基于无线传感网的煤层气体监测系统设计
- 格式:pdf
- 大小:1.91 MB
- 文档页数:4
无线传感器网络对煤矿安全监测的应用与优化近年来,煤矿安全监测一直是煤矿行业关注的重点。
为了提高煤矿的安全性和生产效率,无线传感器网络被广泛引入煤矿安全监测系统中。
本文将重点讨论无线传感器网络在煤矿安全监测方面的应用和优化。
一、无线传感器网络在煤矿安全监测中的应用1. 煤矿气体监测:煤矿中存在着严重的气体积聚风险,如甲烷气体等。
无线传感器网络可以通过布设在矿井中的气体传感器实时监测气体浓度,并将数据传输到控制中心进行实时分析和处理。
这种监测方法不仅减少了人工巡视的工作量,还能够更加准确地预测和掌握矿井中的气体状况,从而提高安全性。
2. 矿井环境监测:除气体外,还有其他一些环境参数需要监测,如温度、湿度、振动等。
无线传感器网络可在矿井中布设多个传感器,监测这些参数的变化,并将数据传输到控制中心。
这样,可以及时发现和解决环境问题,避免意外事故的发生。
3. 人员定位和监测:煤矿中有大量的工作人员需要密切监测和管理。
无线传感器网络可以使用佩戴在人员身上的传感器,通过定位技术实时追踪和监测人员的位置和状态。
控制中心可以根据数据分析,及时发出警报,提醒人员注意安全,确保他们的安全离开危险区域。
二、无线传感器网络在煤矿安全监测中的优化1. 节能优化:由于煤矿一般为复杂地下环境,传感器节点往往需要长时间工作。
为了延长无线传感器网络的寿命,可以通过优化传感器节点的能量消耗来实现节能。
采用低功耗的传感器和传输协议,合理布置传感器节点的位置以及定期更换电池等手段都可以有效降低能源消耗,提高系统的稳定性。
2. 网络拓扑优化:无线传感器网络通常由大量的传感器节点组成,节点之间的连接形成了一个网络拓扑结构。
为了实现煤矿安全监测的连续性和稳定性,需要优化传感器节点的布置和网络拓扑结构。
通过合理的节点布置,可以确保整个矿井区域的监测覆盖率和传输质量,从而提高监测的准确性和实时性。
3. 数据处理优化:无线传感器网络在煤矿安全监测中需要处理大量的数据。
基于无线传感器网络的煤矿安全监测系统设计与实现随着近年来煤矿事故频发,煤矿安全问题愈加受到人们的关注。
为了保证煤矿工人的生命安全,煤矿安全监测系统应运而生。
其中,基于无线传感器网络技术的煤矿安全监测系统因其便捷、高效且易于部署而备受瞩目。
本文将介绍基于无线传感器网络的煤矿安全监测系统的设计与实现。
一、系统结构基于无线传感器网络的煤矿安全监测系统主要由以下几个模块组成:节点采集模块、无线传输模块、数据处理模块、数据存储模块和监控终端模块。
节点采集模块是系统的重要组成部分,主要负责采集各种环境参数,如温度、湿度、瓦斯等,通过传感器对这些参数进行检测,将数据发送至无线传输模块。
无线传输模块是将各节点采集到的信息通过无线方式传输给数据处理模块。
无线传输模块需要建设通信机制,确定传输协议、传输频率、信道复用、信号强度等,以确保数据的准确、稳定和高效传输。
数据处理模块主要完成数据过滤、数据分析、数据转发等工作。
数据处理模块可对采集到的数据进行各种操作,如过滤掉异常值、求取数据平均值等。
通过数据处理模块对数据进行预处理,可以大大提高数据处理的效率和准确性。
数据存储模块用于存储传感器采集到的数据,为数据的分析和挖掘提供数据源。
通过数据存储模块,可对历史数据进行分析,从而了解煤矿的生产情况和安全状况。
监控终端模块是控制中心或终端用户所使用的设备,用于接收数据,进行更深入分析和展示。
通过监控终端模块,用户可以实时监控煤矿环境和设备状态,并根据需要进行报警和处理。
二、系统实现基于无线传感器网络的煤矿安全监测系统的实现主要包括以下几个方面:系统部署、节点选择、数据传输和数据处理。
系统部署方面,需要在煤矿现场选择合适的节点布置,并以煤矿现场的实际情况为基础对系统进行规划。
在节点的部署上,需要考虑不同环境条件下的节点数量和布置方式,以提高数据采集和传输效率。
节点的选择方面,需要对不同类型的传感器进行测试和比较,以确定采集数据的准确性和稳定性,同时也需要考虑节点的价格和供应情况等因素。
《基于无线传感器网的矿井瓦斯监测系统的设计与研究》篇一一、引言矿井瓦斯是煤炭生产过程中潜在的重要危险源之一,有效的监测和管理对于确保煤矿安全生产具有重要意义。
然而,传统的有线传感器网络在矿井环境下存在着诸多问题,如安装布线困难、维护成本高、系统扩展性差等。
因此,本研究旨在设计并研究一种基于无线传感器网的矿井瓦斯监测系统,以提高煤矿的安全监测水平和系统运行效率。
二、系统设计(一)硬件设计1. 传感器节点:采用无线通信技术的瓦斯传感器节点,用于实时监测矿井内瓦斯的浓度和温度等参数。
传感器节点需具备体积小、低功耗、抗干扰能力强等特点。
2. 网关节点:负责收集传感器节点的数据,并通过无线方式将这些数据传输到主控中心。
网关节点需具有数据中继、数据融合等功能。
3. 主控中心:主控中心是整个系统的核心,负责接收、存储和分析网关节点传输的数据,实现对矿井瓦斯浓度的实时监控和预警。
(二)软件设计1. 通信协议:设计适用于无线传感器网络的通信协议,保证数据传输的实时性和可靠性。
通信协议需考虑数据包格式、通信方式、纠错机制等方面。
2. 数据处理与存储:对收集到的数据进行处理和分析,提取瓦斯浓度等关键参数,并实时存储和展示数据。
此外,系统应具备历史数据存储功能,方便后续分析和决策。
3. 用户界面:设计直观易用的用户界面,方便操作人员实时查看矿井瓦斯浓度、温度等参数,以及接收系统发出的预警信息。
三、系统实现(一)传感器节点的布置与优化根据矿井的实际环境和瓦斯分布情况,合理布置传感器节点,确保监测的全面性和准确性。
同时,通过优化传感器节点的布局和数量,降低系统成本和能耗。
(二)无线通信网络的构建与优化构建稳定的无线通信网络,实现传感器节点与网关节点之间的数据传输。
通过优化网络拓扑结构、信道分配和功率控制等手段,提高网络的稳定性和可靠性。
(三)主控中心的设计与实现主控中心采用高性能的计算机或服务器作为硬件平台,运行专门的监控软件实现数据的接收、存储和分析等功能。
基于无线传感器网络的智能煤矿安全监测系统设计无线传感器网络(Wireless Sensor Network, WSN)是一种由大量分布在空间中的无线传感器节点组成的网络系统。
基于无线传感器网络的智能煤矿安全监测系统设计可以通过实时监测矿井中的环境参数,提供安全运营所需的数据,及时预警危险情况,保障矿工的生命安全与煤矿的正常运营。
本文将从系统架构、传感器选择、数据采集与传输、数据处理与分析等方面探讨智能煤矿安全监测系统的设计。
一、系统架构智能煤矿安全监测系统的设计需基于无线传感器网络的架构。
传感器节点通过无线通信将采集的数据发送到数据中心进行处理和分析。
系统架构包括传感器节点、无线通信网络和数据中心三部分。
1. 传感器节点:传感器节点是系统的核心组成部分,负责采集矿井环境的相关数据,常见的传感器包括温度传感器、湿度传感器、气体传感器、声音传感器等。
每个传感器节点都具有一定的计算和存储能力,并能通过无线方式与相邻的节点进行通信。
2. 无线通信网络:传感器节点通过无线通信建立起一个自组织、动态的网络。
通信网络可以采用Ad Hoc网络架构,每个节点具有独立的通信能力并可通过多跳传输将数据发送到目标节点,保证了数据在网络中的可靠传输。
3. 数据中心:数据中心负责接收传感器节点发送的数据,并进行处理、存储和分析。
数据中心可以部署在地面的控制中心,也可以通过云服务实现远程监测与管理。
数据中心的功能包括数据预处理、异常检测、数据存储和可视化展示等。
二、传感器选择传感器的选择是智能煤矿安全监测系统设计中的重要环节。
传感器应具备高精度、低功耗、可靠性强等特点,并能适应矿井环境的特殊要求。
1. 温度传感器:温度传感器用于实时监测矿井中的温度情况,判断是否存在火源或高温环境,及时采取措施以确保矿工的安全。
2. 湿度传感器:湿度传感器用于监测矿井中的湿度情况,及时发现积水等异常情况,预防煤与岩石的结露、滴水、迸裂引起的危险。
基于无线传感网络的室内空气质量监测系统设计一、前言随着人们的生活水平不断提高,室内空气质量越来越受到人们的关注。
室内空气质量监测系统可以通过对室内空气的监测和分析,及时发现室内空气质量的问题,进一步保障人们的健康和生命安全。
本文就基于无线传感网络技术,设计一种室内空气质量监测系统,并对其进行详细的设计和说明。
二、系统架构系统由传感器、数据采集终端、通讯模块、数据处理终端四部分组成。
其中,传感器用于采集室内空气质量数据,数据采集终端用于汇集各传感器数据,并通过通讯模块将数据传输到数据处理终端,数据处理终端再对数据进行分析处理和存储展示等工作。
三、系统设计1、传感器选择室内空气质量监测需要同时测量多种参数,如温度、湿度、二氧化碳浓度、有害气体浓度等。
因此,我们可以选择多个传感器,将其综合作为一个完整的室内空气质量传感器节点。
2、数据采集终端数据采集终端可以使用单片机或者嵌入式处理器设计,主要功能是接收多个传感器节点的数据,并将这些数据进行汇总、处理和分析,再通过通讯模块上传到数据处理终端。
其具体实现方法可如下:(1)将传感器数据进行模数转换,使其能够被单片机或处理器识别。
(2)采用通用串行总线(I2C)或SPI总线等方式,将多个传感器节点通过数据线连接到一个嵌入式处理器上,成为传感器节点的三合一传感器数据采集终端。
(3)设定一个适当的采样频率,以保证所采集到的数据足够精确。
(4)再把采集到的数据通过网络通讯模块,进行有序地打包,传输给数据处理终端。
3、通讯模块通讯模块的主要作用是实现传感器数据的远程传输。
我们可以用模块如Wi-Fi模块、Mesh模块、LoRa模块等来实现。
(1)Wi-Fi模块传感器节点可采用Wi-Fi模块,通过TCP/UDP协议将采集到的数据直接传输到服务器。
由于Wi-Fi模块具有易于设置和操作的优点,因此被广泛应用于无线通讯并具有稳定性,是目前较为常用的通讯模块之一。
但是其缺点是在远离Wi-Fi接入点的情况下,传感器节点的数据传输效果会变得很不稳定。
《基于无线传感器网的矿井瓦斯监测系统的设计与研究》篇一一、引言随着煤矿开采的深入发展,矿井安全已成为社会关注的焦点。
瓦斯作为矿井中的主要危险源之一,其监测与预警对于预防瓦斯事故具有重要意义。
传统的矿井瓦斯监测系统多采用有线传输方式,但这种方式存在布线复杂、维护困难、易受环境影响等问题。
因此,研究并设计基于无线传感器网络的矿井瓦斯监测系统,对于提高矿井安全水平、减少瓦斯事故具有重要意义。
二、系统设计1. 总体设计本系统采用无线传感器网络技术,通过在矿井内部署多个瓦斯传感器节点,实现对矿井瓦斯浓度的实时监测。
系统主要由无线传感器网络、数据传输与处理中心、人机交互界面等部分组成。
其中,无线传感器网络负责实时采集瓦斯浓度数据,数据传输与处理中心负责数据的处理与存储,人机交互界面则用于显示监测数据及报警信息。
2. 无线传感器网络设计无线传感器网络由多个瓦斯传感器节点组成,每个节点负责监测一定范围内的瓦斯浓度。
节点之间通过无线通信方式相互连接,形成网络。
为了提高系统的可靠性和稳定性,我们采用了多跳通信方式,即每个节点不仅可以采集数据,还可以作为中继节点,将其他节点的数据传输至数据传输与处理中心。
3. 数据传输与处理中心设计数据传输与处理中心是本系统的核心部分,主要负责接收无线传感器网络传输的瓦斯浓度数据,进行数据处理、存储及分析。
中心采用高性能的处理器和存储设备,确保数据的快速处理和长期保存。
此外,中心还具有数据分析和预测功能,为矿井安全管理提供决策支持。
4. 人机交互界面设计人机交互界面采用触摸屏显示方式,可以实时显示矿井瓦斯浓度、温度、湿度等数据。
同时,界面还具有报警功能,当瓦斯浓度超过安全阈值时,界面会发出报警提示,确保矿工及时采取应对措施。
三、系统实现1. 硬件实现硬件部分主要包括瓦斯传感器节点、无线通信模块、数据处理与存储设备等。
瓦斯传感器节点采用高精度的气体传感器,能够实时监测瓦斯浓度。
无线通信模块采用低功耗、高稳定性的无线通信技术,确保数据的可靠传输。
试验研究煤矿监测系统无线传感器网络的设计目前煤矿环境监控系统大多采纳有线和固定传感器组成的网络,由于工作面的不断推动,存在着监测盲区。
无线传感器网络采纳无线通信手段,可应用于布线和电源供给困难的区域、人员不能到达的区域(如受到污染的区域、环境被破坏的区域或敌对区域),一些临时场合(如发生自然灾害时,固定通信网络被破坏)和一些工作地点常常变幻的区域(如矿井采煤附井)等。
因为无线传感器网络不必须要任何固定网络的支持,具有快速展开、抗毁性强等特点。
本文讨论一个合适在矿区运用的低功耗无线传感器网络的制定,主要传感器网络的网络结构、采纳的通信协议和传感器节点的制定。
1 网络结构无线传感器网络是由大量的小型传感器节点组成,采纳无线数据传输方式的,用来监视物理环境和相关现象并向观察者或者处理中心报告测量结果的网络。
无线传感器网络主要有两种结构:集中式控制结构和分布式结构。
集中式结构的一般节点比较简单,而中心节点设备复杂。
集中式结构的控制也简单,整个网络由主节点控制按照约定好的顺序进行运作,但节点的要求比较高。
而分布式结构中,依据节点数目的多少,又可分为平面结构和分层结构构建。
平面结构的网络比较简单,所有结点的地位平等,所以又可以称为对等式结构,其平面结构如图1-a所示。
它的缺点是可扩充性差,每一个结点都必须要知道到达其它所有结点的路由,维护这些动态变化的路由信息则必须要大量的控制消息。
在分层结构中,网络可划分为多个簇。
每个簇由一个簇头(黑点•)和多个簇成员(白点)组成。
这些簇头形成了高一级的网络。
在分层结构中,簇头结点负责簇间数据的转发,而簇成员只负责数据的采集。
这大大减少了网络中路由控制信息的数量,因此具有很好的可扩充性。
分层结构中网络具有自组织性,相对来说比较灵活,但是通信比较繁琐,控制麻烦。
制定对环境进行监测的无线传感器网络,节点之间的通信和传感数据本身并不是非常重要,而对数据进行分析,使终端用户可以获取被监视环境的相关事件并通过一定的算法对环境变化进行猜测才是最重要的。
2020年6月15日网络移动办公•居家办公Mobile Office*Home Office总第425期基于无线传感器网络的煤矿安全监测系统设计张玉凤(江苏建筑职业技术学院徐州221116)摘要:本文介绍了由无线传感器网络组成的煤矿顶板压力检测系统的构成、系统工作原理及其硬件系统的选型等,本系统利用 功耗和成本较低、方便组网和维护的Zigbee无线传感器网络,整个设计方案包括数据采集模块和Zigbee通讯模块。
通过中心计算 机系统对煤矿顶板压力的变化状况显示、数据储存及报警,为煤矿的安全生产提供技术支持。
试验运行证明,该系统的功能可以满 足煤矿系统的各项要求,性能稳定。
关键词:无线传感器;安全监测系统;Zigbee通讯模块中图分类号:T P212.9; T D76 文献标识码:B 文章编号:7425Design of Coal Mine Safety Monitoring SystemBased on Wireless Sensor NetworkZHANG Yufeng(Jiangsu Institute of Architectural Technology Xuzhou 221116)Abstract:This paper introduces the structure, working principle and selection of hardware system of coal mine roof pressure detection system composed of Wireless Sensor Network. The system adopts ZigBee Wireless Sensor Network with low power consumption, low cost, easy to build and maintain. The system includes data acquisition module and ZigBee communication module. Through the control center to the whole coal mine roof pressure change situation display, data storage and alarm, to provide technical support for coal mine safety production. The test operation shows that the function of the system can meet the requirements of the coal mine system, and the performance is stable.Keywords:Wireless sensor; Safety monitoring system ;—'弓I言在煤矿井下煤炭开采过程中,最可能的事故是冒顶。
基于无线传感器网络的煤矿瓦斯监测系统的设计摘要: 为了满足煤矿瓦斯监测的需要, 开发了一种基于无线传感器网络的智能化瓦斯监测系统。
该系统采用数字瓦斯传感器实时检测瓦斯, 提高了测量精度; 采用无线传感器网络, 避免了其它无线通信技术高功耗的缺点。
关键词: 煤矿;瓦斯监控;数字瓦斯传感器;无线传感器网络;A VR 单片机Abstract:In order to meet the need of coal mine gas monitoring, development of a wireless sensor network based on the intelligent gas monitoring system. The system uses digital gas sensor for real-time detection of the gas, improves the measurement accuracy; the use of wireless sensor network, to avoid other wireless communication technologies of high power consumption.Key words: Coal mine Gas monitoring Digital gas sensor Wireless sensor networkA VR single chip microcomputer1 系统硬件设计该系统主要由流量传感器节点和汇聚节点 2 个部分组成,流量传感器节点负责传感器的数据采集以及将采集到的数据发送给汇聚节点,汇聚节点负责控制子节点的数据采集和发送,并且负责将各个子节点的采集数据发送给嵌入式计算机。
系统硬件原理如图 1 所示。
1.1 微处理器模块系统采用AT mega128L 单片机作为节点的微处理器。
AT mega128L 采用精简指令集(RISC) 结构,加上哈佛总线的存储器结构、两级流水线指令结构、单周期指令等技术, 大大提高了系统运行的效率。