推理证明测试题
- 格式:doc
- 大小:324.50 KB
- 文档页数:10
逻辑推理练习题进行逻辑推理与证明逻辑推理练习题:进行逻辑推理与证明1. 现有三个箱子,分别标记为“A”,“B”和“C”。
已知以下三个命题:P1:如果箱子“A”是空的,则箱子“B”不是空的。
P2:如果箱子“B”是空的,则箱子“C”也是空的。
P3:箱子“C”不是空的。
问题:哪些箱子是空的?请用推理与证明进行回答。
解答:首先,根据命题P3,我们得知箱子“C”不是空的。
根据P2,如果箱子“B”是空的,那么箱子“C”也是空的。
但是我们已经知道箱子“C”不是空的,所以箱子“B”也不可能是空的。
根据P1,如果箱子“A”是空的,那么箱子“B”不是空的。
但是我们已经得出结论,箱子“B”不是空的。
所以我们可以推断箱子“A”也不是空的。
综上,根据推理与证明,我们可以得出结论:箱子“C”是非空的,箱子“B”是非空的,箱子“A”是非空的。
2. 在一个小酒吧里,有三个顾客,分别是“A”,“B”和“C”。
已知以下三个命题:P1:如果“A”在酒吧,那么“B”也在酒吧。
P2:如果“B”在酒吧,那么“C”也在酒吧。
P3:如果“C”不在酒吧,那么“A”也不在酒吧。
问题:哪些顾客在酒吧?请用推理与证明进行回答。
解答:首先,根据命题P3,如果“C”不在酒吧,那么“A”也不在酒吧。
但是我们无法确定“C”是否在酒吧。
根据P2,如果“B”在酒吧,那么“C”也在酒吧。
但是我们无法确定“B”是否在酒吧。
根据P1,如果“A”在酒吧,那么“B”也在酒吧。
但是我们无法确定“A”是否在酒吧。
综上所述,由于我们无法获知任何一个顾客是否在酒吧,无法通过推理与证明得出结论。
3. 已知以下三个命题:P1:如果明天下雨,那么我会带雨伞。
P2:明天我没有带雨伞。
P3:我今天没有湿身。
问题:明天会下雨吗?请用推理与证明进行回答。
解答:首先,根据P2,明天我没有带雨伞。
根据P1,如果明天下雨,那么我会带雨伞。
但是我们已经得出结论,明天我没有带雨伞,所以我们可以推断明天不会下雨。
推理测试题及答案推理测试题1:题目:一个侦探正在调查一起谋杀案。
受害者被发现死在自家的书房里,书房的门是锁着的,窗户也是关闭的,但窗户上的锁是坏的。
侦探发现受害者身上有刀伤,旁边有一把带血的刀。
受害者的宠物猫在房间里,但并没有受伤。
侦探询问了三个人,他们都有不在场证明:- A说:“我整个晚上都在电影院。
”- B说:“我整个晚上都在图书馆。
”- C说:“我整个晚上都在健身房。
”问题:谁可能是凶手?答案:C可能是凶手。
因为猫通常对暴力行为有反应,但房间里的猫没有受伤,说明凶手在猫熟悉的环境中。
健身房是唯一一个可能让猫感到熟悉的地方,因为C经常去那里,猫可能习惯了C的气味。
推理测试题2:题目:在一个小镇上,有五个朋友:Alice, Bob, Charlie, David和Eve。
他们每个人都有不同的职业:医生、律师、教师、工程师和画家。
已知以下信息:- Alice不是医生。
- Bob和David不是同职业。
- Charlie不是工程师。
- 教师和律师住在相邻的房子里。
- Eve不是教师。
问题:每个人的职业是什么?答案:- Alice是律师,因为她不能是医生,且Eve不是教师,所以Alice只能是律师。
- Bob是工程师,因为Charlie不是工程师,且Bob和David不是同职业,所以Bob只能是工程师。
- Charlie是医生,因为Alice不是医生,且Bob是工程师,所以Charlie只能是医生。
- David是教师,因为Bob是工程师,且教师和律师住相邻的房子,Alice是律师,所以David是教师。
- Eve是画家,因为其他职业都已经被确定。
推理测试题3:题目:在一个晚宴上,有四位女士和四位男士坐在一起。
他们分别坐在桌子的两边,每边各四位。
女士们坐在一侧,男士们坐在另一侧。
已知以下信息:- 每位男士旁边都坐着一位女士。
- 穿红色衣服的女士坐在穿蓝色衣服的女士旁边。
- 穿绿色衣服的女士坐在穿黄色衣服的女士对面。
自然演绎推理证明例题一、以下哪个选项正确地描述了自然演绎推理的一个基本步骤?A. 从一般到特殊的推理过程B. 仅仅基于个人经验的判断C. 无视前提直接得出结论D. 通过重复实验验证假设(答案)A二、在自然演绎推理中,以下哪项是构建有效论证的关键?A. 情感诉求B. 权威论证C. 前提的真实性D. 语言的华丽程度(答案)C三、下列哪一项不是自然演绎推理中常用的推理规则?A. 假言推理(如果P则Q,P,因此Q)B. 拒取式(如果P则Q,非Q,因此非P)C. 肯定后件(如果P则Q,Q,因此P)D. 合取引入(P且Q,因此P)(答案)C四、在自然演绎系统中,以下哪个步骤是确保推理有效性的必要条件?A. 每个推理步骤都必须基于已知的前提B. 推理过程中可以引入新的未证实假设C. 结论的正确性依赖于推理者的主观判断D. 推理过程可以跳过某些中间步骤直接得出结论(答案)A五、以下哪个选项描述了自然演绎推理中的一个典型错误?A. 从特殊到一般的归纳B. 前提与结论之间的逻辑断裂C. 使用已知事实作为推理起点D. 正确应用推理规则得出结论(答案)B六、在自然演绎推理中,以下哪项是确保结论可靠性的重要因素?A. 推理过程的复杂性B. 推理者的个人魅力C. 前提之间的逻辑一致性D. 结论的新颖性(答案)C七、以下哪个选项不是自然演绎推理中常用的逻辑连接词?A. 如果...那么...B. 或者...或者...C. 因为...所以...D. 尽管...但是...(答案)D八、在自然演绎推理中,以下哪项是构建有效论证时必须避免的情况?A. 前提之间的矛盾B. 结论的简洁性C. 推理规则的正确应用D. 前提与结论的逻辑关联(答案)A。
推理与证明习题精选一、单选题1.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”3235=+,337911=++,3413151719=+++,…,仿此,若3m的“分裂数”中有一个是59,则m的值为A.6 B.7 C.8 D.9【答案】C【分析】由题意可知,3m的三次方就是m的奇数相加,而且从2开始,这些三次方的分解正好是从奇数3开始连续出现的,由此规律即可找出3m的“分裂数”中有一个是59时,m的值.【详解】由题意,从32到3m,包括从3开始的连续奇数共(2)(1) 2342m mm+-++++=个;因为59是从3开始的第29个奇数,而当7m=时,从32到37,包括从3开始的连续奇数共27个;而当8m=时,从32到38,包括从3开始的连续奇数共35个;故8m=,答案选C.【点睛】本题主要考查了数列的相关知识,考查了观察,找规律的能力,属于中档题.2.现有n个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球谁赢. 如果甲先抓,那么下列推断正确的是()A.若n=4,则甲有必赢的策略B.若n=6,则乙有必赢的策略C.若n=9,则甲有必赢的策略D.若n=11,则乙有必赢的策略【答案】C【解析】分析:如果甲先抓,若n=9,则甲有必赢的策略.必赢的策略为:甲先抓1球,当乙抓1球时,甲再抓3球;当乙抓2球时,甲再抓2球;当乙抓3球时,甲再抓1球;这时还有4个小球,轮到乙抓,按规则,乙最少抓1个球,最多抓3个球,无论如何抓,都会至少剩一个球,至多剩3个球;甲再抓走所有剩下的球,从而甲胜.详解:现有n个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球赢。
如果甲先抓,若n=9,则甲有必赢的策略。
必赢的策略为:①甲先抓1球,②当乙抓1球时,甲再抓3球;当乙抓2球时,甲再抓2球;当乙抓3球时,甲再抓1球;③这时还有4个小球,轮到乙抓,按规则,乙最少抓1个球,最多抓3个球,无论如何抓,都会至少剩一个球,至多剩3个球;④甲再抓走所有剩下的球,从而甲胜.故选:C.点睛:本题主要考查推理论证,意在考查学生推理论证的能力和分析能力.3.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中有且只有两位预测结果是对的,则获得一等奖的团队是()A.甲B.乙C.丙D.丁【答案】D【解析】1.若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;2.若乙获得一等奖,则只有小张的预测正确,与题意不符;3.若丙获得一等奖,则四人的预测都错误,与题意不符;4.若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意,故选D. 【思路点睛】本题主要考查演绎推理的定义与应用以及反证法的应用,属于中档题.本题中,若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;若乙获得一等奖,则只有小张的预测正确,与题意不符;若丙获得一等奖,则四人的预测都错误,与题意不符;若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.n )任意排成n行n列的数表.对于某一个4.将2n个正整数1、2、3、、2n(2数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时,数表的所有可能的“特征值”最大值为 A .3 B .2C .43D .32【答案】D 【详解】试题分析:当2n =时,这4个数分别为1、2、3、4,排成了两行两列的数表,当12,同行或同列时,这个数表的“特征值”为43;当13,同行或同列时,这个数表的特征值分别为43或32;当14,同行或同列时,这个数表的“特征值”为43或32;故这些可能的“特征值”的最大值为32考点:1、计数原理;2、归纳推理.5.已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为i j a ,,例如3,29a =,4,215a =,5,423a =,若,2019i j a =,则i j +=( )A .64B .65C .71D .72【答案】C 【分析】奇数数列2120191010n a n n =-=⇒=,即2019为第1010个奇数. 按照蛇形排列,第1行到第i 行末共有(1)122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2019位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2019位于第45行,从右到左第20列,则45,2671i j i j ==⇒+=,故选C.点睛:本题归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳. 【详解】6.英国数学家泰勒发现了如下公式:246cos 1121234123456x x x x =-+-+⨯⨯⨯⨯⨯⨯⨯⨯⨯.则下列数值更接近cos0.4的是( ) A .0.91 B .0.92C .0.93D .0.94【答案】B 【分析】根据表达式特点可写出通式,再分n 为奇数和偶数分类讨论即可 【详解】 由题知()()()()2462123cos 111111212341234562!nnx x x x x n =+-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯ 题设要求精确到0.01即可,当n 为奇数时,由于20.4110.080.9212-=-=⨯,460.40.401234123456->⨯⨯⨯⨯⨯⨯⨯⨯,所以2460.40.40.92123c 4120.4114os 0.54326-+>⨯⨯⨯⨯⨯⨯+-⨯⨯=⨯;当n 为偶数时,由于420.4110.4120.921342⨯⨯⨯-+>⨯,680.40.4012345612345678-+<⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯,48261c 0.40.40.40.92123412345612345678os .0.411204-++<⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-+⨯综上所述,cos0.40.92≈ 故选:B 【点睛】本题考查新定义的理解与使用,找出规律,学会分类讨论是解题的关键,属于中档题 7.如图所示,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字0,记,0a ;点()1,0处标数字1,记为1a ;点()1,1-处标数字0,记为2a ;点()0,1-处标数字1-,记为3a ;点()1,1--处标数字2-;记为4a ;点()1,0-处标数字1-,记为5a ;点()1,1-处标数字0,,记为6a ;点()0,1处标数字1,记为7a ; 以此类推,格点坐标为(),i j 的点处所标的数字为i j +(,i j 均为整数),记12n n S a a a =+++,则2018S =A .1-B .0C .250-D .249-【答案】D 【详解】分析:首先根据题意,找出对应的点的关系,将点阵看做若干个正方形点阵来处理,并且根据点的坐标以及对项的规定,从而求得各层的正方形点阵的各项和为零,下一步需要确定的就是各层点阵的个数,以便于分析第2018个点的位置,建立关于n 的合适的不等关系式,再者需要确定的是将比较多的值的和应用逆向思维,转化为比较少的项的和来处理,比较简单.详解:根据题中所给的格点图,可以从正方形阵入手,从内向外,第一层正方形阵共有4418+⨯=个点,即共有8项,第二层正方形阵有43416+⨯=个点,第三层正方形阵有45424+⨯=个点,以此类推下去,每层的正方形阵对应的点数成以8为首项,以8为公差的等差数列,并且各层的正方形阵所对应的项的和都为0,所以有8n b n =,而2201844T n n =+,令2442018n n +≤,解得21n ≤,且2122421221848,422232024T T =⨯⨯==⨯⨯=,所以2018201920202021202220232024()S a a a a a a =-+++++,再者可以确定这六个点的坐标分别是(22,22),(21,22),(20,22),(19,22),(18,22),(17,22),故可以得到20242023202220212020201944,43,42,41,40,39a a a a a a ======, 从而可以求得这六项和为444342414039249+++++=,所以答案是249-,故选D.点睛:该题所考查的是数列的综合应用,一是将点阵看做正方形阵,找出每层的点的个数,再判断每层的点对应的项的和的值为零食解决该题的突破口,最后需要关注的就是将正方形阵补齐,将对应项的和转化为比较少项数的和的问题,并且最后一项对应的点的位置还比较好找,从而将难度降低. 8.现有3个命题:1p :函数()lg 2f x x x =--有2个零点.2p :面值为3分和5分的邮票可支付任何()7,n n x N >∈分的邮资.3p :若2a b c d +=+=,4ac bd +>,则a 、b 、c 、d 中至少有1个为负数.那么,这3个命题中,真命题的个数是 A .0 B .1C .2D .3【答案】D 【详解】对于1p ,由图可知lg y x = 与2y x =- 的图象有两个交点,所以函数()lg 2f x x x =--有2个零点,1p 正确;对于2p ,对()7,n n x N >∈分三种情况,()()3,31553,32315k k m n k k +=+⨯++=-+ ,都能用整数个3 或5 表示,2p 正确;对于3p ,假设0,0,0,0a b c d ≥≥≥≥ ,则0,ad bc +≥ 又()()4a b c d ac bd ad bc ++=+++= 可得()40,ad bc ac bd +=-+<这与0,ad bc +≥相矛盾,故假设不成立,所以3p 正确,故选D.9.将正整数排成下表: 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 ……………则在表中数字2017出现在A .第44行第80列B .第45行第80列C .第44行第81列D .第45行第81列 【答案】D 【详解】因为每行的最后一个数分别为1,4,9,16,…,所以由此归纳出第n 行的最后一个数为n 2.因为442=1936,452=2025, 所以2017出现在第45行上. 又由2017﹣1936=81,故2017出现在第81列, 故选D二、多选题10.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足:11a =,21a =,()*123,n n n a a a n n N --=+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则下列结论正确的是( )A .2020a 是偶数B .12311n n a a a a a +++++=-C.1122n nn a ⎡⎤⎛⎛⎫+⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦D .()1214n n n n c c a a π--+-=⋅【答案】CD 【分析】推导出当31n k =+或()32n k k N =+∈时,n a 为奇数,可判断A 选项的正误;利用累加法可判断B 选项的正误;利用数学归纳法可判断C 选项的正误;利用扇形的面积公式结合斐波那契数列的定义可判断D 选项的正误. 【详解】对于A 选项,11a =,21a =,32a =,43a =,55a =,68a =,,以此类推可知,当31n k =+或()32n k k N =+∈时,n a 为奇数. 因为202036731=⨯+,所以,2020a 为奇数,A 选项错误; 对于B 选项,231a a a =-,342a a a =-,,11n n n a a a +-=-,上述不等式全加得()()23341121n n n a a a a a a a a a +-+++=+++-+++121n n a a a a +=--++,所以,1231211n n n n a a a a a a a ++++++=+-=-,B 选项错误;对于C选项,111122a ⎛⎫=-=⎪⎪⎭,2221a ⎡⎤⎥=-==⎥⎝⎭⎝⎭⎦, 所以,11a =、21a =均满足n nn a ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦. 假设当()2,n k k k N *=≥∈时,n n n a ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦成立,则1122k k k a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,1111122k k k a ---⎡⎤⎛⎫⎛⎥=- ⎪ ⎪ ⎥⎝⎭⎝⎭⎦ 当1n k =+时,111111112222k k k k k k k a a a --+-⎡⎤⎡⎤⎛⎫⎛⎛⎛⎥⎢⎥=+=-+- ⎪ ⎪ ⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎦⎣⎦1111k k --⎡⎤⎛⎛⎥=⋅-⋅ ⎥⎝⎭⎝⎭⎝⎭⎝⎭⎦11k k --⎡=⎥⎝⎭⎝⎭⎦121211112222k k --⎡⎤⎛⎫⎛⎛⎛⎫+⎥=⋅-⋅ ⎪ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎝⎭⎦1111122k k k a +++⎡⎤⎛⎛⎫+⎥=-= ⎪ ⎪⎥⎝⎭⎝⎭⎦, 所以,当1n k =+时,等式1122n nn a ⎡⎤⎛⎛⎫+⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦也成立, 因此,对任意的n *∈N,n nn a ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦,C 选项正确; 对于D 选项,由已知条件可知,24nn a c π=,则()()()()221111214n n n n n n n n n n c c a a a a a a a a πππ-----+-=-=-+=⋅,D 选项正确.故选:CD.【点睛】方法点睛:与“归纳——猜想——证明”相关的常用题型的处理策略:(1)与函数有关的证明:与已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明;(2)与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑使用数学归纳法. 11.设1A ,2A ,3A ,4A 是两两不同的四个点,若1312A A A A λ=,1412A A A A μ=,且112λμ+=,则称3A ,4A 调和分割1A ,2A .现已知平面上两点C ,D 调和分割A ,B ,则下列说法正确的是( ) A .点C 可能是线段AB 的中点 B .点D 不可能是线段AB 的中点 C .点C ,D 可能同时在线段AB 上D .点C ,D 不可能同时在线段AB 的延长线上 【答案】BD 【分析】由题意设()0,0A ,()10B ,,(),0C c ,(),0D d ,结合已知条件得112c d+=,根据选项考查112c d+=的解,用排除法选择答案即可. 【详解】由已知不妨设()0,0A ,()10B ,,(),0C c ,(),0D d , 由C ,D 调和分割A ,B 可知,()(),01,0c λ=,()(),01,0d μ=,,c d λμ∴==代入112λμ+=得112c d+=(∗) 对于AB ,若C 是线段AB 的中点,则12c =,代入(∗)得,d 不存在,故C 不可能是线段AB 的中点,同理D 不可能是线段AB 的中点,故A 错误,B 正确;对于C , 若C ,D 同时在线段AB 上,则01c ≤≤,01d ≤≤代入(∗)得,1c d ==, 此时C 和D 点重合,与已知矛盾,故C 错误;对于D ,若C ,D 同时在线段AB 的延长线上时,则1c >,1d >,则112c d+<,这与112c d+=矛盾,所以C ,D 不可能同时在线段AB 的延长线上,故D 正确; 故选:BD.【点睛】关键点点睛:本题考查新定义的应用问题,正确理解新定义的含义是解题的关键,考查学生的逻辑推理与特殊与一般思想,属于较难题.三、双空题12.几位大学生响应国家的创业号召,开发了一款面向中学生的应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动。
一、选择题1.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品 B .D 作品C .B 作品D .A 作品2.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4003.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在222+++⋅⋅⋅“…”.即代表无限次重复,但原式却是个定值x ,这可以通过方程2x x +=确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B .122C 21D .21-4.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”,若四人中只有一人判断正确,则判断正确的是( ) A .甲B .乙C .丙D .丁5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.0x y =,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为07.已知平面直角坐标系内曲线()1:,0C F x y =,曲线()200:(,),0C F x y F x y -=,若点()00,P x y 不在曲线1C 上,则下列说法正确的是( )A .曲线1C 与2C 无公共点B .曲线1C 与2C 至少有一个公共点C .曲线1C 与2C 至多有一个公共点D .曲线1C 与2C 的公共点的个数无法确定8.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇{}n a 中,k a =( )A .n -B .n -C .D .9.===⋅⋅⋅=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4310.下列说法中不正确的是()A .命题:“∈,x y R ,若110x y -+-=,则1x y ==”,用反证法证明时应假设x ≠1或y ≠1.B .若2a b +>,则a ,b 中至少有一个大于1.C .若14-,,,,-x y z 成等比数列,则2y =±. D .命题:“[0,1]∃∈m ,使得12+<m x x”的否定形式是:“[0,1]∀∈m ,总有12m x x+≥”. 11.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过“…”即代表无限次重复,但原式却是个定值x ,这可以通过x =确定出来2x =,类似地,可得112122...+++的值为( )A 1B 1CD12.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系.五棱锥 6 10 6 六棱锥712712个顶点,8个面的扭曲棱柱的棱数是( ) A .14B .16C .18D .20二、填空题13.本学期我们学习了一种求抛物线2yx 与x 轴和直线1x =所围“曲边三角形”面积的方法,即将区间[0,1]分割成n 个小区间,求每个小区间上矩形的面积,再求和的极限.类比上述方法,试求222222222(1)2(21)2lim 2sin 2sin 2sin 2sin cos cos cos cos 844448888n n n n n n n n n n n nn n πππππππππ→∞⎡⎤--⎛⎫+++++++++= ⎪⎢⎥⎝⎭⎣⎦________.14.已知等差数列{}()*n a n N∈中,若10100a=,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b=,则与此相应的等式_________________恒成立.15.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).16.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二17.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.18.集合{,,}{1,2,3}a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说3a ≠,乙说3b =,丙说1c ≠.已知三人中有且只有一个人预测正确,那么10100a b c __________.19.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =__________.20.对于问题“已知关于x 的不等式20ax bx c ++>的解集为(2,3)-,解关于x 的不等式20ax bx c -+>的”,给出一种解法:由20ax bx c ++>的解集为(2,3)-,得2()()0a x b x c -+-+>的解集为(3,2)-.即关于x 的不等式20ax bx c -+>的解集为(3,2)-.类比上述解法,若关于x 的不等式20ax bx c ++>的解集为(1,4),则关于x 的不等式20a bc x x++>的解集为_____. 三、解答题21.(1)已知0a >,0b >,求证:22a b aba b+≥+; (2)已知0a b c ++>,0ab bc ca ++>,0abc >,求证:0a >,0b >,0c >.22.23523.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由. (2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0f f x x =,求证:()00f x x =.24.已知i 为虚数单位,观察下列各等式:()()cos1sin1cos2sin 2cos3sin3i i i ++=+; ()()cos3sin3cos4sin 4cos7sin7i i i ++=+; ()()cos5sin5cos6sin6cos11sin11i i i ++=+; ()()cos7sin7cos8sin8cos15sin15i i i ++=+. 记()cos sin ,f i R αααα=+∈.(1)根据以上规律,试猜想()()(),,f f f αβαβ+成立的等式,并加以证明;(2)计算612i ⎫+⎪⎪⎝⎭.25.已知函数3()3xf x x =+,数列{}n a 对于*n ∈N ,总有1()n n a f a +=,112a =. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想. 26.已知()f x =,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断. 详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.2.C解析:C 【分析】本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.3.C解析:C 【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果. 【详解】由题意,令12(0)122x x +=>++⋯,即12x x+=, 即2210x x --=,解得1x =或1x =(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.C解析:C 【分析】根据题意知甲和丙的说法矛盾,因此两人中有一人判断正确,据此推断得到答案. 【详解】由题意知,甲和丙的说法矛盾,因此两人中有一人判断正确,故乙和丁都判断错误,乙获奖,丙判断正确. 故选:C. 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.5.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.B解析:B 【分析】根据反证法,假设要否定结论,根据且的否定为或,判断结果. 【详解】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,选B.【点睛】本题考查反证法以及命题的否定,考查基本应用能力.属基本题.7.A解析:A 【分析】利用反证法,假设曲线1C 与2C 有公共点()11,Q x y ,推出矛盾,即可得到结论. 【详解】假设曲线1C 与2C 有公共点()11,Q x y ,则()11,0F x y =和()1100(,),0F x y F x y -=同时成立,()00,0F x y ∴=,∴点()00,P x y 在曲线1C 上,这与已知条件点()00,P x y 不在曲线1C 上矛盾. ∴假设不成立,所以曲线1C 与2C 无公共点. 故选:A . 【点睛】本题考查反证法,关键是理解掌握反证法的定义.8.C解析:C 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.9.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】==,====)2,k k N *=≥∈,当6k ==26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.10.C解析:C 【分析】根据反证法的知识判断A,B 两个选项说法正确,根据等比数列的知识判断C 选项错误.根据特称命题的否定是全称命题的知识判断D 选线说法正确. 【详解】对于A 选项,反证法假设时,假设“1x ≠或1y ≠”,说法正确.对于B 选项,假设,a b 两个都不大于1,即1,1a b ≤≤,则2a b +≤与已知矛盾,故假设不成立,原来说法正确.对于C ,假设等比数列公比为()0q q ≠,则()210y q =-⋅<,所以C 选项说法错误.对于D 选项,根据特称命题的否定是全称命题的知识可知D 选项说法正确.综上所述,本小题选C. 【点睛】本小题主要考查反证法的知识,考查等比数列基本量以及项的正负关系,考查全称命题与特称命题互为否定等知识,属于基础题.11.B【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.12.C解析:C 【分析】分析顶点数, 棱数与面数的规律,根据规律求解. 【详解】易知同一凸多面体顶点数, 棱数与面数的规律为: 棱数=顶点数+面数-2,所以,12个顶点,8个面的扭曲棱柱的棱数=12+8-2=18. 故选C. 【点睛】本题考查逻辑推理,从特殊到一般总结出规律.二、填空题13.【分析】先画出的图象再根据和式的几何意义可得所求的极限【详解】关于中心对称其在上的图象如图所示:将区间分为段每段矩形面积为将区间分为段每段矩形面积为其中原式即求在上与轴和所围图形面积利用割补法易知面解析:4π【分析】先画出2sin y x =的图象,再根据和式的几何意义可得所求的极限. 【详解】211sin cos222y x x ==-+,关于1,42π⎛⎫⎪⎝⎭中心对称,其在0,2π⎡⎤⎢⎥⎣⎦上的图象如图所示:将区间0,4⎡⎤⎢⎥⎣⎦π分为n 段,每段矩形面积为211111cos 2sin 424244k k n n n n ππππ⎡⎤⎛⎫⋅-⨯+=⎪⎢⎥⎝⎭⎣⎦,11k =,2,...,n ,将区间,42ππ⎡⎤⎢⎥⎣⎦分为2n 段,每段矩形面积为 22222111cos2sin cos 42228282888k k k n n n n n n ππππππππ⎡⎤⎛⎫⎛⎫⋅--+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 其中21k =,...,2n , 原式即求11cos222y x =-+在0,2π⎡⎤⎢⎥⎣⎦上与x 轴和2x π=所围图形面积,利用割补法易知面积为1224ππ⨯=. 故答案为:4π. 14.【分析】根据等差数列的性质有等比数列的性质有类比即可得到结论【详解】已知等差数列中由等差数列的性质得等比数列且有等比数列的性质得所以类比等式可得故答案为:【点睛】本题考查等差数列和等比数列的性质结合 解析:()*12112199199,N n n n b b b b b b b n n --=<∈【分析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论. 【详解】已知等差数列{}()*n a n N∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N∈,且1001b=,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈.故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.16.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案. 【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A1322101217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰77263A V S h ==⨯=故答案为73【点睛】本题考查了体积的计算,意在考查学生解决问题的能力.17.【解析】【分析】左边根据首数字和数字个数找规律右边为平方数得到答案【详解】等式左边:第排首字母为数字个数为等式右边:第五个等式应为:故答案为:【点睛】本题考查了找规律意在考查学生的应用能力 解析:567891011121381++++++++=【解析】 【分析】左边根据首数字和数字个数找规律,右边为平方数,得到答案. 【详解】等式左边:第n 排首字母为n ,数字个数为21n - 等式右边:2(21)n -第五个等式应为:567891011121381++++++++= 故答案为:567891011121381++++++++= 【点睛】本题考查了找规律,意在考查学生的应用能力.18.【解析】【分析】由题意利用推理的方法确定abc 的值进一步可得的值【详解】若甲自己的预测正确则:据此可知丙的说法也正确矛盾;若乙自己的预测正确则:矛盾;据此可知只能是丙自己的预测正确即:;故:则故答案解析:【解析】 【分析】由题意利用推理的方法确定a ,b ,c 的值,进一步可得10100a b c 的值.【详解】若甲自己的预测正确,则:3,3a b ≠≠,据此可知3c =,丙的说法也正确,矛盾; 若乙自己的预测正确,则:3,3a b ==,矛盾;据此可知只能是丙自己的预测正确,即:3,3,1a b c =≠≠;故:3,1,2a b c ===,则10100213a b c ++=. 故答案为213. 【点睛】本题主要考查推理案例及其应用,属于中等题.19.【解析】【分析】根据递推关系利用叠加法求结果【详解】因为所以【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)比较(比较已知数列)归纳转化(转化为特殊数列)联想(联想常见的数列)等方法 解析:271【解析】 【分析】根据递推关系16(1)n n a a n +-=-,利用叠加法求结果 【详解】因为16(1)n n a a n +-=-, 所以1010998211=()()()6[981]1271.a a a a a a a a -+-++-+=++++=【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.20.【分析】关于的不等式可看成不等式中的用代入得来进而可根据不等式ax2+bx+c >0的解集进行求解【详解】若关于的不等式的解集为则关于的不等式看成不等式中的用代入得来则可得解得故答案为:【点睛】本题主解析:114⎛⎫ ⎪⎝⎭,. 【分析】关于x 的不等式20a b c x x ++>可看成不等式20ax bx c ++>中的x 用1x代入得来,进而可根据不等式ax2+bx+c >0的解集进行求解. 【详解】若关于x 的不等式20ax bx c ++>的解集为14(,),则关于x 的不等式20a bc x x++>看成不等式20ax bx c ++>中的x 用1x代入得来, 则可得,114x<< 解得,114x <<. 故答案为:1,14⎛⎫⎪⎝⎭.【点睛】本题主要考查类比推理,同时也考查了不等式的基本性质,属于中档题.三、解答题21.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)利用分析法,0,0a b >>,要证22a b aba b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,只需证明()20a b -≥即可,该式显然成立,从而可得结论;(2)本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法,假设,,a b c ,不全是正数,这时需要逐个讨论,,a b c 不是正数的情形,但注意到条件的特点(任意交换,,a b c 的位置不改变命题的条件),我们只要讨论其中一个数〔例如a ,其他两个数〔例如,b c 〕与这种情形类似. 试题 (1)证明:0,0a b >>,要证22a b ab a b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,即证2220a ab b -+≥,而()22220a ab b a b -+=-≥恒成立,故22a b aba b+≥+成立. (2)假设,,a b c 不全是正数,即其至少有一个不是正数,不妨先设0a ≤,下面分0a =和0a <两种情况讨论,如果0a =,则0abc =与0abc >矛盾,0a ∴=不可能,如果0a <,那么由0abc >可得,0bc <,又0,0a b c b c a ++>∴+>->,于是()0ab bc ca a b c bc ++=++<,这和已知0ab bc ca ++>相矛盾,因此,0a <也不可能,综上所述,0a >,同理可证0,0b c >>,所以原命题成立.【方法点睛】本题主要考查反证法的应用以及利用分析法证明不等式,属于难题.分析法证明不等式的主要事项:用分析法证明不等式时,不要把“逆求”错误的作为“逆推”,分析法的过程仅需寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接关键词. 22.详见解析 【分析】,=边平方整理,推出矛盾即可. 【详解】则由等差数列的性质可得=∴1225=++∴5=∴25=40(矛盾),故假设不成立, ∴【点睛】本题主要考查反证法的应用,还考查了运算求解的能力,属于中档题.23.(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析 【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值. (3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0. 【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-, ∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭, 即对一切()1,2x ∈,5122x ax -<<+恒成立, ∵20x +>,∴2524x x a x +<-<+, 即3442x a x -<<-恒成立, ∵()341,2x -∈-∴2a ≥; ∵()422,6x -∈∴2a ≤. 综上,满足条件的2a =. (3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增, ∴()()()0ff x f x >,即()00x f x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增, ∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =. 【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题. 24.(1) 猜想()()()f f f αβαβ=+,证明见解析;(2)-1【分析】 (1)将()(),f f αβ和()f αβ+之间的关系进行验证,总结出规律,即为猜想,作出证明即可;(2)利用(1)推出的结论,代入求解,即可得到答案. 【详解】(1)猜想()()()ff f αβαβ=+,证明:()()()()cos sin cos sin f f i i αβααββ=++ ()()cos cos sin sin sin cos cos sin i αβαβαβαβ=-++()()()cos sin i f αβαβαβ=+++=+;(2)因为()()()f f f αβαβ=+,所以()()()()()cosn isinn nff f f f n ααααααα===+,∴661cos sin 266i i ππ⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭cos sin 1i ππ=+=-. 【点睛】本题主要考查了归纳推理的应用,其中根据题设中各式子的结构,合理归纳是解答的关键,着重考查了推理与计算能力,属于基础题. 25.(1)237a =,338a =,439a =,*3()5n a n n =∈+N (2)见证明 【解析】 【分析】(1) 计算得到237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)利用数学归纳法验证,假设,推导的顺序证明猜想. 【详解】(1)解:由3()3xf x x =+,得13()3n n n na a f a a +==+,因为11326a ==,所以237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)证明:用数学归纳法证明如下: ①当1n =时,131152a ==+,猜想成立;②假设当*()n k k =∈N 时猜想成立,即35k a k =+, 则当1n k =+时,133335331535k k k a k a a k k +⋅+===+++++,所以当1n k =+时猜想也成立.由①②知,对*n ∈N ,35n a n =+都成立. 【点睛】本题考查了数列的计算,归纳猜想,数学归纳法,意在考查学生对于数学归纳法的掌握情况.26.详见解析. 【详解】试题分析:将0,1,1,2,2,3x =--代入()f x =()()()()()()01,12,23f f f f f f +-+-+的值;观察()()()()()()01,12,23f f f f f f +-+-+,根据上一步的结果可以归纳出一般的结论:自变量的和为1,则函数值的和为3,根据结论的形式将()f x =可完成证明. 试题 由()f x =,得()()01f f +==,()()12f f -+== ()()23f f -+==. 归纳猜想一般性结论为 ()()1f x f x -++= 证明如下:()()1f x f x -++==x ===【方法点睛】本题通过观察几组等式,归纳出一般规律来考查函数的解析式及归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.。
A B C 1. 用数学归纳法证明“22111(1)1n n a a a a a a++-++++=≠-”,在验证1n =成立时,等号左边的式子是_________. 2. 由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是3.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 .4. 设函数)12ln()(-++=x a x x f 是奇函数的充要条件a = . 5. 如图,在每个三角形的顶点处各放置一个数,使位于ABC △的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,则所有顶点上的数之和等于 .6.已知a b c >>,且0a b c ++=,求证:23b ac a -<.7. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+16.证明:(分析法)因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->,所以()(2)0a c a c -+>成立,故原不等式成立.17.解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=则1212n n b n b n ++=,所以121211135721·······2462n n b b b n b b b n++++=⋅⋅ 下面用数学归纳法证明不等式121211135721 (1246)2n n b b b n n b b b n ++++=⋅⋅>+成立. ① 当1n =时,左边=32,右边=2,因为322>,所以不等式成立. ② 假设当n k =时不等式成立,即121211135721·······12462k k b b b k k b b b k ++++=⋅⋅>+成立.则当1n k =+时,左边=11212111113572123·······246222k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+ 2223(23)4(1)4(1)111(1)1(1)1224(1)4(1)4(1)k k k k k k k k k k k ++++++>+⋅===+++>++++++ 所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.。
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
一、选择题1.类比推理是一种重要的推理方法.已知1l ,2l ,3l 是三条互不重合的直线,则下列在平面中关于1l ,2l ,3l 正确的结论类比到空间中仍然正确的是( )①若13//l l ,23//l l ,则12l l //;②若13l l ⊥,23l l ⊥,则12l l //;③若1l 与2l 相交,则3l 必与其中一条相交;④若12l l //,则3l 与1l ,2l 相交所成的同位角相等 A .①④B .②③C .①③D .②④2.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在“…”.即代表无限次重复,但原式却是个定值x,这可以通过方程x =确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B.12- C1 D.13.将正奇数数列1,3,5,7,9,⋅⋅⋅依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),⋅⋅⋅,称(1,3)为第1组,(5,7,9)为第2组,依次类推,则原数列中的2021位于分组序列中( ) A .第404组B .第405组C .第808组D .第809组4.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 6.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π= D .由平面三角形的性质推测空间四面体的性质7.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了B .甲说对了C .乙说对了D .甲做对了8.在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,,,A B C 三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:A 猜测冠军是乙或丁;B 猜测冠军一定不是丙和丁;C 猜测冠军是甲或乙。
高考数学《推理与证明》练习题一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.4.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于0 1111111112226a b c a b c a b c b c a a b c a b c+++++=+++++≥⋅+⋅+⋅= 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.5.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.6.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2n B .n nC .2nD .222n -【答案】B 【解析】 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D【解析】【分析】根据题意分别计算出物理等级为A,化学等级为B的学生人数以及物理等级为B,化学等级为A的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】-+-=人根据题意可知,36名学生减去5名全A和一科为A另一科为B的学生105858(其中物理A化学B的有5人,物理B化学A的有3人),表格变为:对于A选项,物理化学等级都是B的学生至多有13人,A选项错误;对于B选项,当物理C和D,化学都是B时,或化学C和D,物理都是B时,物理、化--=(人),B选项错误;学都是B的人数最少,至少为13724对于C选项,在表格中,除去物理化学都是B的学生,剩下的都是一科为B且最高等级为B的学生,因为都是B的学生最少4人,所以一科为B且最高等级为B的学生最多为1391419++-=(人),C选项错误;对于D选项,物理化学都是B的最多13人,所以两科只有一科等级为B且最高等级为B -=(人),D选项正确.的学生最少14131故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010【答案】A 【解析】 【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n 项和公式和对数恒等式即可求解 【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg 230021010=≈.故选:A 【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n 项和公式应用,属于中档题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223344552,33,4,55338815152424====888n n=“穿墙术”,则n =( ) A .35 B .48C .63D .80【答案】C 【解析】 【分析】通过观察四个等式,发现存在相同性质,从而得出78763n =⨯+=即可. 【详解】 因为22222233121==⨯+33333388232==⨯⨯+ 444441515343==⨯⨯+,5555552424454==⨯⨯+ 所以8888888878763n n ==⨯=⨯+63n =. 故选:C. 【点睛】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc =B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.15.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( ) A .379 B .383C .381D .377【答案】C 【解析】 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数, 所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.16.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )A .53B .63C .73D .83【答案】C【解析】【分析】 根据题意分别求出第1,2,3次操作后,图形中的小正三角形的个数,然后可归纳出一般结论,得到答案.【详解】如图,根据题意第1次操作后,图形中有3个小正三角.第2次操作后,图形中有3×3=23个小正三角.第3次操作后,图形中有9×3=33个小正三角.…………………………所以第7次操作后,图形中有73 个小正三角.故选:C【点睛】本题考查归纳推理,属于中档题.17.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.18.三角形的面积为1()2S a b c r=++⋅,其中,,a b c为三角形的边长,r为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为()A.13V abc =B.13V Sh =C.1()3V ab bc ca h=++,(h为四面体的高)D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)【答案】D【解析】【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案.【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D .【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.19.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x =+,则a 、b 、c 三数( ) A .都小于2B .至少有一个不大于2C .都大于2D .至少有一个不小于2【答案】D【解析】【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论.【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=, 当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.20.设x ,y ,z >0,则三个数,,y y z z x x x z x y z y+++ ( )A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2【答案】C【解析】【分析】【详解】假设这三个数都小于2,则三个数之和小于6,又yx+yz+zx+zy+xz+xy=(yx+xy)+(yz+zy)+(zx+xz)≥2+2+2=6,当且仅当x=y=z时取等号,与假设矛盾,故这三个数至少有一个不小于2.。
推理与证明过关题班级_______姓名_________________学号______面批时间___________ 一、选择题1、当=n 1,2,3,4,5,6时,比较n 2和2n 的大小并猜想 ( D ) A.1≥n 时,22n n > B. 3≥n 时,22n n > C. 4≥n 时,22n n > D. 5≥n 时,22n n >2、下面使用类比推理所得结论正确的是( C ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3、观察式子:474131211,3531211,23211222222<+++<++<+,…,则可归纳出的式子为( C ) A 、121131211222-<+++n n()2n ≥ B 、121131211222+<+++n n ()2n ≥C 、nn n 12131211222-<+++()2n ≥ D 、122131211222+<+++n nn ()2n ≥4、把下面在平面内成立的结论推广到空间,结论还正确的是( B )(A) 如果一条直线与两条平行线中的一条相交,则必与另一条相交 . (B) 如果一条直线与两条平行线中的一条垂直,则必与另一条垂直. (C) 如果两条直线同时与第三条直线相交,则这两条直线相交. (D) 如果两条直线同时与第三条直线垂直,则这两条直线平行5、设n 为正整数,111()1...23f n n=++++,经计算得357(2),(4)2,(8),(16)3,(32),222f f f f f =>>>>观察上述结果,可推测出一般结论是( C )A. 21(2)2n f n +>B.22()2n f n +≥C.2(2)2n n f +≥ D.以上都不对6、已知m 、n 是异面直线,l n a m =⊂⊂βαβ ,平面平面,,则l ( B ) (A )与m 、n 都相交(B )与m 、n 中至少一条相交 (C )与m 、n 都不相交(D )至多与m 、n 中一条相交7、在下列表格中,每格填上一个数字后,使每一行成等差数 列,每一列成等比数列,则a+b+c 的值是( A ) A. 1 B. 2 C.3 D.48、对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面各正三角形的什么位置( C )A.各正三角形内的点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点 二、填空题9、从11=,)21(41+-=-,321941++=+-,)4321(16941+++-=-+-,…,推广到第n 个等式为__12114916(1)(1)(123)n n n n ---+-++-=-++++ _____________________. 10、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 14 。
《推理与证明测试题》
试卷满分100分,考试时间105分钟
一、 选择题:本大题共10小题,每小题3分,共30分. 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤.
2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”
C.“若()a b c ac bc +=+” 类推出“
a b a b
c c c
+=+ (c ≠0)” D.“
n n a a b =n (b )” 类推出“n n a a b +=+n
(b )”
3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ⊆/平面α,直线a ≠
⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误
的,这是因为 ( )
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
(A)假设三内角都不大于60度; (B) 假设三内角都大于60度;
(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。
5、在十进制中0123
2004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2
+…+a
n +1
=a
a n --+112, (a ≠1,n ∈N)”时,在验证n=1成立时,左边应该是 ( )
(A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3
7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得
( )
A .当n=6时该命题不成立
B .当n=6时该命题成立
C .当n=8时该命题不成立
D .当n=8时该命题成立
8、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n ”(+∈N n )时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )
A .12+k
B .)12(2+k
C .
11
2++k k D .
1
2
2++k k
9、已知n 为正偶数,用数学归纳法证明 )214121(2114131211n
n n n +++++=-++-+-
时,若已假设2(≥=k k n 为偶 数)时命题为真,则还需要用归纳假设再证
( )
A .1+=k n 时等式成立
B .2+=k n 时等式成立
C .22+=k n 时等式成立
D .)2(2+=k n 时等式成立
10、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2, S 3,猜想当n ≥1时,S n =
( )
A .121
2-+n n
B .12
12--n n
C .
n
n n 2)
1(+ D .1-
1
21-n
二、 填空题:本大题共4小题,每小题3分,共12分.
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。
12、 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形
三边长之间满足关系:2
22BC AC AB =+。
若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两
两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
13、从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为_________________________.
14、设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;
当n>4时,
()f n = (用含n 的数学表达式表示)。
班级 姓名 新学号 得分
二、填空题:本大题共4小题,每小题3分,共12分.
11、 ; 12、 ; 13、 ;
14、(4)f = , ()f n = ;
三、解答题:本大题共6题,共58分。
15、(8分)求证:(1)223)a b ab a b ++≥+; (2) 6+7>22+5。
16、设a,b,x,y∈R,且(8分)
17、若a,b,c均为实数,且,,,
求证:a,b,c中至少有一个大于0。
(8分)
第四十一中学高二数学选修2-2《推理与证明测试题》
班级 姓名 新学号
18、用数学归纳法证明:
(Ⅰ))
12(2)1()12)(12(532311222++=
+-++⋅+⋅n n n n n n ;(7分)
(Ⅱ) n n ≤-+++++1
214131211 ;(7分)
19、数学归纳法证明:能被整除,.(8分)
20、已知数列{a n}满足S n+a n=2n+1, (1) 写出a1, a2, a3,并推测a n的表达式;
(2) 用数学归纳法证明所得的结论。
(12分)
第四十一中学高二数学选修2-2《推理与证明测试题》答案
一、
选择题:本大题共10小题,每小题3分,共30分.
DCABB CABBB
二、 填空题:本大题共4小题,每小题3分,共12分. 11、14 12、
13、
14、 5 ;
三、解答题:本大题共6题,共58分。
15、证明:(1) ∵222a b ab +≥,
23a +≥,
23b +≥ ;
将此三式相加得
222(3)2a b ab ++≥++,
∴223)a b ab a b ++≥+.
(2)要证原不等式成立,
只需证(6+7)2
>(22+5)2
, 即证402422>。
∵上式显然成立, ∴原不等式成立.
16、可以用综合法与分析法---略
17、可以用反证法---略
18、(1)可以用数学归纳法---略 (2)当1+=k n 时,左边+≤-+++-+++
=+k k k k )1
2121()121211(1 (k k k 212121+++ )12
12+=⋅+=k k k k
=右边,命题正确
19、可以用数学归纳法---略
20、解:
(1) a 1=
23, a 2=47, a 3=8
15
, 猜测 a n =2-n 2
1
(2) ①由(1)已得当n =1时,命题成立;
②假设n =k 时,命题成立,即 a k =2-
k
21
,
当n =k +1时, a 1+a 2+……+a k +a k +1+a k +1=2(k +1)+1,
且a 1+a 2+……+a k =2k +1-a k
∴2k +1-a k +2a k +1=2(k +1)+1=2k +3,
∴2a k +1=2+2-
k 21, a k +1=2-12
1+k ,
即当n =k +1时,命题成立.
根据①②得n ∈N +
, a n =2-n
21
都成立
2k 项。