟)已知数列{a n }满足a n =3n -2,函数f (n )=1a 1+1a 2+…+1a n,g (n )=f (n 2)-f (n -1),n ∈N *.(1) 求证:g (2)>13;(2) 求证:当n ≥3时,g (n )>13.[证明] (1)由题意知,a n =3n -2,g (n )=1a n +1a n +1+1a n +2+…+1a n 2,当n =2时,g (2)=1a 2+1a 3+1a 4=14+17+110=69140>13.故结论成立.(2)用数学归纳法证明: ①当n =3时,g (3)=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝⎛⎭⎫110+113+116+⎝⎛⎭⎫119+122+125>18+⎝⎛⎭⎫116+116+116+⎝⎛⎭⎫132+132+132=18+316+332>18+316+116>13, 所以当n =3时,结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立, 即g (k )>13,则当n =k +1时,g (k +1)=g (k )+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +13(k +1)2-2-13k -2 =13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2)=13+3k 2-7k -3[3(k +1)2-2](3k -2), 由k ≥3可知,3k 2-7k -3>0,即g (k +1)>13.所以当n =k +1时,结论也成立. 综合①②可得,当n ≥3时,g (n )>13.[方法归纳](1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k (k ∈N *)成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.设实数a 1,a 2,…,a n 满足a 1+a 2+…+a n =0,且|a 1|+|a 2|+…+|a n |≤1(n ∈N *且n ≥2),令b n =a n n (n ∈N *).求证:|b 1+b 2+…+b n |≤12-12n(n ∈N *).证明:(1)当n =2时,a 1=-a 2, 所以|a 1|+|a 2|=2|a 1|≤1,即|a 1|≤12,所以|b 1+b 2|=⎪⎪⎪⎪a 1+a 22=|a 1|2≤14=12-12×2, 即当n =2时,结论成立.(2)假设当n =k (k ∈N *且k ≥2)时,结论成立,即当a 1+a 2+…+a k =0,且|a 1|+|a 2|+…+|a k |≤1时,有|b 1+b 2+…+b k |≤12-12k .则当n =k +1时,由a 1+a 2+…+a k +a k +1=0, 且|a 1|+|a 2|+…+|a k +1|≤1,可得2|a k +1|=|a 1+a 2+…+a k |+|a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1, 所以|a k +1|≤12.又a 1+a 2+…+a k -1+(a k +a k +1)=0,且|a 1|+|a 2|+…+|a k -1|+|a k +a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1,由假设可得⎪⎪⎪⎪b 1+b 2+…+b k -1+a k +a k +1k ≤12-12k ,所以|b 1+b 2+…+b k +b k +1| =⎪⎪⎪⎪⎪⎪b 1+b 2+…+b k -1+a k k +a k +1k +1=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫b 1+b 2+…+b k -1+a k +a k +1k +⎝ ⎛⎭⎪⎫a k +1k +1-a k +1k ≤12-12k +⎪⎪⎪⎪⎪⎪a k +1k +1-a k +1k =12-12k +⎝⎛⎭⎫1k -1k +1|a k +1|≤12-12k +⎝⎛⎭⎫1k -1k +1×12 =12-12(k +1), 即当n =k +1时,结论成立. 综合(1)(2)可知,结论成立.归纳、猜想、证明[例3] (·n n n k C k n (x -k )n +…+(-1)n C nn (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.[解] (1)f 1(x )=C 01x -C 11(x -1)=x -x +1=1;f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2; f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测:f n (x )=n !. 而k Ckn=k ·n !k !(n -k )!=n !(k -1)!(n -k )!,n Ck -1n -1=n ·(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!,所以k C k n =n C k -1n -1.用数学归纳法证明结论成立.①当n =1时,f 1(x )=1,所以结论成立.②假设当n =k 时,结论成立,即f k (x )=C 0k x k -C 1k (x -1)k +…+(-1)k C k k (x -k )k =k !. 则当n =k +1时,f k +1(x )=C 0k +1x k +1-C 1k +1(x -1)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1 =C 0k +1x k +1-C 1k +1(x -1)k (x -1)+…+(-1)k C k k +1(x -k )k (x -k )+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k +1x k -C 1k +1(x -1)k +…+(-1)k C k k +1(x -k )k ]+[C 1k +1(x -1)k -2C 2k +1(x -2)k …+(-1)k +1k C k k +1(x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k x k -(C 1k +C 0k )(x -1)k +…+(-1)k (C k k +C k -1k )(x -k )k ]+(k +1)[(x -1)k -C 1k (x -2)k …+(-1)k +1C k -1k (x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k (x -k -1)=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k]+(kk+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1(x-k)k]+x(-1)k+1C k k(x-k-1)k-(k+1)(-1)k+1(x-kk-1)k=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k+(-k(x-k)k+(-1)k(x-k-1)k C k k(x-k-1)k]+(k+1)[C0k(x-1)k-C1k(x-2)k+…+(-1)k-1C k-1k1)k].(*)由归纳假设知(*)式等于x·k!-x·k!+(k+1)·k!=(k+1)!.所以当n=k+1时,结论也成立.综合①②,f n(x)=n!成立.[方法归纳]利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.解“归纳—猜想—证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.(·盐城模拟)记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2),f(3),f(4)的值;(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.解:(1)因为f(n)=(3n+2)(C22+C23+C24+…+C2n)=(3n+2)C3n+1,所以f(2)=8,f(3)=44,f(4)=140.(2)证明:由(1)中结论可猜想所有f(n)的最大公约数为4.下面用数学归纳法证明所有的f(n)都能被4整除即可.①当n=2时,f(2)=8能被4整除,结论成立;②假设n=k (k≥2,k∈N*)时,结论成立,即f(k)=(3k+2)C3k+1能被4整除,则当n=k+1时,f(k+1)=(3k+5)C3k+2=(3k+2)C3k+2+3C3k+2=(3k+2)(C3k+1+C2k+1)+(k+2)C2k+1=(3k+2)C3k+1+(3k+2)C2k+1+(k+2)C2k+1=(3k+2)C3k+1+4(k+1)C2k+1,此式也能被4整除,即n=k+1时结论也成立.综上所述,所有f(n)的最大公约数为4.[课时达标训练]1.(·南通三模)已知函数f 0(x )=cx +dax +b(a ≠0,bc -ad ≠0).设f n (x )为f n -1(x )的导数,n ∈N *.(1)求f 1(x ),f 2(x );(2)猜想f n (x )的表达式,并证明你的结论. 解:(1)f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫cx +d ax +b ′=bc -ad (ax +b )2,f 2(x )=f 1′(x )=⎣⎢⎡⎦⎥⎤bc -ad (ax +b )2′=-2a (bc -ad )(ax +b )3. (2)猜想f n (x )=(-1)n -1·a n -1·(bc -ad )·n !(ax +b )n +1,n ∈N *. 证明:①当n =1时,由(1)知结论成立, ②假设当n =k (k ∈N *且k ≥1)时结论成立, 即有f k (x )=(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1. 当n =k +1时,f k +1(x )=f k ′(x )=⎣⎢⎡⎦⎥⎤(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1′ =(-1)k -1·a k -1·(bc -ad )·k ![(ax +b )-(k +1)]′=(-1)k ·a k ·(bc -ad )·(k +1)!(ax +b )k +2. 所以当n =k +1时结论成立.由①②得,对一切n ∈N *结论都成立.2.(·镇江模拟)证明:对一切正整数n,5n +2·3n -1+1都能被8整除. 证明:(1)当n =1时,原式等于8能被8整除, (2)假设当n =k (k ≥1,k ∈N *)时,结论成立, 则5k +2·3k -1+1能被8整除. 设5k +2·3k -1+1=8m ,m ∈N *, 当n =k +1时,5k +1+2·3k +1 =5(5k +2·3k -1+1)-4·3k -1-4 =5(5k +2·3k -1+1)-4(3k -1+1), 而当k ≥1,k ∈N *时,3k -1+1显然为偶数,设为2t ,t ∈N *,故5k +1+2·3k +1=5(5k +2·3k -1+1)-4(3k -1+1)=40m -8t (m ,t ∈N *),也能被8整除, 故当n =k +1时结论也成立;由(1)(2)可知对一切正整数n,5n +2·3n -1+1都能被8整除.3.已知S n =1+12+13+…+1n (n ≥2,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明:(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *不等式S 2n >1+n2都成立.4.(·南京三模)已知数列{a n }共有3n (n ∈N *)项,记f (n )=a 1+a 2+…+a 3n .对任意的k ∈N *,1≤k ≤3n ,都有a k ∈{0,1},且对于给定的正整数p (p ≥2),f (n )是p 的整数倍.把满足上述条件的数列{a n }的个数记为T n .(1)当p =2时,求T 2的值;(2)当p =3时,求证:T n =13[8n +2(-1)n ].解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f (2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T 2=C 06+C 26+C 46+C 66=25=32. (2)证明:T n =C 03n +C 33n +C 63n +…+C 3n 3n .当1≤k ≤n ,k ∈N *时,C 3k 3n +3=C 3k 3n +2+C 3k -13n +2=C 3k -13n +1+C 3k 3n +1+C 3k -13n +1+C 3k -23n +1 =2C 3k -13n +1+C 3k 3n +1+C 3k -23n +1=2(C 3k -13n +C 3k -23n )+C 3k -13n +C 3k 3n +C 3k -33n +C 3k -23n =3(C 3k -13n +C 3k -23n )+C 3k 3n +C 3k -33n ,于是T n +1=C 03n +3+C 33n +3+C 63n +3+…+C 3n +33n +3=C 03n +3+C 3n +33n +3+3(C 13n +C 23n +C 43n +C 53n +…+C 3n -23n +C 3n -13n )+T n -C 03n +T n -C 3n 3n=2T n +3(23n -T n ) =3×8n -T n .下面用数学归纳法证明T n =13[8n +2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立, 即T k =13[8k +2(-1)k ].则当n =k +1时,T k +1=3×8k -T k =3×8k -13[8k +2(-1)k ]=13[9×8k -8k -2(-1)k ] =13[8k +1+2(-1)k +1], 即n =k +1时,命题也成立. 于是当n ∈N *,有T n =13[8n +2(-1)n ].5.(·扬州考前调研)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解:(1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝⎛⎭⎫cos π3×2n -12-1,∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1;当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2;当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12< 2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!. 要证a k +1<b k +1, 即证⎝⎛⎭⎪⎫1-1k ·k !2<⎣⎡⎦⎤1-2(k +1)·(k +1)!2, 即证1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2, 即证1k ·k !-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0, 即证(k -1)2k (k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1<b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .6.(·南通二调)设n ≥2,n ∈N *.有序数组(a 1,a 2,…,a n )经m 次变换后得到数组(b m,1,b m,2…,b m ,n ),其中b 1,i =a i +a i +1,b m ,i =b m -1,i +b m -1,i +1(i =1,2,…,n ),a n +1=a 1,b m -1,n +1=b m -1,1(m ≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).(1)若a i =i (i =1,2,…,n ),求b 3,5的值;(2)求证:b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .(注:当i +j =kn +t 时,k ∈N *,t =1,2,…,n ,则a i +j =a t )解:(1)当n =2,3,4时,b 3,5值不存在; 当n =5时,依题意,有序数组为(1,2,3,4,5). 经1次变换为:(3,5,7,9,6), 经2次变换为:(8,12,16,15,9), 经3次变换为:(20,28,31,24,17), 所以b 3,5=17;当n =6时,同理得b 3,5=28; 当n =7时,同理得b 3,5=45; 当n ≥8时,n ∈N *时,依题意,有序数组为(1,2,3,4,5,6,7,8,…,n ). 经1次变换为:(3,5,7,9,11,13,15,…,n +1),21 / 21 经2次变换为:(8,12,16,20,24,28,…,n +4), 经3次变换为:(20,28,36,44,52,…,n +12), 所以b 3,5=52.(2)证明:下面用数学归纳法证明对m ∈N *,b m ,i =∑j =0m a i +j C j m,其中i =1,2,…,n . ①当m =1时,b 1,i =a i +a i +1=∑j =01a i +j C j 1,其中i =1,2,…,n ,结论成立; ②假设m =k (k ∈N *)时,b k ,i =∑j =0k a i +j C j k ,其中i =1,2,…,n .则m =k +1时,b k +1,i =b k ,i +b k ,i +1=∑j =0k a i +j C j k +∑j =0k a i +j +1C j k=∑j =0k a i +j C j k +∑j =1k +1a i +j C j -1k=a i C 0k +∑j =1k a i +j (C j k +C j -1k )+a i +k +1C k k=a i C 0k +1+∑j =1k a i +j C j k +1+a i +k +1C k +1k +1=∑j =0k +1a i +j C j k +1,所以结论对m =k +1时也成立.由①②知,m ∈N *,b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .。
江苏新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课)[常考题型突破][必备知识]1.通项公式等差数列:a n=a1+(n-1)d;等比数列:a n=a1·q n-1.2.求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).[题组练透]1.(2017·镇江期末)已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d =________.解析:设等比数列{a n }的公比为q , 则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7, 即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4, 所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案:2 [方法归纳][必备知识][题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,则a n =2n ,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n (n -1)2d ,∴S n =d2n 2+⎝⎛⎭⎫1-d 2n . ∵函数y =d 2x 2+⎝⎛⎭⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d <-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0,得n -1<1-d. ∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳](1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用. [课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+10(10-1)2×2=110.法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24. 答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________.解析:由题意S 5S 3=5a 1+10d3a 1+3d =3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1=1a n +3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5,所以a 20=2115. 答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,所以b n =1n (n +1)=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎡⎦⎤4q 2-2+(q 2-2)+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n ,则数列{a n }的通项公式a n =________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n -2n -1=2a n +2n -1,从而a n +1+2n =3(a n+2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n }是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,① a 1+(p -1)d =2k +1,② 两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2.则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m (m -1)2d =m (2m -1)-m (m -1)=m 2. 答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12n n(-1)2=n nn n n 2273++22222=2--.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________.解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (n +1)2.由题意可知,N >100,令n (n +1)2>100, 得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n -1,前n 组的所有项的和为2(1-2n )1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t -1应与-2-k 互为相反数,即2t -1=k +2, ∴2t =k +3, ∴t =log 2(k +3), ∴当t =4,k =13时,N =13×(13+1)2+4=95<100,不满足题意; 当t =5,k =29时,N =29×(29+1)2+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破][例1] n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若对任意n ∈N *,S n =a 2n +n2恒成立,求数列{a n }的通项公式;(3)若S 2n =3(2n -1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3n +1-32.(2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列; 故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=⎩⎨⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n , S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S na n +2=1-⎝⎛⎭⎫-13n -2⎝⎛⎭⎫-13n +2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ 由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t , 即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .[例2] n n a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正, 得a 2n +1n +1=4·a 2n n ,所以a n +1n +1=2·a n n , 因此a n +1n +1a n n =2,所以⎩⎨⎧⎭⎬⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n , 所以b n =a 2nt n =a 21·4n -1·n tn, 如果数列{b n }是等差数列,则2b 2=b 1+b 3, 即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t 3,则t 2-16t +48=0, 解得t =4或t =12. 当t =4时,b n =a 21·n 4,因为b n +1-b n =a 21(n +1)4-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3,所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4.(3)由(2)得b n =a 21n 4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n (n +1)2-a 41n 2=16a 21m 4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意; 当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m .[方法归纳]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S nn ,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn =a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2(n +1)2-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S nn,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =(n +2)b n +1-nb n 2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S nn ,①(n +2)λ=12(a n +1+a n +2)-S n n ,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.[例3] (2017·n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法归纳]设数列{a n}的前n项的和为S n.定义:若∀n∈N*,∃m∈N*,S n=a m,则称数列{a n}为H数列.(1)求证:数列{(n-2)d}(n∈N*,d为常数)是H数列;(2)求证:数列{(n-3)d}(n∈N*,d为常数,d≠0)不是H数列.证明:(1)∵a n=(n-2)d,∴S n=n(-1+n-2)2d=n(n-3)2d.令n(n-3)2d=(m-2)d.(*)当d=0时,存在正整数m满足(*).当d≠0时,m=2+n(n-3)2,∵∀n∈N*,n(n-3)2∈Z,∴m∈Z,且n(n-3)2≥-1,∴m≥1,m∈N*,故存在m∈N*满足(*).所以数列{(n-2)d}是H数列.(2)数列{(n-3)d}的前n项之和为S n=n(-2+n-3)2d=n(n-5)2d.令n(n-5)2d=(m-3)d.因为d ≠0,所以m =3+n (n -5)2,当n =2时,m =0,故{(n -3)d }不是H 数列. [课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n .(2)∵b n =a n log 12a n =2n log 122n =-n ·2n ,∴S n =-(1×2+2×22+…+n ·2n ),①2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62, ∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 1(1-q n )1-q+1,所以q nb n =11-q +1a 1-q n 1-q,即b n =⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n -11-q , 所以存在实数λ=11-q, 使得b n +λ=⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n ,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q ,此时{b n +λ}为等比数列,所以存在实数λ=11-q,使得{b n +λ}为等比数列. 法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝⎛⎭⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列. 3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2, 所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列.若b n =2n -1,则S n =2n -1,取n =2,m =1, 则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数, 所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2s (s -1)2p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s(s -1)2∈N *,不妨设k =t +1-2s(s -1)2,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1. ①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去). 所以a n =2n -1.(2)①∵b 1=a 1,b n +1-b n =1a n a n +1, ∴b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎫1-13,b 3-b 2=12⎝⎛⎭⎫13-15,…,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式. 故b n =3n -22n -1,n ∈N *. ②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2, 即12m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *).(1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得q n -1+q n >q n +1, ∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n =q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列, ∴S n =⎩⎪⎨⎪⎧n (1+r ),q =1,(1+r )(1-q n )1-q ,q ≠1.(3)证明:当q ≥2时,S n =(1+r )(1-q n )1-q,∵S n -a n +1=(1+r )(1-q n )1-q -(1+r )q n =1+r 1-q [(1-q n )-q n (1-q )]=1+r1-q [1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0,因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得 n ≥2时,2S n +1=n (n +1)a n n -1+(n +1)(n -2)a 1n -1,①2S n +2=(n +1)(n +2)a n +1n +(n -1)(n +2)a 1n,② ②-①得,2a n +2=(n +1)(n +2)a n +1n -n (n +1)a n n -1+(n 2-n +2)a 1n (n -1), 即2(a n +2-a 1)=(n +1)(n +2)(a n +1-a 1)n -n (n +1)(a n -a 1)n -1,两边同除(n +1)得,2(a n +2-a 1)n +1=(n +2)(a n +1-a 1)n -n (a n -a 1)n -1, 即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n (n -1)2×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2=…… =n (n -1)×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0, 所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11,令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2). 所以a n =a 1+(n -1)d (n ≥2). 又n =1时,也适合上式, 所以a n =a 1+(n -1)d (n ∈N *).所以a n+1-a n=d(n∈N*).所以当r=2时,数列{a n}是等差数列.第3课时数列的综合应用(能力课)[常考题型突破][例1](2017·南京考前模拟)若各项均为正数的数列{a n}的前n项和为S n,且2S n=a n +1 (n∈N*).(1)求数列{a n}的通项公式;(2)若正项等比数列{b n},满足b2=2,2b7+b8=b9,求T n=a1b1+a2b2+…+a n b n;(3)对于(2)中的T n,若对任意的n∈N*,不等式λ(-1)n<12n+1(T n+21)恒成立,求实数λ的取值范围.[解](1)因为2S n=a n+1,所以4S n=(a n+1)2,且a n>0,则4a1=(a1+1)2,解得a1=1,又4S n+1=(a n+1+1)2,所以4a n+1=4S n+1-4S n=(a n+1+1)2-(a n+1)2,即(a n+1+a n)(a n+1-a n)-2(a n+1+a n)=0,因为a n>0,所以a n+1+a n≠0,所以a n+1-a n=2,所以{a n}是公差为2的等差数列,又a1=1,所以a n =2n -1.(2) 设数列{b n }的公比为q ,因为2b 7+b 8=b 9,所以2+q =q 2,解得q =-1(舍去)或q =2,由b 2=2,得b 1=1,即b n =2n -1.记A =a 1b 1+a 2b 2+…+a n b n =1×1+3×2+5×22+…+(2n -1)×2n -1, 则2A =1×2+3×22+5×23+…+(2n -1)×2n , 两式相减得-A =1+2(2+22+…+2n -1)-(2n -1)×2n ,故A =(2n -1)×2n -1-2(2+22+…+2n -1)=(2n -1)×2n -1-2(2n -2)=(2n -3)×2n+3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n +3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)n λ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min . g (n +2)-g (n )=2+62n +1-62n -1=2-92n ,当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ), 即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134. 当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝⎛⎭⎫-3,134. [方法归纳]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2).(1)证明:数列{a n +1-a n }为等差数列; (2)令c n =(n +1)a n na n +1+na n +1(n +1)a n,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12, 所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1,即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8),所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×(n -1)(1+n -1)2+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =(n +1)a n na n +1+na n +1(n +1)a n =2n +12n +3+2n +32n +1=⎝⎛⎭⎫1-22n +3+⎝⎛⎭⎫1+22n +1=2+2⎝⎛⎭⎫12n +1-12n +3,所以T n =2n +2⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=2n +2⎝⎛⎭⎫13-12n +3,又13>13-12n +3=2n +3-33(2n +3)=2n 3(2n +3)>0, 所以2n <T n <2n +23.[例2] n n S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n };(2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2. 则S n +3=(n +3)a 1+(n +3)(n +2)2d 1, T n =nb 1+n (n -1)2d 2.∵对一切n ∈N *,有S n +3=T n ,∴(n +3)a 1+(n +3)(n +2)2d 1=nb 1+n (n -1)2d 2,即d 12n 2+⎝⎛⎭⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝⎛⎭⎫b 1-12d 2n . ∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.∴c n +1-c n =4n -1+λ(-1)n 2n +2-4n -2-λ(-1)n -12n +1=3·4n -2+λ(-1)n (2n +2+2n +1)=316·22n +6λ(-1)n ·2n . ∵当n ∈N *时,c n +1≥c n 恒成立, 即当n ∈N *时,316·22n +6λ(-1)n ·2n ≥0恒成立. ∴当n 为正奇数时,λ≤132·2n 恒成立, 而132·2n ≥116.∴λ≤116; 当n 为正偶数时,λ≥-132·2n恒成立, 而-132·2n ≤-18,∴λ≥-18. ∴-18≤λ≤116,∴λ的最大值是116.[方法归纳][变式训练](2017·南京三模)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *. (1)若a 1=-1,p =1, ①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p 的取值范围.解:(1)因为p =1,所以a n +1=|1-a n |+2a n +1. ①因为a 1=-1,所以a 2=|1-a 1|+2a 1+1=1, a 3=|1-a 2|+2a 2+1=3, a 4=|1-a 3|+2a 3+1=9.②因为a 2=1,a n +1=|1-a n |+2a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2a n +1=a n -1+2a n +1=3a n , 于是有a n =3n -2(n ≥2) .故当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 ,当n =1时,S 1=-1,符合上式,故S n =3n -1-32,n ∈N *.(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2p >0, 所以a n +1>a n ,即数列{a n }单调递增. (ⅰ)当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. (ⅱ)当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n . 所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 由(ⅰ)可知,r =1,于是有2×3s -2(a 1+2p )=a 1+3t -2(a 1+2p ).因为2≤s ≤t -1, 所以a 1 a 1+2p=2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾. 故此时数列{a n }中不存在三项依次成等差数列. (ⅲ)当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0, 于是a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时2a 2=a 1+a 3,则a 1,a 2,a 3成等差数列. 综上可知,a 1p ≤-1.故a 1p 的取值范围为(-∞,-1].[例3] n ∈N *),其中m ,a ,b 均为实常数.(1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数,2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0, 所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q . 又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去),。
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
教学过程一、考纲解读该部分在高考试卷中一般是1到2个小题,分值在5-10分。
主要考查两个基本原理、排列组合的基础知识和方法,考查二项式定理的基础知识及其简单应用.在复习中要在解一些常规题型上下功夫,需要掌握基本的解题方法.在平时的复习中要能够体会计数原理在概率分布中的应用,特别是用排列组合解决的大题.对于二项式定理,重点考查二项式定理的通项.以及二项式系数和项的系数.二、复习预习(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.三、知识讲解考点1 分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分类乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.考点2 排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.考点3 二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.四、例题精析例1 [2014全国1卷] 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A.18B.38C.58D.78【规范解答】解法1.选D(直接法)4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A=种;②每天2人有22 426C C=种,则周六、周日都有同学参加公益活动的概率为867 168 +=;解法2.选D(间接法)4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627 168-=;选D.【总结与反思】(1)本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.是一道基础题。
江苏新高考本部分内容在高考中基本年年都考,并以压轴题形式考查. 2012,2013年主要考查组合计数;2014年考复合函数求导和数学归纳法;2015年考查计数原理为主,又涉及到数学归纳法;2016年考查组合数及其性质等基础知识,考查考生的运算求解能力和推理论证能力;2017年考查概率分布与期望及组合数的性质,既考查运算能力,又考查思维能力.近年高考对组合数的性质要求较高,常与数列、函数、不等式、数学归纳法等知识交汇考查.第1课时计数原理与二项式定理(能力课) [常考题型突破]计数原理的应用[例1]{1,2,3,…,3n}的子集中所有“好集”的个数为f(n).(1)求f(1),f(2)的值;(2)求f(n)的表达式.[解](1)①当n=1时,集合{1,2,3}中的一元好集有{3},共1个;二元好集有{1,2},共1个;三元好集有{1,2,3},共1个,所以f(1)=1+1+1=3.②当n=2时,集合{1,2,3,4,5,6}中一元好集有{3},{6},共2个;二元好集有{1,2},{1,5},{2,4},{3,6},{4,5},共5个;三元好集有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6},共8个;四元好集有{3,4,5,6},{2,3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4,5},共5个;五元好集有{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n +2,3n+3.故f(n+1)的组成有以下几部分:①原来的f(n)个集合;②含有元素3n+1的“好集”是{1,2,3,…,3n}中各元素之和被3除余2的集合,含有元素是3n+2的“好集”是{1,2,3,…,3n}中各元素之和被3除余1的集合,含有元素是3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合. 合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合.合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以f (n +1)=2f (n )+2×23n +1. 两边同除以2n +1,得f (n +1)2n +1-f (n )2n =4n +12n +1. 所以f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n (n ≥2).又f (1)21也符合上式, 所以f (n )=2n (4n -1)3+2n-1.[方法归纳](2017·苏北三市三模)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”).(1)写出f (2),f (3),f (4)的值; (2)求f (n ).解:(1)f (2)=1,f (3)=6,f (4)=25.(2)法一:设集合A 中有k 个元素,k =1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n -k -1个.于是f (n )=12∑k =1n -1C k n (2n -k -1)=12(∑k =1n -1C k n 2n -k -∑k =1n -1C kn ).因为∑k =1n -1C k n 2n -k =∑k =0nC k n 2n -k -C 0n 2n -C n n 20=(2+1)n -2n -1=3n -2n-1,∑k =1n -1C k n =∑k =0n C k n -C 0n -C n n =2n -2, 所以f (n )=12[(3n -2n -1)-(2n -2)]=12(3n -2n +1+1).法二:任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中, 则这n 个元素在集合A ,B ,C 中,共有3n 种, 其中A 为空集的种数为2n ,B 为空集的种数为2n , 所以A ,B 均为非空子集的种数为3n -2×2n +1. 又(A ,B )与(B ,A )为同一组“互斥子集”, 所以f (n )=12(3n -2n +1+1).[例2] (2017·.(1)求(1+x )2n-1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n2n -1.[解] (1)(1+x )2n-1的展开式中含x n 的项的系数为C n 2n -1,由(1+x )n -1(1+x )n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)·(C 0n +C 1n x +…+C n n x n ),可知(1+x )n -1(1+x )n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n .所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1.(2)证明:当k ∈N *时,k C k n=k ×n !k !(n -k )!=n !(k -1)!(n -k )!=n ×(n -1)!(k -1)!(n -k )!=n C k -1n -1.所以(C 1n )2+2(C 2n )2+…+n (C n n )2=∑k =1n[k (C k n )2]=∑k =1n(k C k n C kn )=∑k =1n(n C k -1n -1C kn )=n∑k =1n(C k -1n -1C kn )=n ∑k =1n(C n -k n -1C kn ).由(1)知C 0n -1C nn+C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1,即∑k =1n(C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n2n -1.[方法归纳](2017·南京、盐城一模)设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C k n -n C k -1n -1;②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n . 解:(1)①k C k n -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0.②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1=k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝⎛⎭⎫k k -1-1-1k -1=0.(2)法一:由(1)可知,当k ≥2时,(k +1)2C k n =(k 2+2k +1)C k n =k 2C k n +2k C k n +C kn =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C k n =n (n -1)C k -2n -2+3n C k -1n -1+C kn .故12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C n n )=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).法二:当n ≥3时,由二项式定理,有(1+x )n =1+C 1n x +C 2n x 2+…+C k n x k +…+C n n x n, 两边同乘以x ,得(1+x )n x =x +C 1n x 2+C 2n x 3+…+C k n x k +1+…+C n n xn +1, 两边对x 求导,得(1+x )n +n (1+x )n -1x =1+2C 1n x +3C 2n x 2+…+(k +1)C k n x k +…+(n +1)C n n x n,两边再同乘以x ,得(1+x )n x +n (1+x )n -1x 2=x +2C 1n x 2+3C 2n x 3+…+(k +1)C k n xk +1+…+(n +1)C n n xn +1, 两边再对x 求导,得(1+x )n +n (1+x )n -1x +n (n -1)(1+x )n -2x 2+2n (1+x )n -1x =1+22C 1n x +32C 2n x 2+…+(k +1)2C k n x k +…+(n +1)2C n n x n.令x =1,得2n +n ·2n -1+n (n -1)2n -2+2n 2n -1=1+22C 1n +32C 2n +…+(k +1)2C kn +…+(n+1)2C n n ,即12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =2n -2(n 2+5n +4).[例3] (2017·苏北四市调研)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,这个三角形数阵开头几行如图所示.(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n ,r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r+3n不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n , k =0,1,2,…,n 组成.如果第n 行中有C k -1nC k n =k n -k +1=34,C k nC k +1n =k +1n -k =45, 那么3n -7k =-3,4n -9k =5, 解得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5.(2)证明:若有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列,则2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)(r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),化简整理得,n 2-(4r +5)n +4r (r +2)+2=0, n 2-(4r +9)n +4(r +1)(r +3)+2=0. 两式相减得,n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列.而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列的性质矛盾,从而要证明的结论成立.[方法归纳]设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)若n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求⎪⎪⎪⎪S m C m n -1的值.解:(1)因为a k =(-1)k C k n ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)b k =k +1n -k a k +1=(-1)k +1k +1n -k C k +1n =(-1)k +1C k n , 当1≤k ≤n -1时, b k =(-1)k +1C k n=(-1)k+1()C k n -1+C k -1n -1=(-1)k +1C k -1n -1+(-1)k +1C kn -1 =(-1)k -1C k -1n -1-(-1)k C k n -1.当m =0时,⎪⎪⎪⎪S m C m n -1=⎪⎪⎪⎪b 0C 0n -1=1.当1≤m ≤n -1时,S m =-1+∑k =1m[(-1)k -1C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C mn -1=-(-1)m C m n -1, 所以⎪⎪⎪⎪S mC m n -1=1.综上,⎪⎪⎪⎪S mC m n -1=1.[课时达标训练]1.设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数; (2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数. 解:(1)110.(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A ⊆B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A ⊆B 的有序集合对(A ,B )有∑k =1nC k n (2k-1)=∑k =0n C k n 2k -∑k =0nC k n =3n -2n 个. 同理,满足B ⊆A 的有序集合对(A ,B )有3n -2n 个.故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n . 2.(2017·南京、盐城二模)现有n (n +1)2(n ≥2,n ∈N *)个给定的不同的数随机排成一个下图所示的三角形数阵:******………………………………**…………**…………第1行…………第2行…………第3行…………第n 行设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *.记M 1<M 2<…<M n 的概率为p n . (1)求p 2的值; (2)证明:p n >C 2n +1(n +1)!.解:(1)由题意知p 2=2A 22A 33=23,即p 2的值为23.(2)证明:先排第n 行,则最大数在第n 行的概率为n n (n +1)2=2n +1;去掉第n 行已经排好的n 个数,则余下的n (n +1)2-n =n (n -1)2个数中最大数在第n -1行的概率为n -1n (n -1)2=2n;…故p n =2n +1×2n×…×23=2n -1(n +1)×n ×…×3=2n(n +1)!.由于2n =(1+1)n =C 0n +C 1n +C 2n +…+C n n ≥C 0n +C 1n +C 2n >C 1n +C 2n =C 2n +1,故2n (n +1)!>C 2n +2(n +1)!,即p n >C 2n +1(n +1)!. 3.记1,2,…,n 满足下列性质T 的排列a 1,a 2,…,a n 的个数为f (n )(n ≥2,n ∈N *).性质T :排列a 1,a 2,…,a n 中有且只有一个a i >a i +1(i ∈{1,2,…,n -1}).(1)求f (3); (2)求f (n ).解:(1)当n =3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i ∈{1,2,3},使得a i >a i +1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f (3)=4.(2)在1,2,…,n 的所有排列(a 1,a 2,…,a n )中,若a i =n (1≤i ≤n -1),从n -1个数1,2,3,…,n -1中选i -1个数按从小到大的顺序排列为a 1,a 2,…,a i -1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i -1n -1.若a n =n ,则满足题意的排列个数为f (n -1). 综上,f (n )=f (n -1)+∑i =1n -1C i -1n -1=f (n -1)+2n -1-1.从而f (n )=23(1-2n -3)1-2-(n -3)+f (3)=2n -n -1.4.(2016·江苏高考)(1)求7C 36-4C 47的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)·C m m +1+(m +3)C m m +2+…+n C m n -1+(n +1)C m n =(m +1)C m +2n +2.解:(1)7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2)证明:当n =m 时,结论显然成立.当n >m 时,(k +1)C m k =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n .又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)]=(m +1)C m +2n +2.5.设a n 是满足下述条件的自然数的个数:各数位上的数字之和为n (n ∈N *),且每个数位上的数字只能是1或2.(1)求a 1,a 2,a 3,a 4的值; (2)求证:a 5n -1(n ∈N *)是5的倍数.解:(1)当n =1时,只有自然数1满足题设条件,所以a 1=1; 当n =2时,有11,2两个自然数满足题设条件,所以a 2=2; 当n =3时,有111,21,12三个自然数满足题设条件,所以a 3=3; 当n =4时,有1 111,112,121,211,22五个自然数满足题设条件,所以a 4=5. 综上所述,a 1=1,a 2=2,a 3=3,a 4=5.(2)证明:设自然数X 的各位数字之和为n +2,由题设可知,X 的首位为1或2两种情形.当X的首位为1时,则其余各位数字之和为n+1.故首位为1,各位数字之和为n+2的自然数的个数为a n+1;当X的首位为2时,则其余各位数字之和为n.故首位为2,各位数字之和为n+2的自然数的个数为a n.所以各位数字之和为n+2的自然数的个数为a n+1+a n,即a n+2=a n+1+a n.下面用数学归纳法证明a5n-1是5的倍数.①当n=1时,a4=5,所以a4是5的倍数,命题成立;②假设n=k(k≥1,n∈N*)时,命题成立,即a5k-1是5的倍数.则a5k+4=a5k+3+a5k+2=2a5k+2+a5k+1=2(a5k+1+a5k)+a5k+1=3a5k+1+2a5k=3(a 5k+a5k-1)+2a5k=5a5k+3a5k-1.因为5a5k+3a5k-1是5的倍数,即a5k+4是5的倍数.所以n=k+1时,命题成立.由①②可知,a5n-1(n∈N*)是5的倍数.6.(2017·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x)2n=(1+x)n(1+x)n(n∈N*),左边x n的系数为C n2n,而右边(1+x)n(1+…+C n n C0n=+x)n=(C0n+C1n x+…+C n n x n)(C0n+C1n x+…+C n n x n),x n的系数为C0n C n n+C1n C n-1n(C0n)2+(C1n)2+(C2n)2+…+(C n n)2,因此可得到组合恒等式C n2n=(C0n)2+(C1n)2+(C2n)2+…+(C n n)2.(1)根据恒等式(1+x)m+n=(1+x)m(1+x)n(m,n∈N*),两边x k(其中k∈N,k≤m,k≤n)的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:第2课时数学归纳法(能力课)[常考题型突破][例1] (2017·苏锡常镇一模)设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2tan n θ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ;(2)求证:对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[证明] (1)因为a n =sin n π2tan n θ.当n 为偶数时,设n =2k ,k ∈N *,a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2k θ=0,a n =0.当n 为奇数时,设n =2k -1,k ∈N *,a n =a 2k -1=sin (2k -1)π2tan n θ=sin ⎝⎛⎭⎫k π-π2·tan nθ. 当k =2m ,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-π2·tan n θ=sin ⎝⎛⎭⎫-π2·tan n θ=-tan n θ, 此时n -12=2m -1,a n =a 2k -1=-tan n θ=(-1)2m -1tan n θ=(-1)n -12tan n θ.当k =2m -1,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-3π2·tan n θ=sin ⎝⎛⎭⎫-3π2·tan n θ=tan n θ, 此时n -12=2m -2,a n =a 2k -1=tan n θ=(-1)2m -2·tan n θ=(-1)n -12tan n θ.综上,当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ.(2)当n =1时,由(1)得,S 2=a 1+a 2=tan θ, 等式右边=12sin 2θ(1+tan 2θ)=sin θ·cos θ·1cos 2θ=tan θ.故n =1时,命题成立,假设n =k (k ∈N *,k ≥1)时命题成立,即S 2k =12sin 2θ·[1+(-1)k +1tan 2k θ].当n =k +1时,由(1)得:S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[]1+(-1)k +1tan 2k θ+(-1)k tan 2k +1θ=12sin 2θ·1+(-1)k+1tan 2k θ+(-1)k ·2sin 2θtan 2k +1θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·-1tan 2θ+2sin 2θtan θ =12sin 2θ·1+(-1)k +2·tan 2k +2θ·⎝⎛⎭⎫-cos 2θsin 2θ+1sin 2θ =12sin 2θ·[1+(-1)k +2·tan 2k +2θ ]. 即当n =k +1时命题成立.综上所述,对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[方法归纳](2017·扬州期末)已知F n (x )=(-1)0C 0n ,f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )(n ∈N *,x >0),其中f i (x )(i ∈{0,1,2,…,n })是关于x 的函数. (1)若f i (x )=x i (i ∈N),求F 2(1),F 2 017(2)的值; (2)若f i (x )=xx +i (i ∈N),求证:F n (x )=n !(x +1)(x +2)·…·(x +n )(n ∈N *). 解:(1)因为f i (x )=x i (i ∈N),所以F n (x )=(-1)0C 0n x 0+(-1)1C 1n x 1+…+(-1)n C n n x n=(1-x )n ,所以F 2(1)=0, F 2 017(2)=(1-2)2 017=-1.(2)证明:因为f i (x )=xx +i(x >0,i ∈N), 所以F n (x )=(-1)0C 0n f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C nn f n (x )=∑i =0n⎣⎡⎦⎤(-1)i C i n x x +i (n ∈N *). ①当n =1时,F n (x )=∑i =0n =1⎣⎡⎦⎤(-1)i C i 1x x +i =1-x x +1=1x +1,所以n =1时结论成立. ②假设n =k (k ∈N *)时结论成立,即F k (x )=∑i =0k⎣⎡⎦⎤(-1)i C i k xx +i=k !(x +1)(x +2)·…·(x +k ),则n =k +1时,F k +1(x )=∑i =0k +1 ⎣⎡⎦⎤(-1)i C ik +1x x +i=1+∑i =1k ⎣⎡⎦⎤(-1)i C i k +1x x +i +(-1)k +1C k +1k +1xx +k +1=1+∑i =1k⎣⎡⎦⎤(-1)i (C i k +C i -1k )x x +i +(-1)k +1·C k +1k +1x x +k +1 =∑i =0k⎣⎡⎦⎤(-1)i C i k x x +i +∑i =1k +1⎣⎡⎦⎤(-1)i C i -1k x x +i=F k (x )-∑i =1k +1⎣⎡⎦⎤(-1)i -1C i-1kx x +i=F k (x )-∑i =0k ⎣⎡⎦⎤(-1)i C ik x x +i +1=F k (x )-∑i =0k⎣⎢⎡⎦⎥⎤(-1)i C i k x +1x +i +1·x x +1 =F k (x )-x x +1F k (x +1)=k !(x +1)(x +2)·…·(x +k )-k !(x +2)(x +3)…(x +1+k )·xx +1=(x +1+k )·k !-x ·k !(x +1)(x +2)…(x +k )(x +1+k )=(k +1)!(x +1)(x +2)(x +3)…(x +1+k ),所以n =k +1时,结论也成立. 综合①②可知,F n (x )=n !(x +1)(x +2)…(x +n )(n ∈N *).用数学归纳法证明不等式[例2] (2017·南京模拟)已知数列{a n }满足a n =3n -2,函数f (n )=1a 1+1a 2+…+1a n,g (n )=f (n 2)-f (n -1),n ∈N *.(1) 求证:g (2)>13;(2) 求证:当n ≥3时,g (n )>13.[证明] (1)由题意知,a n =3n -2,g (n )=1a n +1a n +1+1a n +2+…+1a n 2,当n =2时,g (2)=1a 2+1a 3+1a 4=14+17+110=69140>13.故结论成立.(2)用数学归纳法证明: ①当n =3时,g (3)=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝⎛⎭⎫110+113+116+⎝⎛⎭⎫119+122+125>18+⎝⎛⎭⎫116+116+116+⎝⎛⎭⎫132+132+132=18+316+332>18+316+116>13,所以当n =3时,结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立, 即g (k )>13,则当n =k +1时,g (k +1)=g (k )+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +13(k +1)2-2-13k -2 =13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2)=13+3k 2-7k -3[3(k +1)2-2](3k -2), 由k ≥3可知,3k 2-7k -3>0,即g (k +1)>13.所以当n =k +1时,结论也成立. 综合①②可得,当n ≥3时,g (n )>13.[方法归纳]设实数a 1,a 2,…,a n 满足a 1+a 2+…+a n =0,且|a 1|+|a 2|+…+|a n |≤1(n ∈N *且n ≥2),令b n =a n n (n ∈N *).求证:|b 1+b 2+…+b n |≤12-12n(n ∈N *).证明:(1)当n =2时,a 1=-a 2, 所以|a 1|+|a 2|=2|a 1|≤1,即|a 1|≤12,所以|b 1+b 2|=⎪⎪⎪⎪a 1+a 22=|a 1|2≤14=12-12×2, 即当n =2时,结论成立.(2)假设当n =k (k ∈N *且k ≥2)时,结论成立,即当a 1+a 2+…+a k =0,且|a 1|+|a 2|+…+|a k |≤1时,有|b 1+b 2+…+b k |≤12-12k .则当n =k +1时,由a 1+a 2+…+a k +a k +1=0, 且|a 1|+|a 2|+…+|a k +1|≤1,可得2|a k +1|=|a 1+a 2+…+a k |+|a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1, 所以|a k +1|≤12.又a 1+a 2+…+a k -1+(a k +a k +1)=0,且|a 1|+|a 2|+…+|a k -1|+|a k +a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1,由假设可得⎪⎪⎪⎪b 1+b 2+…+b k -1+a k +a k +1k ≤12-12k ,所以|b 1+b 2+…+b k +b k +1| =⎪⎪⎪⎪⎪⎪b 1+b 2+…+b k -1+a k k +a k +1k +1=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫b 1+b 2+…+b k -1+a k +a k +1k +⎝ ⎛⎭⎪⎫a k +1k +1-a k +1k ≤12-12k +⎪⎪⎪⎪⎪⎪a k +1k +1-a k +1k =12-12k +⎝⎛⎭⎫1k -1k +1|a k +1| ≤12-12k +⎝⎛⎭⎫1k -1k +1×12=12-12(k +1), 即当n =k +1时,结论成立. 综合(1)(2)可知,结论成立.归纳、猜想、证明[例3] (2017·n 0n n 1n n 1)k C k n (x -k )n+…+(-1)n C nn (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.[解] (1)f 1(x )=C 01x -C 11(x -1)=x -x +1=1;f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2;f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6.(2)猜测:f n (x )=n !. 而k Ckn=k ·n !k !(n -k )!=n !(k -1)!(n -k )!,n Ck -1n -1=n ·(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!,所以k C k n =n C k -1n -1.用数学归纳法证明结论成立.①当n =1时,f 1(x )=1,所以结论成立.②假设当n =k 时,结论成立,即f k (x )=C 0k x k -C 1k (x -1)k +…+(-1)k C k k (x -k )k =k !. 则当n =k +1时,f k +1(x )=C 0k +1x k +1-C 1k +1(x -1)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1 =C 0k +1xk +1-C 1k +1(x -1)k (x -1)+…+(-1)k C k k +1(x -k )k (x -k )+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k +1x k -C 1k +1(x -1)k +…+(-1)k C k k +1(x -k )k ]+[C 1k +1(x -1)k -2C 2k +1(x -2)k …+(-1)k+k Ck+1(x-k)]+(-1)+C+k+1(x-k-1)+=x[C0k x k-(C1k+C0k)(x-1)k+…+(-1)k(C k k+C k-1k)(x-k)k]+(k+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1k (x-k)k]+(-1)k+1C k+1k+1(x-k-1)k(x-k-1)=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1k(x-k)k]+(k+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1k(x-k)k]+x(-1)k+1C k k(x-k-1)k-(k+1)(-1)k+1(x-k-1)k=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1k(x-k)k+(-1)k C k k(x-k-1)k]+(k+1)[C0k(x-1)k-C1k(x-2)k+…+(-1)k-1C k-1k(x-k)k+(-1)k(x-k-1)k].(*)由归纳假设知(*)式等于x·k!-x·k!+(k+1)·k!=(k+1)!.所以当n=k+1时,结论也成立.综合①②,f n(x)=n!成立.[方法归纳](2017·盐城模拟)记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2),f(3),f(4)的值;(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.解:(1)因为f(n)=(3n+2)(C22+C23+C24+…+C2n)=(3n+2)C3n+1,所以f(2)=8,f(3)=44,f(4)=140.(2)证明:由(1)中结论可猜想所有f(n)的最大公约数为4.下面用数学归纳法证明所有的f(n)都能被4整除即可.①当n=2时,f(2)=8能被4整除,结论成立;②假设n=k (k≥2,k∈N*)时,结论成立,即f(k)=(3k+2)C3k+1能被4整除,则当n=k+1时,f(k+1)=(3k+5)C3k+2=(3k+2)C3k+2+3C3k+2=(3k+2)(C3k+1+C2k+1)+(k+2)C2k+1=(3k+2)C3k+1+(3k+2)C2k+1+(k+2)C2k+1=(3k+2)C3k+1+4(k+1)C2k+1,此式也能被4整除,即n=k+1时结论也成立.综上所述,所有f(n)的最大公约数为4.[课时达标训练]1.(2017·南通三模)已知函数f 0(x )=cx +dax +b (a ≠0,bc -ad ≠0).设f n (x )为f n -1(x )的导数,n ∈N *.(1)求f 1(x ),f 2(x );(2)猜想f n (x )的表达式,并证明你的结论. 解:(1)f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫cx +d ax +b ′=bc -ad (ax +b )2,f 2(x )=f 1′(x )=⎣⎢⎡⎦⎥⎤bc -ad (ax +b )2′=-2a (bc -ad )(ax +b )3. (2)猜想f n (x )=(-1)n -1·a n -1·(bc -ad )·n !(ax +b )n +1,n ∈N *. 证明:①当n =1时,由(1)知结论成立, ②假设当n =k (k ∈N *且k ≥1)时结论成立, 即有f k (x )=(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1. 当n =k +1时,f k +1(x )=f k ′(x )=⎣⎢⎡⎦⎥⎤(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1′ =(-1)k -1·a k -1·(bc -ad )·k ![(ax +b )-(k +1)]′=(-1)k ·a k ·(bc -ad )·(k +1)!(ax +b )k +2. 所以当n =k +1时结论成立.由①②得,对一切n ∈N *结论都成立.2.(2017·镇江模拟)证明:对一切正整数n,5n +2·3n -1+1都能被8整除.证明:(1)当n =1时,原式等于8能被8整除, (2)假设当n =k (k ≥1,k ∈N *)时,结论成立, 则5k +2·3k -1+1能被8整除.设5k +2·3k -1+1=8m ,m ∈N *,当n =k +1时,5k +1+2·3k +1=5(5k +2·3k -1+1)-4·3k -1-4=5(5k +2·3k -1+1)-4(3k -1+1),而当k ≥1,k ∈N *时,3k -1+1显然为偶数,设为2t ,t ∈N *,故5k +1+2·3k +1=5(5k +2·3k -1+1)-4(3k -1+1)=40m -8t (m ,t ∈N *),也能被8整除,故当n =k +1时结论也成立;由(1)(2)可知对一切正整数n,5n +2·3n -1+1都能被8整除.3.已知S n =1+12+13+…+1n (n ≥2,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明:(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *不等式S 2n >1+n2都成立.4.(2017·南京三模)已知数列{a n }共有3n (n ∈N *)项,记f (n )=a 1+a 2+…+a 3n .对任意的k ∈N *,1≤k ≤3n ,都有a k ∈{0,1},且对于给定的正整数p (p ≥2),f (n )是p 的整数倍.把满足上述条件的数列{a n }的个数记为T n .(1)当p =2时,求T 2的值;(2)当p =3时,求证:T n =13[8n +2(-1)n ].解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f (2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T 2=C 06+C 26+C 46+C 66=25=32. (2)证明:T n =C 03n +C 33n +C 63n +…+C 3n 3n .当1≤k ≤n ,k ∈N *时,C 3k 3n +3=C 3k 3n +2+C 3k -13n +2=C 3k -13n +1+C 3k 3n +1+C 3k -13n +1+C 3k -23n +1=2C 3k -13n +1+C 3k 3n +1+C 3k -23n +1=2(C 3k -13n +C 3k -23n )+C 3k -13n +C 3k 3n +C 3k -33n +C 3k -23n=3(C 3k -13n +C 3k -23n )+C 3k 3n +C 3k -33n ,于是T n +1=C 03n +3+C 33n +3+C 63n +3+…+C 3n +33n +3=C 03n +3+C 3n +33n +3+3(C 13n +C 23n +C 43n +C 53n +…+C 3n -23n +C 3n -13n )+T n -C 03n +T n -C 3n 3n=2T n +3(23n -T n ) =3×8n -T n .下面用数学归纳法证明T n =13[8n +2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1], 即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立, 即T k =13[8k +2(-1)k ].则当n =k +1时,T k +1=3×8k -T k =3×8k -13[8k +2(-1)k ]=13[9×8k -8k -2(-1)k ] =13[8k +1+2(-1)k +1], 即n =k +1时,命题也成立. 于是当n ∈N *,有T n =13[8n +2(-1)n ].5.(2017·扬州考前调研)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解:(1)a n =cos π3×2n -2=cos 2π3×2n -1 =2⎝⎛⎭⎫cos π3×2n -12-1,∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1;当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2;当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12< 2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!. 要证a k +1<b k +1, 即证⎝⎛⎭⎪⎫1-1k ·k !2<⎣⎡⎦⎤1-2(k +1)·(k +1)!2, 即证1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2,即证1k ·k !-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0, 即证(k -1)2k (k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1<b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .6.(2017·南通二调)设n ≥2,n ∈N *.有序数组(a 1,a 2,…,a n )经m 次变换后得到数组(b m,1,b m,2…,b m ,n ),其中b 1,i =a i +a i +1,b m ,i =b m -1,i +b m -1,i +1(i =1,2,…,n ),a n +1=a 1,b m -1,n +1=b m -1,1(m ≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).(1)若a i =i (i =1,2,…,n ),求b 3,5的值;(2)求证:b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .(注:当i +j =kn +t 时,k ∈N *,t =1,2,…,n ,则a i +j =a t )解:(1)当n =2,3,4时,b 3,5值不存在; 当n =5时,依题意,有序数组为(1,2,3,4,5). 经1次变换为:(3,5,7,9,6), 经2次变换为:(8,12,16,15,9), 经3次变换为:(20,28,31,24,17), 所以b 3,5=17;当n =6时,同理得b 3,5=28; 当n =7时,同理得b 3,5=45; 当n ≥8时,n ∈N *时,依题意,有序数组为(1,2,3,4,5,6,7,8,…,n ). 经1次变换为:(3,5,7,9,11,13,15,…,n +1), 经2次变换为:(8,12,16,20,24,28,…,n +4), 经3次变换为:(20,28,36,44,52,…,n +12), 所以b 3,5=52.(2)证明:下面用数学归纳法证明对m ∈N *,b m ,i =∑j =0ma i +j C jm ,其中i =1,2,…,n .①当m =1时,b 1,i =a i +a i +1=∑j =01a i +j C j 1,其中i =1,2,…,n ,结论成立;②假设m =k (k ∈N *)时,b k ,i =∑j =0ka i +j C j k ,其中i =1,2,…,n .则m =k +1时,b k +1,i =b k ,i +b k ,i +1=∑j =0ka i +j C jk +∑j =0k a i +j +1C j k=∑j =0ka i +j C jk +∑j =1k +1a i +j C j -1k =a i C 0k +∑j =1ka i +j (C j k +C j -1k )+a i +k +1C k k=a i C 0k +1+∑j =1ka i +j C j k +1+a i +k +1C k +1k +1=∑j =0k +1a i +j C j k +1,所以结论对m =k +1时也成立.由①②知,m ∈N *,b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .。