(word完整版)高中数学解析几何解题方法~.docx
- 格式:docx
- 大小:48.16 KB
- 文档页数:5
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ; (2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
【关键字】数学解析几何问题的题型与方法一.复习目标:1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二.考试要求:(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
高三数学解析几何解题技巧解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。
能顺利解答解析几何题是数学分数跃上新台阶的重要条件。
在解决此类问题时的要点主要有:用运动观点看待条件;挖掘岀其小隐含的儿何量Z间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。
其中对能力的要求主要体现在如何选择变量和合理的运算路径上。
三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理, 而是根据经验获得的合情推理。
解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。
一经转化,解析几何问题就转化为方程或函数问题。
如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。
常见翻译方法:距离问题:距离公式I AB \=—西)2+(力—叩2几个特殊转换技巧:①若一条直线上有若干点,如A,B,C,D等,它们之间距离存在比例关系,如满足条件\AB\-\CD\=\ BC|2,则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:-X H | • | -X D |=-X c)2,当然也可转化为向量关系再转换为坐标关系等。
②利用向量求距离。
③角度问题:若条件表述为所目标角A是钝角、直角或锐角,则用向量转化为简洁,即而•疋的值分别是小于零、等于零或大于零。
-般角度问题转化为向量夹角公式即:C。
◎焉④而积问题:主要是三角形而积公式:在4OAB(0是原点)S =^absmC = ^ah o = J p(p _ a)(# _b)( p _ c)(# =十?十〔)=+^\OA^\OB?-\OA OB^ = +1心九-心片I2 ?⑤特殊地,若三角形屮有某条线段是定值,则可把三角形分解为两个三角形来分别求而积。
解析几何的解题思路方法与策略精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】解析几何的解题思路、方法与策略高三数学复习的目的,一方面是回顾已学过的数学知识,进一步巩固基础知识,另一方面,随着学生学习能力的不断提高,学生不会仅仅满足于对数学知识的简单重复,而是有对所学知识进一步理解的需求,如数学知识蕴涵的思想方法、数学知识之间本质联系等等,所以高三数学复习既要“温故” ,更要“知新” ,既能引起学生的兴趣,启发学生的思维,又能促使学生不断提出问题,有新的发现和创造,进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容,也是高考考查的重点.每年的高考卷中,一般有两道选择或填空题以及一道解答题,主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用,而解答题注重对数学思想方法和数学能力的考查,重视对圆锥曲线定义的应用,求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位,是高考的重点、热点和难点.通过以圆锥曲线为主要载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位,这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头”.所以研究解析几何的解题思路,方法与策略,重视一题多解,一题多变,多题一解这样三位一体的拓展型变式教学,是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中,在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - ,若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,O 为坐标原点.(1)设AOB ∆的面积为S ,求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值;(3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴,y 轴正半轴,设直线l的方程为(2)1(0)y k x k =++>,∴)(0,12kk A -- )12,0(+k B ,(1)∴422122)12(2≥++=+=k k k k S , ∴当1)22=k (时,即412=k ,即 21=k 时取等号,∴此时直线l 的方程为221+=x y . (2)3223211221+≥++=+++=+k kk k OB OA ,当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k kk k k k MB MA , 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x ,∵过点(2,1)M -,∴112=+-ba (1)∵abb a -≥+-=22121,∴822≥-⇒≥-ab ab ,∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+baa b b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=abb a . (3)方法三: θsin 1=MA ,θcos 2=MB , ∴42sin 4cos sin 2≥==⋅θθθMB MA ,当且仅当12sin =θ时最小,∴4πθ=.变式1:原题条件不变,(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y ,且(,0)A a ,(0,)B b ,则3a x =,3b y =,又∵112=+-ba ,∴13132=+-yx , ∴2332312332)23(3123+-=+-+=+=x x x x x y ,该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ,则20πθ<<,又(2,1)M -,过M 分别作x 轴和y 轴的垂线,垂足为,E F ,则θsin 1=MA , θcos 2=MB ,θtan 1=AE ,θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=,令12cot-=θt , 则t>0, ∴周长10)2(213≥++++=tt t l ∴32cot 212cot =⇒=-θθ。
解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。
对于高中生来说学好高中数学是重中之重,但是学好高中数学的解析几何知识更是不能马虎,方便大家学习和复习,本文就高中数学解析几何知识点及高考核心考点做了以下归纳:······?高中数学解析几何高考核心考点1、准确理解(m)基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握(s)基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握(c)求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直(g)线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性(01)规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题(1)当D 2+E 2-4F >0时,表示圆心为③⎝⎛⎭⎫-D 2,-E 2,半径为12D 2+E 2-4F 的圆; (2)当D 2+E 2-4F =0时,表示一个点⎝⎛⎭⎫-D 2,-E 2; (3)当D 2+E 2-4F <0时,它不表示任何图形.4、直线与圆的位置关系①.直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有:几何法:利用圆心到直线的距离d 和圆半径r 的大小关系d <r ⇔相交;d =r ⇔相切;d >r ⇔相离 ②.直线与圆相交直线与圆相交时,若l 为弦长,d 为弦心距,r 为半径,则有r 2=d 2+⎝⎛⎭⎫l 22,即l =2r 2-d 2,求弦长或已知弦长求解问题,一般用此公式.5、两圆位置关系的判断两圆(x -a 1)2+(y -b 1)2=r 21(r >0),(x -a 2)2+(y -b 2)2=r 22(r 2>0)的圆心距为d ,则 1.d >r 1+r 2⇔两圆外离;2.d =r 1+r 2⇔两圆外切;3.|r 1-r 2|<d <r 1+r 2(r 1≠r 2)⇔两圆相交_;4.d =|r 1-r 2|(r 1≠r 2)⇔两圆内切; 5.0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含6.椭圆一、椭圆的定义和方程 1.椭圆的定义平面内到两定点F 1、F 2的距离的和等于常数2a (大于|F 1F 2|=2c )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦点.定义中特别要注意条件2a >2c ,否则轨迹不是椭圆;当2a =2c 时,动点的轨迹是线段;当2a <2c 时,动点的轨迹不存在。
解析几何常规题型及方法( 1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1 , y1 ) , ( x2 , y2 ) ,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题给定双曲线 x2y 2 1 。
过A(2,1)的直线与双曲线交于两点P1及 P2,求线段 P1 P2的中点P2的轨迹方程。
( 2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、 F2构成的三角形问题,常用正、余弦定理搭桥。
典型例题x2y 21 上任一点, F1 (c,0) , F2 ( c,0) 为焦点, PF1 F2, PF2 F1。
设 P(x,y) 为椭圆2b2asin();(1)求证离心率esinsin(2)求|PF1|3PF2 |3的最值。
( 3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题抛物线方程 y 2p (x 1) ( p 0),直线 x y t与 x轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、 B,且 OA ⊥ OB,求 p 关于 t 的函数 f(t) 的表达式。
(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1> 若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2> 若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
典型例题已知抛物线 y2=2px(p>0) ,过 M ( a,0)且斜率为 1 的直线 L 与抛物线交于不同的两点 A 、 B , |AB|≤ 2p( 1)求 a 的取值范围;(2)若线段 AB 的垂直平分线交x 轴于点 N ,求△ NAB 面积的最大值。
(2)设 AB 的垂直平分线交AB 与点 Q,令其坐标为( x ,y),则由中点坐标公式得:33( 5)求曲线的方程问题1.曲线的形状已知 -------- 这类问题一般可用待定系数法解决。
典型例题已知直线 L 过原点,抛物线 C 的顶点在原点,焦点在x 轴正半轴上。
若点 A( -1, 0)和点 B( 0, 8)关于 L 的对称点都在 C 上,求直线 L 和抛物线 C 的方程。
2.曲线的形状未知----- 求轨迹方程典型例题已知直角坐标平面上点Q( 2,0)和圆 C:x2+y 2=1, 动点 M 到圆 C 的切线长与 |MQ|的比等于常数( >0) ,求动点 M 的轨迹方程,并说明它是什么曲线。
M 分析:如图,设 MN 切圆 C 于点N,则动点 M 组成的集合是: P={M||MN|=|MQ|} ,N由平面几何知识可知:|MN| 2=|MO| 2-|ON|2=|MO| 2-1 ,将 M 点坐标代入,可得:(2-1)(x 2+y2 )-42x+(1+42)=0.O Q当=1 时它表示一条直线;当≠ 1 时,它表示圆。
这种方法叫做直接法。
( 6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
(当然也可以利用韦达定理并结合判别式来解决)典型例题已知椭圆 C 的方程x2y 2 1 ,试确定m的取值范围,使得对于直线y 4 x m ,椭圆C上有不同两43点关于直线对称。
分析:椭圆上两点 ( x1 , y1 ) , (x2 , y2 ) ,代入方程,相减得3(x1x2 )( x1 x2 ) 4( y1 y2 ) ( y1y2 ) 0 。
又 x x1x2, y y1 y2, k y1y21,代入得 y3x 。
22x1x24又由y3x解得交点 (m, 3m) 。
y 4 x m(m) 2( 3m)21 ,得2 13213交点在椭圆内,则有4313m。
13( 7)两线段垂直问题y1·y2圆锥曲线两焦半径互相垂直问题,常用k1·k2 1 来处理或用向量的坐标运算来处理。
x1·x2典型例题已知直线 l 的斜率为 k ,且过点 P( 2,0),抛物线 C: y 24( x1) ,直线l与抛物线C有两个不同的交点(如图)。
(1)求k的取值范围;( 2)直线l的倾斜角为何值时, A 、 B 与抛物线 C 的焦点连线互相垂直。
y分析:( 1)直线y k ( x2) 代入抛物线方程得k 2 x2(4k 24) x 4k 2 4 0 ,B A0,得 1k1( k0) 。
P由(-2,0)O x(2)由上面方程得x 1 x 24k 2 4 ,k 2y 1 y 2 k 2 ( x 1 2)( x 22) 4 ,焦点为 O( 0,0) 。
由 k OA ·k OBy 1 y 2k 21 1 ,得 k2 , arctan2 或 arctan 2x 1 x 2k 2222B: 解题的技巧方面在教学中,学生普遍觉得解析几何问题的计算量较大。
事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。
下面举例说明:( 1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
典型例题设直线 3x4y m 0 与圆 x 2y 2 x 2 y0 相交于 P 、Q 两点, O 为坐标原点, 若 OP OQ ,求m 的值。
解:圆 x 2y 2x 2 y 0 过原点,并且 OP OQ ,PQ 是圆的直径,圆心的坐标为M (1, 1)1,1) 在直线 3x2又 M (4 y m 0 上,23 (1 4 1 m 0, m 5) 即为所求。
2 2评注:此题若不充分利用一系列几何条件:该圆过原点并且OP OQ ,PQ 是圆的直径,圆心在直线 3x 4 ym 0上,而是设 P( x 1, y 1 ) 、 Q ( x 2 , y 2 ) 再由 OP OQ 和韦达定理求 m ,将会增大运算量。
评注:此题若不能挖掘利用几何条件计算量将很大,并且比较麻烦。
OMP 90 ,点 M 是在以 OP 为直径的圆周上,而利用参数方程等方法,二 . 充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
典型例题已知中心在原点 O ,焦点在 y 轴上的椭圆与直线yx 1 相交于 P 、Q 两点,且 OP OQ ,|PQ|10 ,2求此椭圆方程。
解:设椭圆方程为 ax 2 by 21(a b 0) ,直线 yx 1与椭圆相交于 P ( x 1, y 1 ) 、 Q( x 2 , y 2 ) 两点。
y x 1消去 y 后得由方程组2by 2ax1(a b) x 22bxb 1 0x 1x 22b, x 1 x 2 b 1ab a b由 k OP k OQ 1 ,得 y 1 y 2x 1 x 2( 1)又 P 、 Q 在直线 yx 1 上,y 1 x 1 1, (2)y 2x 2 1,(3)y 1 y 2 ( x 1 1)( x 21) x 1 x 2 (x 1 x 2 ) 1把( 1)代入,得 2x 1 x 2(x 1x 2 )1 0 ,2(b 1) 2b1 0即baab化简后,得a b 2( 4)由 | PQ|10,得 ( x 1 x 2 ) 2 ( y 1y 2 )2522( x 1 x 2 ) 25, ( x 1x 2 )24x 1 x 25 ,44( 2b) 2 4(b 1)5a b a b4把( 2)代入,得 4b28b 3 0 ,解得 b1或 b 32 2代入( 4)后,解得 a3或 a122由 a b0 ,得 a3, b 1 。
2 2所求椭圆方程为3x 2 y 2 122评注:此题充分利用了韦达定理及“设而不求”的策略,简化了计算。
三 . 充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
典型例题求经过两已知圆C 1: x 2 y 2 4x 2 y 0 和 C 2 : x 2 y 2 2 y 40 的交点,且圆心在直线l :2 x 4 y 1 0 上的圆的方程。
解:设所求圆的方程为:x 2 y 24x 2 y ( x 2 y 2 2 y 4) 0即 (1) x 2(1) y 2 4x2(1) y 40 ,其圆心为 C(2, 1 )11又 C 在直线l上,2241 1 0 ,解得1,代入所设圆的方程得 x2y 23x y 1 0 为113所求。
评注:此题因利用曲线系方程而避免求曲线的交点,故简化了计算。
四、充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
典型例题P为椭圆 x2y2 1上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB 面积的最大值a2b2及此时点 P 的坐标。
五、线段长的几种简便计算方法① 充分利用现成结果,减少运算过程一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程y kx b 代入圆锥曲线方程中,得到型如ax2bx c 0 的方程,方程的两根设为x A, x B,判别式为△,则| AB|1k 2·|x A x B | 1 k 2·△,若| a |直接用结论,能减少配方、开方等运算过程。
例求直线 x y 10 被椭圆x2 4 y 216 所截得的线段AB 的长。
② 结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
例F1、 F2是椭圆x2y21的两个焦点,AB是经过 F1的弦,若 |AB|8 ,求值 | F2 A | | F2 B | 259③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例点 A (3, 2)为定点,点 F 是抛物线y24x 的焦点,点P在抛物线 y24x 上移动,若|PA||PF |取得最小值,求点P 的坐标。