与调和点列有关的平面几何问题
- 格式:ppt
- 大小:697.00 KB
- 文档页数:20
调和点列在平面几何中的应用调和点列在几何证明中有着十分广泛的应用,它与梅尼劳斯定理、极线都有着十分密切的关联。
下面先给出调和点列的定义:定义:直线上依次四点A 、B 、C 、D 满足AB ADBC DC=,则称A 、B 、C 、D 四点构成调和点列。
由交比的定义:交比(A 、B 、C 、D )=AC D C D A B B: 知A 、B 、C 、D 四点构成调和点列的充要条件是交比(A 、C 、B 、D )=-1 调和点列具有以下常用性质: 性质1:在梅尼劳斯图形中,三角形ABC 被直线DEF 所截,BE 、CD 交与点G ,AG 的延长线交BC 与点H ,则B 、H 、C 、F 成调和点列证明:由塞瓦定理,1AD BH CE DB HC EA =,故BH DB EAHC AD CE=由梅尼劳斯定理,1BF CE AD FC EA DB =,故BF EA DBFC CE AD=所以BH BF HC FC =由定义知,B 、H 、C 、F 成调和点列性质2:若A 、B 、C 、D 成调和点列,O 为平面上一点,则任意一条直线截OA 、OB 、OC 、OD 得到的四个点也成调和点列。
我们称由OFB发出的4条射线OA 、OB 、OC 、OD 为调和线束。
这是调和点列的一个重要性质。
证明:如图,设直线l 交OA 、OB 、OC 、OD 于E 、F 、G 、H 过A 作l 的平行线交OB 、OC 、OD 于B 1、C 1、D 1由平行线分线段成比例知 交比(E 、G 、F 、H )=交比(A 、C 1、B 1、D 1) 由梅尼劳斯定理,1111AB OC BA B C C O CB =,1111AD OC DAD C C O CD= 所以交比(A 、C 1、B 1、D 1)=BA DACB CD:=交比(A 、C 、B 、D )=-1 故交比(E 、G 、F 、H )=-1即E 、F 、G 、H 成调和点列。
第一题、如图,F为。
0外一点,PA、PB分别切6于A、B, PCD为ST割线,CO 交CX)于另一点E, AC、EB交于点F,证明:CD平分匕ADF。
"证明方法一:如图,延长ED交CA于K,根据条件知四边形CADB为调和四边形,故ED、EC、EA、EB构成一组调和线束,进而知K、C、A、F构成一组调和点列。
而KD±CD, 故CD平分ZADFo 3证明方法二:如鼠连結OA、OE、AB、BC,因为ZAFB = ZACE-ZBEC =ZAOE-ZBOC ISCT-NAOC-NBOC 半,且PA = PB,故点P为TkABF的外心。
于是知ZPFA= ZPAC = ZPDA,所以P、A、D、F 四点共圆。
又PA= PF,故CD 平分Z A DF。
3第二题、如图,AB为©0直径,C、D为O。
上两点,且在AB同侧,。
在C、D两处的切城交于点E, BC、AD交于点F, EF交AB于证明:E、C、页、D四点共圆。
“证明:如图,延长白C、BD交于点K,则BC1AK, AD丄BK,从而知F^)AKAB的垂心。
又在圆内接六边形CCADDB中使用帕斯卡定理,知K、E、F三点共线,从而KM丄卽于価。
于是知匕CMF = ZCAF= ZCDE,所以E、C、页、D四点共圆。
K第三题、如图,AB为。
直径,C、D为伽上两点'且在AB同侧,O0在C. D两处的切线交于点E, BC、AD交于点F, EB交0。
于点G,证明;ZCEF = 2/AGF。
“证明:如图,根据条件知匕CF D =典牌=(脸-®;(i对-命)=Z CAB + / DBA = ZECF + ZEDF;且EC = ED;故点E 为△CED 外心。
于是知/EFC = ZECF = ZCAB = ZCGE,敌E、C、F、G四点共圆。
所以“ZCGF = ZCEF = 2(90° - ZECF)= 2(90° - ZCAB)= 2ZABC 二2ZAGC " 0lWZAGF = —=—,即得ZCEF = 2ZAGFo,2 2第四題、如图,AB为直径,P为AB延长线上一点,PC切于C,点C关于朋的对称点为点D, CE1AD于E, F为CE中点,AF交于K,求证:AP为ZXPCK外扬圆的切线。
C万喜人老师的几个平面几何问题潘成华万喜人老师提出了几个关于三角形内切圆的几个问题,笔者在这里做出解答如下引理已知三角形ABC内切圆切BC于D,切AB,AC分别于H,I,点E在AD上,线段BE,CE分别交圆于F,G,AD交三角形ABC内切圆于令一点J求证:线段AD,CF,BG共点,过J的切线,直线HI,FG,BC交于一点证明设BC交过J点的切线于K,则HI必过K,易知D,K调和分割BC因为B,C,D,K是调和点列,设CF交AD因此EB,EC,ED,EK是调和线束,设BL于S,根据调和性质,点S在EC上,AD是点K极线,因此S点在圆上,所以S,G重合,因此结论得证图1问题1:已知:如图,△ABC的内切圆I与边BC,CA,AB分别切于D,E,F。
联AD,在AD上有两点M,N,CN,BN分别交圆I于G,H,直线FM,EM分别交圆I于L,Q,过L,Q作圆I切线交BC于R,S联GR、HS,求证:RH,GS交点在AD上证明:根据引理得:EF,GH,CB共点,设为P,M在P的极线AD上,于是直线LQ必过P根据Desargues定理:在三角形GLR,HQS中,设GL,HQ交点Z,GR,HS交点Y, LR,QS交点PCX,则X,Y ,Z 共线,根据Maclaurin 定理,圆内接四边形ELQF,点A,M,X,D 共线,圆内接四边形GLQH, GQ,LH 的交点(必在AD 上),X,Z 共线,且这条直线就是点P 的极线是AD , X,Z,必在点P 极线AD 上,GY ,YH,YN,YP 是调和线束, 因此RH,GS,交点在AD 上问题2:已知:如图,△ABC 的内切圆I 与边BC,CA,AB 分别切于D,E,F 。
联AD ,在AD 上有两点M,N,CN,BN 分别交圆I 于G ,H,直线FM,EM 分别交圆I 于L,Q,连接EL,FQ 交BC 于R,S 联HR 、GS,求证:RH,GS,交点在AD 上证明 必过根据设为图3XPCPCA问题3:已知:如图,△ABC 的内切圆I 与边BC,CA,AB 分别切于D,E,F 。
调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB |=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.类型3:证明直线过定点或三点共线【例4】如图, 过直线l:5x-7y-70=0上的点P作椭圆x225+y29=1的切线PM和PN, 切点分别为M,N, 连结MN.(1)当点P在直线l上运动时, 证明:直线MN恒过定点Q;(2)当MN⎳l时, 定点Q平分线段MN.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.类型4:证明两直线垂直【例6】已知A (-2,0),B (2,0), 点C 是动点, 且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ 为定值.类型6:与斜率有关的定值问题【例8】设P x0,y0为桞圆x24+y2=1内一定点(不在坐标轴上), 过点P的两条直线分别与椭圆交于点A,C和B、D, 且AB⎳CD.(1)证明:直线AB的斜率为定值;(2)过点P作AB的平行线, 与椭圆交于E、F两点, 证明:点P平分线段EF.【例9】如图, 椭圆E:x2a2+y2b2=1(a>b>0 的离心率为22, 直线l:y=12x与椭圆E相交于A、B两点, AB=25,C、D是椭圆E上异于A、B的任意两点, 且直线AC、BD相交于点M, 直线AD、BC相交于点N, 连结MN.(1)求椭圆E的方程;(2)求证:直线MN的斜率为定值.【例10】四边形ABCD是椭圆x23+y22=1的内接四边形, AB经过左焦点F1,AC,BD交于右焦点F2, 直线AB与直线CD的斜率分别为k1,k2.(1)证明:k1k2为定值;(2)证明:直线CD过定点, 并求出该定点的坐标.类型7:等角问题【例11】设椭圆C:x22+y2=1的右焦点为F, 过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时, 求直线AM的方程;(2)设O为坐标原点, 证明:∠OMA=∠O MB.【例12】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点-1,32在椭圆C上, 过原点O的直线与椭圆C相交于M、N两点, 且|MF|+|NF|=4.(1)求椭圆C的方程;(2)设P(1,0),Q(4,0), 过点Q且斜率不为零的直线与椭圆C相交于A、B两点, 证明:∠APO=∠BPQ类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ上, PQ与O点关于曲线C的极线交于点R. 曲线C上有两动点A,B, 且直线AO、BO分别交曲线Γ于点C, D, 直线AB,CD分别交PQ于点M,N. 则M,O,N,R成调和点列.【证明】延长XO交BC于点E, 由定理5可知:B,E,C,Y成调和点列(完全四边形中的调和点列), 故M,O,N,R也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C:x2a2+y2b2=1,P的坐标是x0,0,Q点在P关于椭圆的极线x=a2x0上. 过P作直线交椭圆于点A,B. 求证:直线AQ,PQ,BQ的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q点在x轴上时, 就是等角线, 此时PQ斜率为0 , PQ平分∠AQB.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【例15】如下图, 椭圆x2a2+y2b2=1(a>b>0)的左右顶点为A1,B1,Q为直线x=m上一点, QA1,QB1分别于椭圆交于点A,B, 过点P作直线交桞圆于A,B两点, 直线AB与x轴交于点P, 与直线x=m交于点M, 记直线QA1,QB1,QP的斜率分别为k1,k2,k0, 则:(1)k1,k0,k2成等差数列;(2)x P x Q=a2.【例16】椭圆x2a2+y2b2=1(a>b>0)经过点M1,32, 离心率e=12.(1)求椭圆的方程;(2)设P是直线x=4上任意一点, AB是经过椭圆右焦点F的一条弦(不经过点M). 记直线PA,PF,PB的斜率依次为k1,k2,k3. 问:是否存在常数λ, 使得k1+k3=λk2. 若存在, 求λ的值;若不存在, 说明理由.调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B .【解析】因为 ax +by =1 是圆 x 2+y 2=1 的切点弦方程, 所以直线与圆相交, 故选 B .类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【答案】 x9+y 2=1.【解析】该题实质上就是求椭圆 x 29+y 25=1 内一点 M (1,2) 对应的极线方程,答案为 x9+y 2=1.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB|=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.【答案】 (1)x 24+y 22=1;(2) 见解析.【解析】(1)由题意得:c 2=22a 2+1b 2=1c 2=a 2-b 2 ,解得a 2=4b 2=2 ,所求椭圆方程为x24+y 22=1.(2) 解法 1: 定比点差法设点 Q 、A 、B 的坐标分别为 (x ,y ),x 1,y 1 ,x 2,y 2由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |, 则 λ>0 且 λ≠1又 A ,P ,B ,Q 四点共线, 从而 AP =-λPB ,AQ=λQB 于是 4=x 1-λx 21-λ,1=y 1-λy 21-λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ,从而:4x =x 21-λ2x 221-λ2⋯⋯⋯⋯(1)y =y 21-λ2y 221-λ2⋯⋯⋯.. (2)又点 A 、B 在椭圆 C 上,即:。
1 平面几何的定理模型1:【内心与外接圆】【内心与外接圆】设设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆也成立). 模型2【内切圆与旁切圆】三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,旁心还与三角形的半周长关系密切. 性质:(1)设AI A 的连线交△ABC 的外接圆于D ,则DI A =DI =DB =DC ;(2)△ABC 的∠A 的内角平分线交外接圆于点D ,以点D 为圆心,DC 为半径作圆,与直线AD 相交于两点I 和I A ,则这两点I 和I A 恰好是△ABC 的内心和旁心。
模型3【垂心性质】△ABC 垂心H 关于三边的对称点在△ABC 的外接圆上,关于三边中点的对称点在△ABC 的外接圆上;三角形任一顶点到垂心的距离等于外心到对边的距离的2倍(AH =|2RcosA |)。
A'IAB CI ADIA BCH'MB'F E D H OCA B模型4【圆幂定理】【圆幂定理】从一定点P 引直线与定圆O 交于两点A 、B ,(A 、B 可能重合为一个点),(记OP =d ), 则P A ·PB 等于点P 对于⊙O 的幂:d 2-r 2所以上面的几个定理(相交弦定理、切割线定理、割线定理及切线长定理)也统称圆幂定理.也统称圆幂定理.ïîïíì<=>=在圆内,在圆上,在圆外,的幂P P P P 000模型5【多圆问题】【多圆问题】 相交两圆的性质相交两圆的性质 性质1:相交两圆的连心线垂直平分公共弦。
:相交两圆的连心线垂直平分公共弦。
性质2:相交两圆的公共弦所在直线平分外公切线线段。
:相交两圆的公共弦所在直线平分外公切线线段。
调和点列(一)一、线段调和分割的基本概念如果线段AB 被两点C,D 内分与外分成同一比例,则称线段AB 被点C 和D 调和分割.亦称点列A,B;C,D 为调和点列.显然,当C,D 调和分割AB 时,也可称A 、B 两点调和分割CD.有时也称点C 和D 是线段AB 的调和共轭点.若从共点直线外任一点P 作射线PA,PC,PB,PD ,则可称射线束为调和线束,且PA 与PB 共轭,PC 与PD 共轭.二、调和点列的性质调和点列联系了众多的图形,因而它有一系列有趣的性质.性质1 设A,C,B,D 是共线四点,点M 为AB 中点,则C,D 调和分割线段AB 的充要条件是满足下述六个条件之一. (1)点AB 调和分割CD.(2)112AC AD AB+=. (3) 22AB CD AD BC AC DB ∙=∙=∙. (4) CA CB CM CD ∙=∙.(5) DA DB DM DC ∙=∙.(6)22MA MB MC MD ==∙.性质2 设A,C,B,D 是共线四点,过共点直线外一点P 引射线PA,PC,PB,PD ,则C,D 调和分割线段AB 的充要条件是满足下述两个条件之一.(1)线束PA,PC,PB,PD ,其中一射线的任意平行线被其他三条射线截出相等的两线段.(2)另一直线l 分别交射线PA,PC,PB,PD 于点A ’,C ’,B ’,D ’时,点C ’,D ’调和分割线段A ’B ’.性质3 对线段AB 的内分点C 和外分点D ,以及直线AB 外一点P ,给出如下四个论断:①PC 是∠APB 的平分线.②PD 是∠APB 的外角平分线.③C,D 调和分割线段AB.④PC ⊥PD.以上四个论断中,任选两个作题设,另两个作结论组成的六个命题均为真命题.性质4 三角形的一边被其边上的内(旁)切圆的切点和另一点调和分割的充要条件是,另一点与其余两边上的两个切点三点共线.性质5 从圆O 外一点A 引圆的割线交圆O 于C,D ,若割线ACD 与点A 的切点弦交于点B ,则弦CD 被A,B 调和分割.三、几个推论1、性质2的推论:推论1 梯形的两腰延长线的交点和两对角线的交点调和分割两底中点的连线.推论2完全四边形的一条对角线被其他两条对角线调和分割.推论3过完全四边形对角线所在直线的交点作另一条对角线的平行线,所作直线与平行的对角线的同一端点所在的边或其延长线相交,所得线段被此对角线所在直线上的交点平分.S2、性质3的推论:推论4三角形的角平分线被其内心和相应的旁心调和分割.推论5两外离不等圆圆心连线被两圆的外公切线交点和内公切线交点调和分割.推论6若C,D两点调和分割圆的直径AB,则圆周上任一点到C,D两点的距离之比是不等于1的常数.反之,若一动点到两定点的距离之比为不等于1的常数,则该动点的轨迹是一个圆.(Apollonius圆)推论7从圆周上一点作两割线,它们与圆相交的非公共的两点连线,垂直于这条连线的直径所在的直线与两割线相交,则这条直径被这两割线调和分割.推论8一已知圆的直径被另一圆周调和分割的充要条件是,已知直径的圆周与过两分割点的圆周正交(即交点处切线相互垂直).推论9设点C是△AEF的内心,角平分线AC交边EF于点B,射线AB交△AEF的外接圆圆O2于点O,则射线AB上的点D为△AEF的旁心的充要条件是AC DOCB OB=.推论10设△AEF的角平分线AB交EF于点B,交△AEF的外接圆于点O,则22OE OF OA OB==∙.3、性质4的推论:推论11若凸四边形有内切圆,则相对边上的两切点所在直线与凸四边形一边延长线的交点和这一边上的内切圆切点调和分割这一边.4、性质5的推论:推论12从圆O外一点A引圆的两条割线交圆于四点,以这四点为顶点的四边形的对角线相交于点B,设直线AB交圆O于C,D,则A,B调和分割CD弦.四、调和点列的性质应用例1如图,过圆外一点P作圆的两条切线PA,PB,A,B为切点,再过点P作圆的一条割线分别交圆于C,D两点,过切点B作PA的平行线分别交直线AC,AD于E,F,求证:BE = BF. (2005年第5届中国西部数学奥林匹克题)E例2如图,在△ABC中,AD⊥BC,H为AD上任意一点,CH,BH分别与AB,AC交于点E,F,求证:∠EDA =∠FDA. (第18届普特南B.1)(1987年友谊杯国际竞赛)(第14届爱尔兰奥林匹克)(第26届加拿大奥林匹克)B例3 如图,在△PBC 中,∠PBC =60°,过点P 作△PBC 的外接圆圆O 的切线,与CB 的延长线交于点A.点D,E 分别在线段PA 和圆O 上,使得∠DBE =90°,PD=PE ,连接BE 与PC 相交于点F.已知AF,BP,CD 三线共点. (1)求证:BF 是∠PBC 的平分线.(2)求tan ∠PCB 的值. (2006年西部数学奥林匹克题)例4 如图,已知A 为圆O 外一点,过A 引圆O 的割线交圆O 于点B,C ,且点B 在线段AC 内部.过点A 引圆O 的两条切线,切点分别为S,T.设AC 与ST 交于点P ,证明:2AP ABPC BC=∙. (第21届北欧数学竞赛题)例5如图,已知△ABC的外心为O,P为OA延长线上一点,直线l与PB关于BA对称,直线h与PC关于AC对称,l与h交于点Q.若P在OA的延长线上运动,求Q的轨迹. (第38届奥地利奥林匹克题)B例6如图,过锐角△ABC的顶点A,B,C的三条高分别交对边于点D,E,F,过点D平行于EF的直线分别交AC,AB于点Q,R,EF交BC于点P.证明:△PQR的外接圆过BC的中点. (第38届IMO预选题)B例7如图,设O和I分别为△ABC的外心和内心,△ABC的内切圆与边BC,CA,AB 分别相切于点D,E,F,直线FD与CA相交于点P,直线DE与AB相交于点Q,点M,N分别为线段PE,QF的中点,求证:OI⊥MN. (2007年CMO试题)例8如图,已知AB是圆O的弦,M是AB的中点,C是圆O外任一点,过点C作圆O的切线CS,CT,连接MS,MT分别交AB于点E,F.过点E,F作AB的垂线,分别交OS,OT于点X,Y,再过点C任作圆O的割线,交圆O于点P,Q,连接MP 交AB于点R,设Z是△PQR的外心,求证:X,Y,Z三点共线.(2007年国家队选拔赛题)Q。
自招竞赛秋季数学讲义
“几何调和”
学生姓名授课日期
教师姓名授课时长
包括调和点列、调和线束、完全四边形等。
这些内容不会在高考中涉及,在往年的自主招生中考得也比较少;但在数学竞赛中是平面几何最重要的部分之一。
一、调和点列
设A、B、C、D是同一直线上一次排列的四个点,若AB AD
BC DC
=,则称A、B、C、D为调
和点列,或称点B、D调和分割线段AC(易知这和“点A、C调和分割线段BD”是等价的)。
若从直线外一点P因射线P A、PB、PC、PD,则称他们为调和线束。
二、完全四边形
两两相交、且没有三线共点的四条直线(及它们的六个交点),称作完全四边形。
【试题来源】
【题目】A、C、B、D是直线上依次排列的四点,求证:下列两个都是“C、D调和分割线段AB”的充要条件:
(1)
112
AC AD AB
+=;
(2)2AB CD AD BC ⋅=⋅
【难度】1
【例2】
【试题来源】
【题目】P A 、PC 、PB 、PD 是调和线束,A 、C 、B 、D 共线,求证:A 、C 、B 、D 是调和点
列。
【难度】2
【例3】
【试题来源】 【题目】完全四边形ABCDEF 的对角线BF 、CE 交AD 于点M 、N ,求证:线段AD 被点M 、
N 调和分割。
(事实上,完全四边形的任何一条对角线被另外两条对角线调和分割)
A。