评析复习参考对2008年浙江省高考数学卷概率试题的
- 格式:doc
- 大小:161.00 KB
- 文档页数:5
浙江数学(文科)试题 第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A = (A){}1|-≥x x (B) {}2|≤x x(C) {}20|≤<x x(D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A)2π (B)π(C)23π (D) 2π(3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (4)已知{a n }是等比数列,a n =2,a 3=41,则公比q =(A)21-(B)-2(C)2(D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a(6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是 (A)-15 (B)85 (C)-120 (D)274 (7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是 (A)0(B)1 (C)2(D)4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A)3(B)5(C)3(D)5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得 (A)αα⊂⊂b a , (B)b a ,α⊂∥α(C)αα⊥⊥b a ,(D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年高考概率与统计试题分析王卫华湖北省黄梅县第一中学 435500 概率与统计问题,是近年来高考备考的重点和热点之一,概率与统计问题作为解答题之一出现,已经成为高考命题以及各级考试命题的共识.下面通过简析2008年高考题中有关概率统计方面的试题,来分析命题方向,透视命题信息,以便科学高效地组织好新课程的高考复习.1 考试内容随机事件的概率,等可能性事件的概率,互斥事件、相互独立事件同时发生的概率,独立重复试验;抽样方法,总体分布的估计,总体期望值和方差的估计.2 考试要求1)了解随机事件的发生存在着规律性和随机事件概率的意义;2)了解等可能事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率;3)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;4)会计算事件在n次独立重复试验中恰好发生k次的概率;5)了解随机抽样,了解分层抽样的意义,会对简单实际问题进行抽样;6)会用样本频率分布估计总体分布;7)会用样本平均数估计总体期望值,会用样本的方差估计总体方差.3 试题特点1)各地高考题中概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易.2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧,并赋予时代气息、贴近学生实际的问题.如有关奥运方面的试题比比皆是,也有有关人体健康方面的题目.这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神.3)概率统计试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望、方差、抽样方法等内容都进行了考查.1(1-x)n<0,所以只需证ln(x-1)≤x-1.令h(x)=x-1-ln(x-1),则h′(x)=1-1x-1=x-2x-1≥0(x≥2).所以当x≥2时,h(x)=x-1-ln(x-1)单调递增.又h(2)=1>0,所以当x≥2时,恒有h(x)>0,即ln(x-1)<x-1命题成立.综上所述,结论成立.即f(x)≤x-1.在高考中,等价转化思想无处不见,特别是对于综合性较强的问题,我们要具体问题具体分析,不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧.(收稿日期:2008210230)4)概率统计试题在试卷中的题型逐年发生变化,这几年发展逐步稳定,到2008年已成为高考卷中的主流应用题.3.1 考查五大概率基本模型随机事件的概率问题,以古典概型为基础,以互斥事件的和与相互独立事件的积为主力,以独立重复试验作策应,活跃在文科及理科试卷之中.它既是一类独立的概率问题,又是概率与统计问题的认知与求解的基础.其中,对于比较复杂的概率问题,化整为零———集零为整,无可争议地成为解题的第一战略战术.例1 (山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手,若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ).(A)151 (B)168 (C)1306 (D)1408分析 解答此题的关键在于正确理解公差的定义以及列举法的正确运用.解析 显然总数为C318=816,满足要求的共有12种:1,4,7;2,5,8;3,6,9;4,7,10; 5,8,11;6,9,12;7,10,13;8,11,14;9,12,15; 10,13,16;11,14,17;12,15,18.故所求的概率为12816=168.所以答案选B.小结 本题考查了排列组合、数列公差的具体用法与概率,解决本题的关键是通过列举法找出满足要求的方法数.这是一道属于等可能事件的概率题,在求解的过程中,先求出不加条件限制的所有可能性m,然后再根据条件,求出满足题目要求的可能种数n,最后要求的概率就是nm.例2 (湖南)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是12,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)没有人签约的概率.分析 概率应用题应首先弄清关键词语,碰到“至少”、“至多”之类的的词语可考虑用对立事件来处理.解析 用A,B,C分别表示事件甲、乙、丙面试合格,由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=12.(Ⅰ)至少有1人面试合格的概率是1-P(A B C)=1-P(A)P(B)P(C)=1-123=78.(Ⅱ)没有人签约的概率为P(A B C)+P(A B C)+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C) +P(A)P(B)P(C)=123+123+123=38.小结 本题主要考查概率知识,要记住相互独立事件同时发生时概率的求法,会应用对立事件间的概率关系.例3 (湖北)明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是.分析 对于较复杂的概率问题,应分清事件的构成以及概率的转化,熟悉“至少有一个发生”、“至多有—个发生”、“恰有一个发生”等语句的真实含义,如果从正面直接求解上面的高考题,计算比较繁琐.若注意运用集合的观点(补集的思想),利用事物的内在联系,促成复杂事件的概率问题向简单事件的概率问题的转化,这样解答题目就容易得到答案.解析 1-(1-0.80)(1-0.90)=0.98.小结 本题是考查学生分类讨论的能力和对基本概率题型的熟练掌握程度.例4 (天津卷)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为1 2与p,且乙投球2次均未命中的概率为116.(Ⅰ)求乙投球的命中率p;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.分析 本题的亮点是知道事件最后的概率而求一次发生的概率,是逆向思维,本题并不复杂,从正面和反面突破都可以.(Ⅰ)解法1 设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.由题意得(1-P(B))2=(1-p)2=1 16,解得 p=34或54(舍去).所以乙投球的命中率为34.解法2 设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.由题意得P(B)P(B)=1 16,于是P(B)=14或P(B)=-14(舍去),故 p=1-P(B)=34.所以乙投球的命中率为34.(Ⅱ)解法1 由题设和(Ⅰ)知P(A)=12,P(A)=12.故甲投球2次至少命中1次的概率为1-P(A・A)=3 4 .解法2 由题设和(Ⅰ)知P(A)=12,P(A)=12.故甲投球2次至少命中1次的概率为C12P(A)P(A)+P(A)P(A)=3 4 .(Ⅲ)由题设和(Ⅰ)知,P(A)=12,P(A)=12,P(B)=34,P(B)=14.甲、乙两人各投球2次,共命中2次有3种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次.概率分别为C12P(A)P(A)・C12P(B)P(B)=316, P(A・A)P(B・B)=164,P(A・A)P(B・B)=964.所以甲、乙两人各投两次,共命中2次的概率为316+164+964=1132.小结 本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.例5 (安徽)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ)现对3位被测试者先后进行测试,第1位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行.求这3位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率.(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.分析 本题显然是按相互独立事件来处理,第Ⅱ问可按分类的思想,用互斥事件的理论来处理.解 (Ⅰ)每次测试中,被测试者从10张卡片中随机抽取1张卡片,拼音带有后鼻音“g”的概率为310,因为3位被测试者分别随机抽取1张卡片的事件是相互独立的,因而所求的概率为310×310×310=271000.(Ⅱ)设A i (i =1,2,3)表示所抽取的3张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为P (A i ),则P (A 2)=C 17C 23C 310=740,P (A 3)=C 33C 310=1120.因而所求概率为P (A 2+A 3)=P (A 2)+P (A 3)=740+1120=1160.小结 本题主要考查排列、组合知识与等可能事件互斥事件概率的计算,运用概率知识分析问题和解决实际问题的能力.3.2 考查概率与其它知识的综合问题随着课改的进一步实施,概率问题出现了综合化的新趋势,求解概率综合问题应特别注意将所求问题转化为纯概率问题求解.例6 (江苏)在平面直角坐标系x Oy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为.分析 概率与几何体的交汇问题,实际可归结为几何概型问题.要解此问题需把握:总体事件和有利事件如何表示?需通过什么来确定所求的概率?怎样求?图1解析 如图1,区域D 表示边长为4的正方形A B CD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案π16.小结 本小题是概率与几何交汇的题,它考查几何概型,解决此题的关键是正确的图形,分清哪些是总样本,哪些是有利事件.3.3 考查随机变量分布列和数学期望、方差求解离散型随机变量分布列必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.大致可分为3个步骤进行:①明确随机变量的所有可能取值,以及取每一个值时所表示的意义;②利用概率知识,求出随机变量每个取值的概率;③按规范形式写出分布列,并用分布列的性质验证.例7 (江西理)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分2年实施.若实施方案1,预计第1年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3,0.3,0.4;第2年可以使柑桔产量为第1年产量的1.25倍、1.0倍的概率分别是0.5,0.5.若实施方案2,预计第1年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2,0.3,0.5;第2年可以使柑桔产量为第1年产量的1.2倍、1.0倍的概率分别是0.4,0.6.实施每种方案第1年与第2年相互独立,令ξi (i =1,2)表示方案i 实施2年后柑桔产量达到灾前产量的倍数.(Ⅰ)写出ξ1,ξ2的分布列;(Ⅱ)实施哪种方案,2年后柑桔产量超过灾前产量的概率更大?(Ⅲ)不管哪种方案,如果实施2年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?分析 解答比较大小问题一般的都是先求出相关的表达式,然后再比较它们的大小,本题的两小问尽管均是与概率有关,但是方法依旧.解析 (Ⅰ)ξ1,ξ2的分布列如表1、表2所示.表1ξ10.80.911.1251.25P 10.20.150.350.150.15表2ξ20.80.9611.21.44P 20.30.20.180.240.08 (Ⅱ)由(Ⅰ)可得P 1>1的概率P (P 1>1)=0.15+0.15=0.3,P2>1的概率P(P2>1)=0.24+0.08=0.32.可见,P(P2>1)>P(P1>1),所以实施方案2,2年后产量超过灾前概率更大.(Ⅲ)设实施方案1,2的平均利润分别为利润1、利润2,根据题意利润1=(0.2+0.15)×10+0.35×15 +(0.15+0.15)×20=14.75(万元),利润2=(0.3+0.2)×10+0.18×15 +(0.24+0.08)×20=14.1(万元).即利润1>利润2,所以实施方案1平均利润更大.小结 本题主要考查随机变量分布列与概率,考查随机变量期望及概率在实际生产或生活中的应用以及不等式的具体应用,关键是把实际问题转化为概率数学问题.例8 (安徽)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望Eξ=3,标准差σξ为62.(Ⅰ)求n,p的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.分析 做好本题的关键在于记住公式Eξ=n p,Dξ=(σξ)2=n p(1-p),当然也可以按数学期望和方差的定义进行推导,不过比较麻繁.解 (Ⅰ)由Eξ=n p=3,(σξ)2=n p(1-p)=32,得1-p=12,从而n=6,p=12,ξ的分布列如表3所示.表3ξ0123456P 164664156420641564664164 (Ⅱ)记“需要补种沙柳”为事件A,则P(A)=P(ξ≤3),得P(A)=1+6+15+2064=2132,或 P(A)=1-P(ξ>3)=1-15+6+164=2132.小结 本题主要考查二项分布的分布列、数学期望以及标准差的概念和计算,考查分析问题及解决实际问题的能力.例9 (宁夏)A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列如表4、表5所示.表4X15%10%P0.80.2表5X22%8%12%P0.20.50.3 (Ⅰ)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D Y1,D Y2;(Ⅱ)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.(注:D(a X+b)=a2D X)分析 解答本题第Ⅰ小题的关键在于熟练运用方差的定义,解答第Ⅱ小题的关键在于运用有关方差的公式D(a X+b)=a2D X 以及二次函数求最值的重要方法———配方法.解析 (Ⅰ)由题设可知Y1和Y2的分布列分别见表6、表7.表6Y1510P0.80.2表7Y22812P0.20.50.3 E Y1=5×0.8+10×0.2=6,D Y 1=(5-6)2×0.8+(10-6)2×0.2=4,E Y 2=2×0.2+8×0.5+12×0.3=8,D Y 2=(2-8)2×0.2+(8-8)2×0.5 +(12-8)2×0.3=12.(Ⅱ)f (x )=D x 100Y 1+D 100-x100Y 2=x 1002D Y 1+100-x 1002D Y 2=41002[x 2+3(100-x )2]=41002(4x 2-600x +3×1002),当x =6002×4=75时,f (x )=3为最小值.小结 本题考查分布列、期望、方差的有关概念、二次函数求最值以及利用所学知识解决实际问题的能力.3.4 考查抽样方法、总体分布本部分主要考查应用概率统计知识解决实际问题的能力,其难度大致与教材持平,已经形成新热点,学习时应引起重视.例10 (安徽)设2个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图2图像如图2所示.则有( ).(A )μ1<μ2,σ1<σ2(B )μ1<μ2,σ1>σ2(C )μ1>μ2,σ1<σ2(D )μ1>μ2,σ1>σ2分析 解决此题的关键在于记住正态分布的图形形状,明确各参数的几何意义. 解析 根据正态分布N (μ,σ2)函数的性质:正态分布曲线是一条关于x =μ对称,在x =μ处取得最大值的连续钟形曲线;σ越大,曲线的最高点越低且弯曲较平缓;反过来,σ越小,曲线的最高点越高且弯曲较陡峭,选A .小结 本题主要考查正态分布知识,关键是要搞清字母的代表意义.例11 (湖北)一个公司共有1000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是.分析 求解本题的关键在于掌握分层抽样的定义,对分层抽样,简单地说就是比例相等,即每一层抽取的个体数与该层总体数的比值相等,所以解决这一类问题时,只要列出一个比例式即可解决.解析 设从该部门抽取的员工人数是y ,则1000÷50=200÷y ,则y =10,故从该部门抽取的员工人数是10.小结 本题是考查分层抽样的有关知识.在学习中要掌握3种抽样方法的定义及各自特点,才能做到以不变应万变.由上面可以看出:各地高考题多数把概率与统计作为应用大题出现,符合高考命题支持课程改革的原则,而且试题取材根植于课本,学习时应扎扎实实抓好基本模型的运用,学会将实际问题转化为概率模型或统计模型求解,发挥工具的作用.(收稿日期:2008210228)。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
2008年普通高等学校招生全国统一考试(浙江卷)文科数学试卷第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A = (A){}1|-≥x x (B) {}2|≤x x(C) {}20|≤<x x(D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π (B )π(C)23π (D) 2π(3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)已知{a n }是等比数列,a 1=2,a 4=41,则公比q=(A)21-(B)-2(C)2(D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a(6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是(A )-15 (B )85 (C )-120 (D )274 (7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是 (A )0(B )1 (C )2(D )4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3(B )5(C )3(D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得(A )αα⊂⊂b a ,(B )b a ,α⊂∥α(C )αα⊥⊥b a ,(D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试数学(文科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则AB =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤ (2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π(B )π (C )32π (D )2π(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (4)已知{}n a 是等比数列,41252==a a ,,则公比q = (A )21-(B )2- (C )2 (D )21(5)0,0a b ≥≥,且2a b +=,则 (A )12ab ≤(B )12ab ≥ (C )222a b +≥ (D )223a b +≤ (6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (9)对两条不相交的空间直线a 和b ,必定存在平面α,使得(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥A BCD (10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12 (B )4π (C )1 (D )2π 二.填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( ) A .1B .1-C 2D .2-2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()UUA B BA =( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线2222x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )A .3B .5C .3D .58.若cos 2sin 5αα+=,则tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2C .2D .2210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线A B P α(第10题)2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.ABC △中,角A B C ,,所对的边分别为a b c ,,.若(3)cos cos b c A a C -=,则cos A .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = .16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?ABCD (第14题)DA BEFC(第18题)19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图). (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a 是实数,函数()()f x x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.AB OQyxlM (第20题)22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.12 12.8 13.33 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角. 在Rt EFG △中,因为3EG AD ==2EF =,所以60CFE ∠=,1FG =.又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是33sin BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,D A B ECHG DA BEFCz x则(000)C ,,,3)A a ,,,30)B ,,,(30)E b ,,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(30)CB =,,,(00)BE b =,,, 所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(30)EF c b =--,,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而23()03()2b c b c b -+-=⎧+-=,,解得34b c ==,.所以(30)E ,,,(040)F ,,.设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,解得33(13)n a=,,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19x C P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ 0 1 2 3P112 512 512 112ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551yP B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为2()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||11|QB k x ++.在Rt QMA △中,因为AB OQ y M222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 21||2|||21kx QA k+=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =, 从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||5||QB QA = 从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0)+∞,,AB OQ yM Hl 1()22f x x x x'==(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增, 所以2()333a a a g a f ⎛⎫==-⎪⎝⎭. 若6a ,()f x 在[02],上单调递减, 所以()(2)2(2)g a f a ==-.综上所述,002()06332(2)6a a ag a a a a ⎧⎪⎪=-<<⎨⎪⎪-⎩,≤,,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得6232a +≤≤ 故a 的取值范围为3232a +≤≤22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理黄牛课件网 能力.满分14分.(Ⅰ)证明:用数学归纳法证明. ①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+- 2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得 111(2313)12k k ka k n n a a ++=-+≤,,,,≥ 所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥, 于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<,所以3n T <.。
绝密★考试结束前2008年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题(共10小题,每小题5分,满分50分)1.已知a是实数,是纯虚数,则a=()A.1B.﹣1C.D.﹣【考点】复数代数形式的混合运算.【分析】化简复数分母为实数,复数化为a+bi(a、b是实数)明确分类即可.【解答】解:由是纯虚数,则且,故a=1故选A.【点评】本小题主要考查复数的概念.是基础题.2.已知U=R,A={x|x>0},B={x|x≤﹣1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0}C.{x|x>﹣1}D.{x|x>0或x≤﹣1}【考点】交、并、补集的混合运算.【分析】由题意知U=R,A={x|x>0},B={x|x≤﹣1},然后根据交集的定义和运算法则进行计算.【解答】解:∪U=R,A={x|x>0},B={x|x≤﹣1},∪C u B={x|x>﹣1},C u A={x|x≤0}∪A∩C u B={x|x>0},B∩C u A={x|x≤﹣1}∪(A∩C u B)∪(B∩C u A)={x|x>0或x≤﹣1},故选D.【点评】此题主要考查一元二次不等式的解法及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.3.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”的既不充分也不必要条件.【解答】解:∪“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∪“a2>b2”是“a>b”的既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的展开式中,含x4的项的系数是()A.﹣15B.85C.﹣120D.274【考点】二项式定理的应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)的思路来完成.【解答】解:含x4的项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的5个括号中4个括号出x仅1个括号出常数∪展开式中含x4的项的系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项的系数.5.在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是()A.0B.1C.2D.4【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式进行化简,再由x的范围求出的范围,再由正弦函数的图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=的交点个数是2个.故选C.【点评】本小题主要考查三角函数图象的性质问题.6.已知{a n}是等比数列,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=()A.16(1﹣4﹣n)B.16(1﹣2﹣n)C.(1﹣4﹣n)D.(1﹣2﹣n)【考点】等比数列的前n项和.【专题】计算题.【分析】首先根据a2和a5求出公比q,根据数列{a n a n+1}每项的特点发现仍是等比数列,且首项是a1a2=8,公比为.进而根据等比数列求和公式可得出答案.【解答】解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故选:C.【点评】本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.7.若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()A.3B.5C.D.【考点】双曲线的定义.【专题】计算题.【分析】先取双曲线的一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线的右准线,则左焦点F1到右准线的距离为,右焦点F2到右准线的距离为,可得,即,∪双曲线的离心率.故选D.【点评】本题主要考查双曲线的性质及离心率定义.8.若,则tanα=()A.B.2C.D.﹣2【考点】同角三角函数基本关系的运用.【分析】本小题主要考查三角函数的求值问题,需要把正弦和余弦化为正切和正割,两边平方,根据切割的关系进行切割互化,得到关于正切的方程,解方程得结果.【解答】解:∪cosα+2sinα=﹣,∪cosα≠0,两边同时除以cosα得1+2tanα=﹣,∪(1+2tanα)2=5sec2α=5(1+tan2α),∪tan2α﹣4tanα+4=0,∪tanα=2.故选B.【点评】同角三角函数之间的关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.9.已知,是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.【考点】平面向量数量积的坐标表示、模、夹角.【专题】压轴题.【分析】本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.【解答】解:.∪,∪,∪,∪cosθ∈[﹣1,1],∪的最大值是.故选C.【点评】启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,本题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.10.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得∪ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线【考点】椭圆的定义;平面与圆柱面的截线.【专题】压轴题;转化思想.【分析】根据题意,因为三角形面积为定值,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,分析轴线与平面的性质,可得答案.【解答】解:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P在以AB为轴线的圆柱面与平面α的交线上,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆;故选:B.【点评】本题考查平面与圆柱面的截面性质的判断,注意截面与圆柱的轴线的不同位置时,得到的截面形状也不同.二、填空题(共7小题,每小题4分,满分28分)11.已知平面内三点A(2,﹣3),B(4,3),C(5,a)共线,则a=6【考点】平行向量与共线向量.【分析】利用向量坐标的求法求出两个向量的坐标,将三点共线转化为两向量共线,利用向量共线的充要条件列出方程求出a.【解答】解:由已知知所以2(a+3)=6×3解得a=6故答案为:6【点评】本题考查向量坐标的求法、向量共线的坐标形式的充要条件.12.已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|= 8.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】运用椭圆的定义,可得三角形ABF2的周长为4a=20,再由周长,即可得到AB的长.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆的方程和定义,考查运算能力,属于基础题.13.在∪ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∪sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∪cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.14.如图,已知球O的面上四点A、B、C、D,DA∪平面ABC,AB∪BC,DA=AB=BC=,则球O的体积等于π.【考点】球的体积和表面积;球内接多面体.【专题】计算题.【分析】说明∪CDB是直角三角形,∪ACD是直角三角形,球的直径就是CD,求出CD,即可求出球的体积.【解答】解:AB∪BC,∪ABC的外接圆的直径为AC,AC=,由DA∪面ABC得DA∪AC,DA∪BC,∪CDB是直角三角形,∪ACD是直角三角形,∪CD为球的直径,CD==3,∪球的半径R=,∪V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球的内接多面体,说明三角形是直角三角形,推出CD是球的直径,是本题的突破口,解题的重点所在,考查分析问题解决问题的能力.15.已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=1.【考点】分段函数的解析式求法及其图象的作法.【专题】压轴题.【分析】本题应先画出函数的大体图象,利用数形结合的方法寻找解题的思路.画出大体图象后不难发现函数的最大值只能在x=1或x=3处取得,因此分情况讨论解决此题.【解答】解:记g(x)=x2﹣2x﹣t,x∈[0,3],则y=f(x)=|g(x)|,x∈[0,3]f(x)图象是把函数g(x)图象在x轴下方的部分翻折到x轴上方得到,其对称轴为x=1,则f(x)最大值必定在x=3或x=1处取得(1)当在x=3处取得最大值时f(3)=|32﹣2×3﹣t|=2,解得t=1或5,当t=5时,此时,f(0)=5>2不符条件,当t=1时,此时,f(0)=1,f(1)=2,符合条件.(2)当最大值在x=1处取得时f(1)=|12﹣2×1﹣t|=2,解得t=1或﹣3,当t=﹣3时,f(0)=3>2不符条件,当t=1此时,f(3)=2,f(1)=2,符合条件.综上t=1时故答案为:1.【点评】本题主要考查二次函数的图象性质和绝对值对函数图象的影响变化.16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件的六位数的个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成的空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成的空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查的是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.17.若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于1.【考点】二元一次不等式(组)与平面区域.【专题】压轴题;图表型.【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用求最优解的方法,结合题中条件:“恒有ax+by≤1”得出关于a,b的不等关系,最后再据此不等式组表示的平面区域求出面积即可.【解答】解:令z=ax+by,∪ax+by≤1恒成立,即函数z=ax+by在可行域要求的条件下,z max≤1恒成立.当直线ax+by﹣z=0过点(1,0)或点(0,1)时,0≤a≤1,0≤b≤1.点P(a,b)形成的图形是边长为1的正方形.∪所求的面积S=12=1.故答案为:1【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.三、解答题(共5小题,满分72分)18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,∪BCF=∪CEF=90°,AD=.(∪)求证:AE∪平面DCF;(∪)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?【考点】直线与平面平行的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(∪)过点E作EG∪CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∪平面DCF;(∪)过点B作BH∪EF交FE的延长线于H,连接AH,说明∪AHB为二面角A﹣EF﹣C的平面角,通过二面角A﹣EF﹣C的大小为60°,求出AB即可.【解答】(∪)证明:过点E作EG∪CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD∪∪EG,从而四边形ADGE为平行四边形,故AE∪DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∪平面DCF.(∪)解:过点B作BH∪EF交FE的延长线于H,连接AH.由平面ABCD∪平面BEFG,AB∪BC,得AB∪平面BEFC,从而AH∪EF,所以∪AHB为二面角A﹣EF﹣C的平面角.在Rt∪EFG中,因为EG=AD=.又因为CE∪EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∪BEH=.因为AB=BH•tan∪AHB,所以当AB=时,二面角A﹣EF﹣G的大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用.【点评】本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.19.一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(∪)若袋中共有10个球,从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(∪)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于.并指出袋中哪种颜色的球个数最少.【考点】离散型随机变量及其分布列;等可能事件的概率;离散型随机变量的期望与方差.【专题】计算题;应用题;证明题;压轴题.【分析】(I)首先根据从袋中任意摸出2个球,至少得到1个白球的概率是,列出关系式,得到白球的个数,从袋中任意摸出3个球,白球的个数为ξ,根据题意得到变量可能的取值,结合对应的事件,写出分布列和期望.(II)设出两种球的个数,根据从袋中任意摸出2个球,至少得到1个黑球的概率不大于,得到两个未知数之间的关系,得到白球的个数比黑球多,白球个数多于,红球的个数少于,得到袋中红球个数最少.【解答】解:(∪)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球的个数为x,则,得到x=5.故白球有5个.随机变量ξ的取值为0,1,2,3,∪分布列是∪ξ的数学期望.(∪)证明:设袋中有n个球,其中y个黑球,由题意得,∪2y<n,2y≤n﹣1,故.记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则.∪白球的个数比黑球多,白球个数多于,红球的个数少于.故袋中红球个数最少.【点评】本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.20.已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(﹣1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA∪l,MB∪x轴(如图).(∪)求曲线C的方程;(∪)求出直线l的方程,使得为常数.【考点】轨迹方程;直线的一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上的点,进而可表示出|NP|,根据N到直线的距离和|NP|进而可得曲线C的方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上的点,则,N到直线的距离为.由题设得,化简,得曲线C的方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt∪QMA中,因为=,.所以,∪,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.21.已知a是实数,函数(∪)求函数f(x)的单调区间;(∪)设g(a)为f(x)在区间[0,2]上的最小值.(i)写出g(a)的表达式;(ii)求a的取值范围,使得﹣6≤g(a)≤﹣2.【考点】利用导数研究函数的单调性;函数解析式的求解及常用方法;利用导数求闭区间上函数的最值;不等式的证明.【专题】计算题;压轴题.【分析】(∪)求出函数的定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数的单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数的单调区间即可.(∪)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f(x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令﹣6≤g(a)≤﹣2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出a的取值范围即可.【解答】解;(∪)解:函数的定义域为[0,+∞),(x>0).若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞).若a>0,令f'(x)=0,得,当时,f'(x)<0,当时,f'(x)>0.f(x)有单调递减区间,单调递增区间.(∪)解:(i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0.若0<a<6,f(x)在上单调递减,在上单调递增,所以.若a≥6,f(x)在[0,2]上单调递减,所以.综上所述,改天(ii)令﹣6≤g(a)≤﹣2.若a≤0,无解.若0<a<6,解得3≤a<6.若a≥6,解得.故a的取值范围为.【点评】本题主要考查函数的性质、求导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.22.已知数列{a n},a n≥0,a1=0,a n+12+a n+1﹣1=a n2(n∈N•).记S n=a1+a2+…+a n..求证:当n∈N•时,(∪)a n<a n+1;(∪)S n>n﹣2.(∪)T n<3.【考点】不等式的证明;数列的求和;用数学归纳法证明不等式.【专题】证明题;压轴题.【分析】(1)对于n∈N•时的命题,考虑利用数学归纳法证明;(2)由a k+12+a k+1﹣1=a k2,对k取1,2,…,n﹣1时的式子相加得S n,最后对S n进行放缩即可证得.(3)利用放缩法由,得≤(k=2,3,…,n﹣1,n≥3),≤(a≥3),即可得出结论.【解答】(∪)证明:用数学归纳法证明.①当n=1时,因为a2是方程x2+x﹣1=0的正根,所以a1<a2.②假设当n=k(k∈N*)时,a k<a k+1,因为a k+12﹣a k2=(a k+22+a k+2﹣1)﹣(a k+12+a k+1﹣1)=(a k+2﹣a k+1)(a k+2+a k+1+1),所以a k+1<a k+2.即当n=k+1时,a n<a n+1也成立.根据①和②,可知a n<a n+1对任何n∈N*都成立.(∪)证明:由a k+12+a k+1﹣1=a k2,k=1,2,…,n﹣1(n≥2),得a n2+(a2+a3+…+a n)﹣(n﹣1)=a12.因为a1=0,所以S n=n﹣1﹣a n2.由a n<a n+1及a n+1=1+a n2﹣2a n+12<1得a n<1,所以S n>n﹣2.(∪)证明:由,得:,所以,故当n≥3时,,又因为T1<T2<T3,所以T n<3.【点评】本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.。
民族神话 鸿蒙未辟 宇宙洪荒 亿万斯年 四极不张
对2008年浙江省高考数学卷概率试题的评析
卢 明 甘建飞(海盐元济高级中学 314300)
自2004年高考数学浙江省自主命题以来,概率问题文科有三年考大题(2004年没考),理科有四年考大题,2007年文理科均没有考大题.凡是考的几年中,试题的模型都是摸球,题次都放在17题~19题的位置,分值为12~14分,文理科试题难度差异明显.总体而言概率试题难度比较平稳,难度系数一般在0.4~0.7.从概率试题的数据特点看,2004年和2006年袋(或盒子)中球的数量都是已知的,而2005年和2008年袋(或盒子)中的球的数量都是未知的,似乎很有规律.
连续考了多年的摸球,今年仍然考摸球,这一点大大出乎人们的意料.值得称颂的是今年的理科概率试题,尤其是第二问,命题者的思路不落俗套,一改以往的“计算”为“证明”,给人以全新的感觉.不仅形式上变了脸,而且知识的覆盖上也有了拓展,除了常规考查内容,如排列组合、对立事件、相互独立事件的概率及随机变量的分布列、数学期望等概念外,还将利用函数的单调性求最值、不等式的放缩等解题思想内隐其中,提升了试题的品位. 下面笔者对2008年浙江理科卷概率试题的解法、存在问题等进行评析.
题目 一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑.球的概率是52;从袋中任意摸出2个球,至少得到1个白.球的概率是97
. (Ⅰ)若袋中共有10个球, (i )求白球的个数;
(ii )从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望ξE . (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
10
7
.并指出袋中哪种颜色的球个数最少. 1.解法探讨 (Ⅰ)解:(i )设10个球中有n 个白球.
解法一:记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,则
9
7
)(2
1022101101=+=-C C C C C A P n n n ,即 070192
=+-n n ,
所以 5=n ,14=n (舍).
故袋中有白球5个.
解法二:利用“解法一”中A 事件的对立事件来计算.
记A 的对立事件为B ,即“从袋中任意摸出2个球都不是白球”,则
97
1)(1)(210
2
10=-=-=-C C B P A P n ,解得5=n .
(ii )由(i )知袋中有白球5个,且黑球和红球一共5个.
随机变量ξ的取值为0,1,2,3,分布列是
121)0(31035===C C P ξ, 125
)1(3
102
515===C C C P ξ, 125)2(3101525===C C C P ξ, 121
)3(3
10
3
5===C C P ξ. ξ的数学期望2
3
1213125212511210=⨯+⨯+⨯+⨯
=ξE . (Ⅱ)证明:
证法一:设袋中共有m 个球,其中y 个黑球.由题意得m y 5
2
=
,且5≥m ,5|m . 记“从袋中任意摸出2个球,至少得到1个黑球”为事件C ,C 的对立事
件为D ,即“从袋中任意摸出2个球都不是黑球”,则
)
1(256
259)1()
153
(53)(22
52
--=--==
-m m m m m C
C D P m
m m .
构造函数)
1(256
259)(--
=
x x f )5(≥x ,因为 0)1(256
)(2
/
>-=
x x f ,所以)(x f 在[)+∞,5上单调递增.
故 10
3)15(256259)1(256259)D (=--≥--=
m P . 等且仅当5=m 时取等号.所以,当5≥m 时总有 10
71031)(1)(=-
=-<D P C P .
即从袋中任意摸出2个球,至少得到1个黑球的概率小于..10
7
. 又
97107<,所以白球数量多于黑球数量,即白球数量多于m 5
2
,因此红球数量少于m 5
1
,故袋中红球个数最少.
证法二:假设同“证法一”,直接利用对立事件算.
11
52
521111)(1)(---⨯--=---⨯--=-=m m m m m m m y m m y m D P C P )
11(256
5
2)1521(531m
m m
-+=--⨯-=.
构造函数)
11(2565
2)(x
x f -+=
)5(≥x ,易知)(x f 在[)+∞,5上单调
递减.于是
10
7)
5
11(2565
2)11(2565
2)(=
-+≤
-
+=
m
C P . 等且仅当5=m 时取等号. 评注:“证法一”的结论“
107”是取不到的,而“证法二”的结论至此却无法排除“10
7
”. 分 析:从袋中任意摸出2个球有三种情况:(黑,黑)、(黑,非黑)、(非黑,非黑). 证法三:设袋中共有m 个球,其中y 个黑球.由题意得m y 5
2
=
,且5≥m ,5|m .记“任意摸出2个球,第一次摸到黑球”为事件D ,“任意摸出2个球,恰好第二次摸到黑球”为事件E ,则D 与E 互斥.于是
))E P D P C P (()(+=
153153)111(-⨯+=-⨯+--+--=
m y m y m y m y m m y m y 107
5
11125652111256521525352=-⨯+≤-⨯+=-⨯+=m m m
m m .
评注:“证法三”的结论同样无法排除“10
7
”.
证法四:(试题标准答案的解法)设袋中共有n 个球,其中y 个黑球.
由题意得n y 52
=
, 所以 n n y <=5
4
2, (1)
即 12-≤n y , (2) 所以
2
11≤-n y . 记“从袋中任意摸出2个球,至少得到1个黑球”为事件C ,则
10
7
215352153525352)(111
=⨯+≤-⨯+=⨯+=-m y C C C P m y .
评注:“证法四”无法排除“10
7”,原因是由于从(1)式推到(2)式时出现的“等号”而引起的.事实上,当等号取到时,515
4
=⇒-=n n n 只有唯一解,因此(2)式中当5
>n 时等号不可能成立.)
2.错误归纳
学生在解本题过程中出现的主要错误和思维障碍是:
一是不能准确地完成数学建模,即在古典概型问题中不能准确地把握“符合限制条件的所有基本事件的数量”的求法.二是不能熟练运用对立事件,使解题过程未能达到最优化.三是遇到用分式表述、含有参数的概率证明题学生觉得无从下手,没有联想到可以利用函数的单调性求最值和不等式放缩等方法来予以解决,导致思维搁浅.四是虽能判断出袋中红球的个数最少,但是在解题过程中没有进行具体的说明或推演.
3.解题回顾 3.1 命题背景
与本题背景相似的命题是:
一个袋中装有10个大小相同的小球,其中4个黑球,5个白球,1个红球.求: (Ⅰ)从袋中随机摸出1 个球是黑球的概率;
(Ⅱ)从袋中随机摸出2个球,至少有1个是白球的概率.
将以上命题的条件和结论互换,使袋中球的数量变成未知,再进行适当的改造,并推广到一般,便成为本题的模型.特别是本题第二问的证明,把概率问题与函数方法、不等式方法相联系,体现了在多种知识的交汇点处命题的思想,突出了对学生分析问题、解决问题和知识的综合应用能力的考查,与往年的试题相比,“熟”中有“新”.
3.2 反思与探讨
笔者认为以下二个问题值得探讨.
第一,袋中球的总数最少应该是几个?试题的第二问要求证的结论“从袋中任意摸出2个球,至少得到1个黑球的概率不大于...107”,从逻辑上讲“小于..107”或“等于107
”两个
结论中只要有一个成立即结论成立.但是在这个概率模型中,当且仅当5=m 时才能取到“
107”.事实上袋中球的总数必须满足5|m 且10≥m ,即“10
7”是取不到的.下面给出证明:
假设5=m ,则由“从袋中任意摸出1个球,得到黑.球的概率是5
2
”知,袋中有2个黑球,于是袋中白球和红球总数为3个.设白球为x 个,则从袋中任意摸出2个球,至少得到1个白.
球的概率为 9
72
52
25151=+-C C C C C x
x x 即 01408192
=+-x x .
显然,1、2、3都不是上述一元二次方程的根,矛盾.故5≠m ,所以10≥m .易知,10
=m 符合题意.
第二,除了10以外,袋中第二个符合题意的球的总数是几?为了搞清这个问题,笔者编了以下程序: input x n=5 do c=2 Do
a=2*n*(n-1) b=9*c*(c-1) if a=b then print n en dif c=c+1
loop until c>n-1 print n n=n+5
loop until n>x end
输入 n=70000,经运行后得到如下十一组解:
10,10990,25835,34770,37725,46660,49615,52570,55525,64460,67415.
可见,袋中第二个符合题意的球的总数是10990.鉴于此,如果在本题条件中加上“袋中球的总数不少于10个”的限制条件,并将第二问的求证结论加强为“从袋中任意摸出2个球,至少得到1个黑球的概率小于..
10
7
”,那么命题将更加严谨、完美. 执笔:卢明。