专题3.3 利用导数研究函数的最值、极值(解析版)
- 格式:pdf
- 大小:492.57 KB
- 文档页数:16
利用导数研究函数的极值与最值导数是研究函数变化率的工具,通过导数可以研究函数的极值和最值。
在这篇文章中,我们将讨论如何利用导数来研究函数的极值和最值。
一、极值的定义和判断条件极值是指函数取得的最大值或最小值。
在数学上,函数f(x)在点x=c处取得极值的充分条件是f'(c)=0,并且f'(x)的符号在x=c的两侧改变。
具体来说,f'(x)大于0时,函数递增;f'(x)小于0时,函数递减。
而当f'(x)从正变为负或从负变为正时,就是函数取得极值的地方。
二、几何图形与导数的关系通过导数的大小和符号,我们可以推断函数的几何行为。
例如,当f'(x)>0时,函数f(x)是递增的,图像是向上的曲线;而当f'(x)<0时,函数f(x)是递减的,图像是向下的曲线。
当f'(x)=0时,函数可能达到极值点。
三、利用导数判断函数的极值1.求导数:首先求出函数f(x)的导数f'(x)。
2.解方程:解方程f'(x)=0,得到可能的极值点x=c。
3.判断符号:将极值点x=c代入f'(x),判断f'(x)的符号在c的两侧。
如果f'(x)从正变为负,或从负变为正,那么极值点x=c是函数的极值点。
4.检验:将极值点代入函数f(x)中,算出函数值f(c),判断是否是极值。
四、利用导数求函数的最值1.求导数:求出函数f(x)的导数f'(x)。
2.解方程:解方程f'(x)=0,得到可能的最值点x=c。
3.极值判断:判断c是否是函数的极值点,确定是否是最值点。
4.边界判断:检查函数在定义域的边界上的函数值,判断是否可能是最值。
5.比较:对于所有可能的最值点,比较它们的函数值,得到最大值和最小值。
五、利用导数求出临界点临界点是指导数不存在的点或者导数为零的点。
通过求导数,我们可以找到函数的临界点。
临界点可能是函数的极值点或最值点。
第3节 利用导数研究函数的极值、最值课标要求 1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;2.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值,体会导数与单调性、极值、最大(小)值的关系。
【知识衍化体验】知识梳理1.导数与函数的极值 (1)函数的极小值与极小值点若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值 ,且f ′(a )=0,而且在x =a 附近的左侧 ,右侧 ,则点a 叫做函数的极小值点,f (a )叫做函数的极小值;(2)函数的极大值与极大值点若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值 ,且f ′(b )=0,而且在x =b 附近的左侧 ,右侧 ,则点b 叫做函数的极大值点,f (b )叫做函数的极大值. 2.导数与函数的最值(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中 的一个是最大值, 的一个是最小值. 【微点提醒】1.对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 2.若函数f (x )在开区间(a ,b )内只有一个极值点,则相应的极值点一定是函数的最值点. 3.极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.基础自测1.函数f (x )=43x 3-6x 2+8x 的极值点是( )A .x =1B .x =-2C .x =-2和x =1D .x =1和x =22.(2016·四川高考卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( D ) A .-4 B.-2C .4 D.23.函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-e D .04.若函数y =e x+mx 有极值,则实数m 的取值范围是( ) A .m >0 B .m <0 C .m >1 D .m <15.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.【考点聚焦突破】考点1 导数与函数的极值角度1 利用图像判断函数的极值情况 【例1-1】 已知函数y =f ′xx的图象如图所示(其中f ′(x )是定义域为R 的函数f (x )的导函数),则以下说法错误的是( )A .f ′(1)=f ′(-1)=0B .当x =-1时,函数f (x )取得极大值C .方程xf ′(x )=0与f (x )=0均有三个实数根D .当x =1时,函数f (x )取得极小值 规律方法由图像判断函数的极值,需关注两点:一是导函数图像与x 轴交点,可能得到函数的极值点;二是导函数的正负性可以得到原函数的单调性。
考点53:利用导数求极值与最值【思维导图】【常见考点】考点一:无参数的极值1.函数()()231xf x x x e =-+的极大值是 。
【答案】5e【解析】2()(31)x f x x x e =-+,x ∈R .22()(23)(31)(2)(2)(1)x x x x f x x e x x e x x e x x e ∴'=-+-+=--=-+. 令()0f x '=,解得1x =-,2. 令()0f x '>,解得2x >,或1x <-. 令()0f x '<,解得12x -<<.∴函数()f x 在(,1)-∞-,(2,)+∞上单调递增,在(1,2)-上单调递减.1x ∴=-时,函数()f x 取得极大值,5(1)f e-=.2.函数()()2312f x x =-+的极值点是 。
【答案】1x =【解析】函数的导数为2233()2(1)(3)6(1)f x x x x x '=-⨯=-, 当()0f x '=得0x =或1x =,当1x >时,()0f x '>,当01x <<时,()0f x '<, 所以1x =是极小值点.当0x <时,()0f x '<,当01x <<时,()0f x '<, 所以0x =不是极值点..3.等差数列{a n }中的a 2 , a 4030是函数f(x)=13x 3−4x 2+6x −1的两个极值点,则log 2(a 2016)= 。
【答案】2【解析】由题意可知:f′(x )=x 2−8x +6,又a 2,a 4030是函数f (x )的极值点,∴a 2,a 4030是方程x 2−8x +6=0的实根,由韦达定理可得a 2+a 4030=8.等差数列的性质可得2a 2016=a 2+a 4030=8,a 2016=4,∴log 2(a 2016)=log 24=2.4.已知函数f (x )=x 3﹣3x 2+x +1的极大值为M ,极小值为m ,则M +m= 。
导数研究函数的极值、最值【考纲要求】1.了解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大值、极小值,会求闭区间上函数的最大值、最小值,会用导数解决某些实际问题.2.培养学生的数学抽象、数学运算、数学建模、逻辑推理、直观想象等核心数学素养.【知识清单】1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x)的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.(2)若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【考点梳理】考点一 :函数极值的辨析【典例1】(2020·江苏高二期末)已知函数()y f x =的导函数的图象如图所示,下列结论中正确的是( )A .1-是函数()f x 的极小值点B .3-是函数()f x 的极小值点C .函数()f x 在区间()3,1-上单调递增D .函数()f x 在0x =处切线的斜率小于零【典例2】(2020·江苏苏州中学高二月考)【多选题】已知函数()32f x x ax bx c =+++,[]2,2x ∈-表示的曲线过原点,且在1x =±处的切线斜率均为1-,以下命题正确的是( ) A .()f x 的解析式为()34f x x x =-,[]2,2x ∈-B .()f x 的极值点有且仅有一个C .()f xD .()f x 的最大值与最小值之和等于零 【总结提升】1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f (x )的图象还是f ′(x )的图象,若给的是f (x )的图象,应先找出f (x )的单调区间及极(最)值点,如果给的是f ′(x )的图象,应先找出f ′(x )的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.2.f (x )在x =x 0处有极值时,一定有f ′(x 0)=0,f (x 0)可能为极大值,也可能为极小值,应检验f (x )在x =x 0两侧的符号后才可下结论;若f ′(x 0)=0,则f (x )未必在x =x 0处取得极值,只有确认x 1<x 0<x 2时,f (x 1)·f (x 2)<0,才可确定f (x )在x =x 0处取得极值. 【变式探究】1.(2020·山东高二期中)【多选题】已知函数()ln x e f x x=,则( )A .()0,1x ∈时,()f x 的图象位于x 轴下方B .()f x 有且仅有一个极值点C .()f x 有且仅有两个极值点D .()f x 在区间()1,2上有最大值2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( D )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 【易错提醒】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.考点二:已知函数求极值点的个数【典例3】(2020届山东省枣庄市高三上学期统考)已知函数(是自然对数的底数).(Ⅰ)讨论极值点的个数; 【易错提醒】极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 【变式探究】(2018·全国高考模拟(理))设f(x)=12x 2−x +cos(1−x),则函数f(x) A .仅有一个极小值 B .仅有一个极大值 C .有无数个极值 D .没有极值 考点三:已知函数求极值(点)【典例4】(2019·东北育才学校高考模拟(理))已知函数,则的极大值点为( )A .B .C .D .【典例5】(2019·安徽毛坦厂中学高考模拟(文))已知函数在处取得极小值,则的极大值为( ) A . B . C . D .【规律方法】()()211e 22xf x x ax ax =+++e ()f x ()2()ln xf x ef e x e'=-()f x 1e1e 2e ()22ln 3f x x ax x =+-2x =()f x 252-3ln 2+22ln 2-+(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 【变式探究】1.(2020·山东潍坊中学高二月考)已知2x =是()332f x x ax =-+的极小值点,那么函数()f x 的极大值为______.2.(2018·天津文,20)设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若d =3,求f (x )的极值.考点四:已知极值(点),求参数的值或取值范围【典例6】(2018·北京高考真题(文))设函数f(x)=[ax 2−(3a +1)x +3a +2]e x . (Ⅰ)若曲线y =f(x)在点(2,f(2))处的切线斜率为0,求a ; (Ⅱ)若f(x)在x =1处取得极小值,求a 的取值范围. 【规律方法】由函数极值(个数)求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 【变式探究】(2020·石嘴山市第三中学高二期末(理))设函数()323ax f x bx =-213a x +-在1x =处取得极值为0,则a b +=__________.【特别提醒】已知函数极值(个数),确定函数解析式中的参数时,注意以下两点: (1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性. 考点五:利用导数求函数的最值【典例7】(2020·北京高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【规律方法】求函数最值的四个步骤:第一步求函数的定义域;第二步求f ′(x ),解方程f ′(x )=0;第三步列出关于x ,f (x ),f ′(x )的变化表;第四步求极值、端点值,比较大小,确定最值. 特别警示:不要忽视将所求极值与区间端点的函数值比较.【典例8】(2019·全国高考真题(文))已知函数. (1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围. 【易错提醒】求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【变式探究】1.(2020·浙江宁波诺丁汉附中高二期中)已知函数1()sin ,[0,],2f x x x x π=-∈则()f x 的最小值为________,最大值为_______.2.(2019·新疆高考模拟(文))已知函数(其中e 是自然对数的底数). Ⅰ当时,求的最小值;Ⅱ当时,求在上的最小值.考点六:根据函数的最值求参数的值(范围)【典例9】(2020届浙江省之江教育评价联盟高三第二次联考)已知函数,其中,,记为的最小值,则当时,的取值范围为___________. 【易错提醒】1.由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,故含参数时,需注意是否分类讨论.2.已知函数最值求参数,可先求出函数在给定区间上的极值及函数在区间端点处的函数值,通过比较它们的大小,判断出哪个是最大值,哪个是最小值,结合已知求出参数,进而使问题得以解决.32()22f x x ax =-+()f x 0<<3a ()f x []0,1M m M m -()1xxf x e tx =+-()0t =()f x ()0t <()f x 1,t ⎛⎫+∞ ⎪⎝⎭()[)2,bf x x a x a x=++∈+∞,0a >b R ∈(),m a b ()f x (),4M a b =b【变式探究】(2019·北京高考模拟(文))设函数 若,则的最小值为__________;若有最小值,则实数的取值范围是_______.2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩1a =()f x ()f x a【考点梳理】考点一 :函数极值的辨析【典例1】(2020·江苏高二期末)已知函数()y f x =的导函数的图象如图所示,下列结论中正确的是( )A .1-是函数()f x 的极小值点B .3-是函数()f x 的极小值点C .函数()f x 在区间()3,1-上单调递增D .函数()f x 在0x =处切线的斜率小于零 【答案】BC 【解析】由图象得3x <-时,()0f x '<,3x >-时,()0f x ', 故()f x 在(,3)-∞-单调递减,在(3,)-+∞单调递增, 故3x =-是函数()f x 的极小值点, 故选:BC .【典例2】(2020·江苏苏州中学高二月考)【多选题】已知函数()32f x x ax bx c =+++,[]2,2x ∈-表示的曲线过原点,且在1x =±处的切线斜率均为1-,以下命题正确的是( ) A .()f x 的解析式为()34f x x x =-,[]2,2x ∈-B .()f x 的极值点有且仅有一个C .()f xD .()f x 的最大值与最小值之和等于零 【答案】ACD 【解析】()32f x x ax bx c =+++,()232f x x ax b '∴=++,由题意可得()()()0013211321f c f a b f a b ''⎧==⎪=++=-⎨⎪-=-+=-⎩,解得040a b c =⎧⎪=-⎨⎪=⎩,则()34f x x x =-,[]2,2x ∈-,()234f x x '=-,令()0f x '=,得[]2,2x =-.当2x -≤<2x <≤时,()0f x '>;当x <<时,()0f x '<. 所以,函数()y f x =有两个极值点,且函数()y f x =的极大值为39f ⎛⎫-= ⎪ ⎪⎝⎭,极小值为f =⎝⎭. ()()()()3224202f f -=--⨯-==,所以,()max 9f x =,()min9f x =-. 所以,函数()y f x =的最大值和最小值之和为零. 综上所述,A 、C 、D 选项正确,B 选项错误. 故选:ACD. 【总结提升】1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f (x )的图象还是f ′(x )的图象,若给的是f (x )的图象,应先找出f (x )的单调区间及极(最)值点,如果给的是f ′(x )的图象,应先找出f ′(x )的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.2.f (x )在x =x 0处有极值时,一定有f ′(x 0)=0,f (x 0)可能为极大值,也可能为极小值,应检验f (x )在x =x 0两侧的符号后才可下结论;若f ′(x 0)=0,则f (x )未必在x =x 0处取得极值,只有确认x 1<x 0<x 2时,f (x 1)·f (x 2)<0,才可确定f (x )在x =x 0处取得极值. 【变式探究】1.(2020·山东高二期中)【多选题】已知函数()ln xe f x x=,则( )A .()0,1x ∈时,()f x 的图象位于x 轴下方B .()f x 有且仅有一个极值点C .()f x 有且仅有两个极值点D .()f x 在区间()1,2上有最大值 【答案】AB 【解析】由题,函数 ()ln xe f x x =满足 0ln 0x x >⎧⎨≠⎩,故函数的定义域为(0,1)(1,),+∞ 由(),ln xe f x x= 当(0,1)x ∈ 时,ln 0,0x x e <> ,所以()0f x <,则()f x 的图象都在轴的下方,所以A 正确;又21(ln )()(ln )x e x x f x x -'=,在令1()ln ,g x x x =- 则 211()g x x x'=+,故()0,g x '> 函数()g x 单调递增,则函数()0f x '= 只有一个根0,x 使得 ()00,f x '= 当()00,x x ∈时 ,()0,f x '< 函数单调递減 ,当()0,x x ∈+∞时,函数单调递增, 所以函数只有极值点且为极小值点,所以B 正确,C 不正确; 又1(1)10,(2)ln 20,2g g =-<=-> 所以函数在(1,2)先减后增,没有最大值,所以D 不正确. 故选:AB.2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( D )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 【答案】D【解析】由函数的图象可知,f ′(-2)=0,f ′(1)=0,f ′(2)=0,并且当x <-2时,f ′(x )>0,当-2<x <1,f ′(x )<0,函数f (x )有极大值f (-2).又当1<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,故函数f (x )有极小值f (2). 故选D . 【易错提醒】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.考点二:已知函数求极值点的个数【典例3】(2020届山东省枣庄市高三上学期统考)已知函数(是自然对数的底数).(Ⅰ)讨论极值点的个数; 【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ)的定义域为,,①若,则,所以当时,;当时,, 所以在上递减,在递增. 所以为唯一的极小值点,无极大值, 故此时有一个极值点.②若,令,则,, 当时,,则当时,;当时,; 当时,.所以-2,分别为的极大值点和极小值点,()()211e 22xf x x ax ax =+++e ()f x ()f x R ()()()2e xf x x a '=++0a ≥e 0x a +>(),2x ∈-∞-()0f x '<()2,x ∈-+∞()0f x '>()f x (),2-∞-()2,-+∞2x =-()f x ()f x 0a <()()()2e 0xf x x a '=++=12x =-()2ln x a =-2e a -<-()2ln a -<-(),2x ∈-∞-()0f x '>()()2,ln x a ∈--()0f x '<()()ln ,x a ∈-+∞()0f x '>()ln a -()f x故此时有2个极值点. 当时,,且不恒为0,此时在上单调递增, 无极值点当时,,则当时,;当时,;当时,.所以,-2分别为的极大值点和极小值点, 故此时有2个极值点.综上,当时,无极值点; 当时,有1个极值点;当或时,有2个极值点. 【易错提醒】极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 【变式探究】(2018·全国高考模拟(理))设f(x)=12x 2−x +cos(1−x),则函数f(x) A .仅有一个极小值 B .仅有一个极大值 C .有无数个极值 D .没有极值 【答案】A 【解析】f(x)=12x 2−x +cos(1−x),得f ′(x )=x −1+sin(1−x). 设g (x )=x −1+sin(1−x),则g ′(x )=1−cos (1−x )≥0. 即g (x )为增函数,且g (1)=0.()f x 2e a -=-()2ln a -=-()()(2)e 0x f x x a '=++≥()f x R 2e 0a --<<()2ln a ->-()(),ln x a ∈-∞-()0f x '>()()ln ,2x a ∈--()0f x '<()2,x ∈-+∞()0f x '>()ln a -()f x ()f x 2e a -=-()f x 0a ≥()f x 2e a -<-2e 0a --<<()f x所以当x ∈(−∞,1),g (x )<0,f ′(x )<0,则f(x)单调递减; 当x ∈(1,+∞),g (x )>0,f ′(x )>0,则f(x)单调递增, 且f ′(1)=0.所以函数f(x) 仅有一个极小值f(1). 故选A.考点三:已知函数求极值(点)【典例4】(2019·东北育才学校高考模拟(理))已知函数,则的极大值点为( )A .B .C .D .【答案】D 【解析】因为,所以,所以, 因此,所以,由得:;由得:; 所以函数在上单调递增,在上单调递减,因此的极大值点. 故选D【典例5】(2019·安徽毛坦厂中学高考模拟(文))已知函数在处取得极小值,则的极大值为( ) A . B . C . D .【答案】B 【解析】由题意得,, ,解得,, , ()2()ln xf x ef e x e'=-()f x 1e1e 2e ()()2ln x f x ef e x e '=-()()21ef e f x x e '-'=()()()2112ef e f e f e e e e=-'=-''()1f e e '=()21f x x e='-()0f x '>02x e <<()0f x '<2x e >()f x ()0,2e ()2,e +∞()f x 2x e =()22ln 3f x x ax x =+-2x =()f x 252-3ln 2+22ln 2-+()223f x ax x=+-'()2420f a ∴=-='12a =()212ln 32f x x x x ∴=+-()23f x x x +'=-=()()12x x x--在上单调递增,在上单调递减, 的极大值为. 故选:B 【规律方法】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 【变式探究】1.(2020·山东潍坊中学高二月考)已知2x =是()332f x x ax =-+的极小值点,那么函数()f x 的极大值为______. 【答案】18 【解析】函数3()32f x x ax =-+的导数2()33f x x a '=-,由题意得,()20f '=,即1230a -=,解得4a =.3()122f x x x ∴=-+,2()3123(2)(2)f x x x x ∴'=-=-+,()0f x '>,得2x >或2x <-,即函数()f x 在(),2-∞-和()2,+∞上单调递增;()0f x '<,得22x -<<,函数()f x 在()2,2-上单调递减;故()f x 在2x =处取极小值,2x =-处取极大值,且为()2824218f -=-++=. 即()18f x =极大值 故答案为:18.2.(2018·天津文,20)设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若d =3,求f (x )的极值.()f x ∴(0,1),(2,)+∞(1,2)()f x ∴()151322f =-=-【答案】(1)x+y=0.(2)函数f(x)的极大值为63,函数f(x)的极小值为-63.【解析】(1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1.又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3或x=t2+3.当x变化时,f′(x),f(x)的变化情况如下表:函数f(x)的极小值为f(t2+3)=(3)3-9×3=-63.考点四:已知极值(点),求参数的值或取值范围【典例6】(2018·北京高考真题(文))设函数f(x)=[ax2−(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.;(Ⅱ)(1,+∞)【答案】(Ⅰ)12【解析】(Ⅰ)因为f(x)=[ax2−(3a+1)x+3a+2]e x,所以f′(x)=[ax2−(a+1)x+1]e x.f′(2)=(2a−1)e2,.由题设知f′(2)=0,即(2a−1)e2=0,解得a=12(Ⅱ)方法一:由(Ⅰ)得f′(x)=[ax2−(a+1)x+1]e x=(ax−1)(x−1)e x.,1)时,f′(x)<0;若a>1,则当x∈(1a当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax−1≤x−1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax−1)(x−1)e x.(1)当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:∴f(x)在x=1处取得极大值,不合题意.,x2=1.(2)当a>0时,令f′(x)=0得x1=1a①当x1=x2,即a=1时,f′(x)=(x−1)2e x≥0,∴f(x)在R上单调递增,∴f(x)无极值,不合题意.②当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:∴f(x)在x=1处取得极大值,不合题意.③当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:∴f(x)在x=1处取得极小值,即a>1满足题意.(3)当a <0时,令f ′(x)=0得x 1=1a,x 2=1.f ′(x),f(x)随x 的变化情况如下表:∴f(x)在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,+∞). 【规律方法】由函数极值(个数)求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号. 【变式探究】(2020·石嘴山市第三中学高二期末(理))设函数()323ax f x bx =-213a x +-在1x =处取得极值为0,则a b +=__________.【答案】79- 【解析】22()2f x ax bx a '=-+,因为函数y=f(x)在x 1=处取得极值为0,所以221(1)0,(1)2033a f b a f a b a =-+=-+'-==,解得1a b ==(舍)或21,39a b =-=-, 代入检验1a b ==时.22()21(1)0f x x x x '=-+=-≥无极值.所以1a b ==(舍).21,39a b =-=-符合题意.所以a b +=79-.填79-.【特别提醒】已知函数极值(个数),确定函数解析式中的参数时,注意以下两点: (1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性. 考点五:利用导数求函数的最值【典例7】(2020·北京高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==.【规律方法】求函数最值的四个步骤:第一步求函数的定义域;第二步求f ′(x ),解方程f ′(x )=0;第三步列出关于x ,f (x ),f ′(x )的变化表;第四步求极值、端点值,比较大小,确定最值. 特别警示:不要忽视将所求极值与区间端点的函数值比较.【典例8】(2019·全国高考真题(文))已知函数. (1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围. 【答案】(1)见详解;(2) . 【解析】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增; 当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增. (2)若,在区间单调递减,在区间单调递增,所以区间上最小值为.而,故所以区间上最大值为.所以,设函数,求导当时从而单调递减.而,所以.即的取值范围是. 若,在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.所以,而,所以.即的32()22f x x ax =-+()f x 0<<3a ()f x []0,1M m M m -8[,2)2732()22f x x ax =-+2'()626()3a f x x ax x x =-=-0a <(,)3a -∞(,0)3a (0,)+∞0a =(,)-∞+∞0a >(,0)-∞(0,)3a (,)3a +∞02a <≤()f x (0,)3a (,1)3a [0,1]()3a f (0)2,(1)22(0)f f a f ==-+≥[0,1](1)f 332(1)()(4)[2()()2]233327a a a a M m f f a a a -=-=---+=-+3()227x g x x =-+2'()19x g x =-02x <≤'()0g x <()g x 02a <≤38222727a a ≤-+<M m -8[,2)2723a <<()f x (0,)3a (,1)3a [0,1]()3af (0)2,(1)22(0)f f a f ==-+≤[0,1](0)f 332(0)()2[2()()2]33327a a a a M m f f a -=-=--+=23a <<3812727a <<M m -取值范围是. 综上得的取值范围是. 【易错提醒】求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【变式探究】1.(2020·浙江宁波诺丁汉附中高二期中)已知函数1()sin ,[0,],2f x x x x π=-∈则()f x 的最小值为________,最大值为_______.【答案】6π2π【解析】1()sin ,[0,],2f x x x x π=-∈'1()cos ,[0,],2f x x x π∴=-∈ 则当03x π<<时,'()0f x <,当3x ππ<<时,'()0f x >,所以()f x 在[0,]3π上单调递减,在[,]3ππ上单调递增,则当3x π=时,min ()62f x π=-;又()()00,2f f ππ==,所以max ()2f x π=.故答案为:6π;2π. 2.(2019·新疆高考模拟(文))已知函数(其中e 是自然对数的底数). Ⅰ当时,求的最小值;Ⅱ当时,求在上的最小值.【答案】(I );(II ) 【解析】(I )时,当时,;当时,8(,1)27M m -8[,2)27()1xxf x e tx =+-()0t =()f x ()0t <()f x 1,t ⎛⎫+∞ ⎪⎝⎭110t =()x f x e x =-()1xf x e '⇒=-∴0x >()0f x '>0x <()0f x '<在上单调递减,在上单调递增当时,取得最小值(II ),令得作出和的函数图象如图所示:由图象可知当时,,即当时,,即在上单调递减,在上单调递增的最小值为考点六:根据函数的最值求参数的值(范围)【典例9】(2020届浙江省之江教育评价联盟高三第二次联考)已知函数,其中,,记为的最小值,则当时,的取值范围为___________.【答案】 ()f x ∴(),0-∞()0,∞+∴0x =()f x ()01f =()2211(1)(1)xxtx tx f x e e tx tx --'=+=---()0f x '=()21xtx e --=()21y tx =-xy e -=10x t<<2(1)0x e tx ->->21(1)x e tx ∴<-()0f x '<0x >2(1)0xtx e -->>21(1)x e tx ∴>-()0f x '>()f x ∴1,0t ⎛⎫⎪⎝⎭()0,∞+()f x ∴()01f =()[)2,bf x x a x a x=++∈+∞,0a >b R ∈(),m a b ()f x (),4M a b =b ()2-∞,【解析】函数, 导数, 当时,,在递增,可得取得最小值, 且为,由题意可得方程有解; 当时,由,可得(负的舍去), 当,在递增,可得为最小值, 且有,方程有解; 当时,在递减,在递增, 可得为最小值,且有,即,解得.综上可得的取值范围是. 故答案为:. 【易错提醒】1.由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,故含参数时,需注意是否分类讨论.2.已知函数最值求参数,可先求出函数在给定区间上的极值及函数在区间端点处的函数值,通过比较它们的大小,判断出哪个是最大值,哪个是最小值,结合已知求出参数,进而使问题得以解决.【变式探究】(2019·北京高考模拟(文))设函数 若,则的最小值为__________; 若有最小值,则实数的取值范围是_______.【答案】【解析】(1)当a=1,,=()=()>0,1>x>ln2;()[2)b f x x a xa x++∈+∞=,,()221b f x x '-=0b ≤()0f x '>()f x [)x a ∈+∞,()f a 22b a a +22400b a a b a+≤=,>,0b >()2210b f x x '-==x a ≥()0f x '>()f x [)x a ∈+∞,()f a 22400b a a b a+=,>,>a ()f x [a )+∞f 4a +40a -=02b <<b ()2-∞,()2-∞,2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩1a =()f x ()f x a 0[)0,+∞()x e 2,1,f x 1,1.x x x x ⎧-<=⎨-≥⎩()f x x e 2x,x 1,f -<'x x e 2,f -'x()<0,x<ln2;故当=,单调递增,故,又所以的最小值为0(2) ①当a<0时,由(1)知=单调递减,故()单调递减,故故无最小值,舍去;②当a=0时,f(x)最小值为-1,成立③当a>0时,()单调递增,故对=, 当0<a ln2,由(1)知,此时最小值在x=a 处取得,成立 当a>ln2, 由(1)知,此时最小值为,即有最小值,综上a故答案为 ;f 'x ()()min f x f ln222ln2;==-()f x x 1,x 1-≥()()f x ()()min f x f 10==22ln20,->()f x ()f x x e 2x,x a -<()()()f x f a f x ax 1>=-;x a ≥()()f x f a ,≤()f x ()f x ax 1=-x a ≥()()f x f a ≥;()f x xe 2x,x a -<≤()()f x f a >()x e 2,,f x 1,.x x a ax x a ⎧-<=⎨-≥⎩()()f x f ln2≥()x e 2,,f x 1,.x x a ax x a ⎧-<=⎨-≥⎩()(){}min f ln2,f a ()f x 0≥0[)0,∞+。
专题4 利用导数研究函数的极值和最值专题知识梳理1.函数的极值(1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y极大值=,是极大值点。
如果对附近的所有的点,都有.就说是函数的一个极小值,记作y 极小值=,是极小值点。
极大值与极小值统称为极值.(2)判别f (x 0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根;①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。
①根据表格下结论并求出需要的极值。
2. 函数的最值(1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作;(2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值;①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。
考点探究)(x f x 0x 0f (x )<f (x 0)f (x 0))(x f f (x 0)x 0x 0f (x )>f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ÎI f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ÎI f (x )³f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,考向1 利用导数研究函数的极值 【例】已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【解析】因为1()ln f x x x =+,所以2111'()x f x x x x-=-+=,令,得x =1,列表:所以是f x 的极小值1,无极大值。
利用导数研究函数的极值和最值问题1.利用导数研究函数的极值的一般步骤:(1)确定函数的定义域.(2)求)(x f '.(3)①若求极值,则先求方程 0)(='x f 的全部实根,再检验)(x f '在方程根的左右两侧值的符号,求出极值.(当根中有参数时,要注意讨论根是否在定义域内)②若已知极值大小或存在情况,则转化为已知方程 0)(='x f 的根的大小或存在情况,从而求解.2.求连续函数)(x f y =在[]b a , 上的最大值与最小值的步骤:(1)求函数 )(x f y =在()b a ,内的极值;(2)将函数 )(x f y =的各极值与端点处的函数值 )(a f , )(b f 比较,其中最大的一个是最大值,最小的一个是最小值.例1.(2018北京,18,13分)设函数()[]x e a x a ax x f 3414)(2+++-=. (1)若曲线)(x f y =在点()()1,1f 处的切线与x 轴平行,求a ;(2)若)(x f 在2=x 处取得极小值,求a 的取值范围.解析 (1)因为()[]x e a x a ax x f 3414)(2+++-=, 所以()[]x e x a ax x f 212)(2++-=',()e a f -='1)1(. 由题设知f '(1)=0,即()01=-e a ,解得1=a .此时03)1(≠=e f .所以a 的值为1.(2)由(1)得()[]()()x x e x ax e x a ax x f 21212)(2--=++-='. 若21>a ,则当⎪⎭⎫ ⎝⎛∈2,1a x 时0)(<'x f ; 当()+∞∈,2x 时,0)(>'x f .所以)(x f 在2=x 处取得极小值. 若21<a ,则()2,0∈x 时,02<-x ,01211<-≤-x ax ,所以0)(>'x f , 所以2不是)(x f 的极小值点.综上可知,a 的取值范围是⎪⎭⎫ ⎝⎛∞+,21。
专题 导数与函数的极值、最值一、题型全归纳题型一 利用导数解决函数的极值问题【题型要点】利用导数研究函数极值问题的一般流程命题角度一 由图象判断函数的极值【题型要点】由图象判断函数y =f (x )的极值,要抓住两点: (1) 由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性,两者结合可得极值点【例1】设函数()x f 在R 上可导,其导函数为()x f ',且函数()()x f x y '-=1的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)【解析】由题图可知,当x <-2时,()x f '>0;当-2<x <1时,()x f '<0;当1<x <2时,()x f '<0;当x >2时,()x f '>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【例2】已知函数f (x )的导函数f ′(x )的图象如图,则下列叙述正确的是( )A .函数f (x )在(-∞,-4)上单调递减B .函数f (x )在x =2处取得极大值C .函数f (x )在x =-4处取得极值D .函数f (x )有两个极值点【解析】由导函数的图象可得,当x ≤2时,f ′(x )≥0,函数f (x )单调递增;当x >2时,f ′(x )<0,函数f (x )单调递减,所以函数f (x )的单调递减区间为(2,+∞),故A 错误.当x =2时函数取得极大值,故B 正确.当x =-4时函数无极值,故C 错误.只有当x =2时函数取得极大值,故D 错误.故选B.命题角度二 求已知函数的极值【题型要点】求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数. (2)求()x f '=0的根.(3)判断在()x f '=0的根的左、右两侧()x f '的符号,确定极值点. (4)求出具体极值.【例3】已知函数f (x )=(x -2)(e x -ax ),当a >0时,讨论f (x )的极值情况. 【解析】 ∵()x f '=(e x -ax )+(x -2)(e x -a )=(x -1)(e x -2a ),∵a >0, 由()x f '=0得x =1或x =ln 2a .∵当a =e2时,f ′(x )=(x -1)(e x -e )≥0,∵f (x )在R 上单调递增,故f (x )无极值.∵当0<a <e2时,ln 2a <1,当x 变化时,()x f ',f (x )的变化情况如下表:∵当a >e2时,ln 2a >1,当x 变化时,()x f ',f (x )的变化情况如下表:综上,当0<a <e2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ;当a =e2时,f (x )无极值;当a >e2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2.【例4】已知函数f (x )=ln x +a -1x ,求函数f (x )的极小值.【解析】 f ′(x )=1x -a -1x 2=x -(a -1)x 2(x >0),当a -1≤0,即a ≤1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,无极小值. 当a -1>0,即a >1时,由f ′(x )<0,得0<x <a -1,函数f (x )在(0,a -1)上单调递减; 由f ′(x )>0,得x >a -1,函数f (x )在(a -1,+∞)上单调递增.f (x )极小值=f (a -1)=1+ln(a -1). 综上所述,当a ≤1时,f (x )无极小值; 当a >1时,f (x )极小值=1+ln(a -1).命题角度三 已知函数的极值求参数值(范围)【题型要点】已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.【易错提醒】若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.【例5】设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围.【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,所以f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∵⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∵(1,+∞)时,f ′(x )>0.所以f (x )在x =1处取得极小值.若a ≤1,则当x ∵(0,1)时,ax -1≤x -1<0,所以f ′(x )>0.所以1不是f (x )的极小值点. 综上可知,a 的取值范围是(1,+∞).题型二 函数的最值问题【题型要点】求函数f (x )在[a ,b ]上最值的方法(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.【例1】(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解析】(1)f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3.若a >0,则当x ∵(-∞,0)∵⎪⎭⎫⎝⎛+∞,3a 时,f ′(x )>0;当x ∵⎪⎭⎫⎝⎛3,0a 时,f ′(x )<0.故f (x )在 (-∞,0),⎪⎭⎫⎝⎛+∞,3a 单调递增,在⎪⎭⎫⎝⎛3,0a 单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∵⎪⎭⎫ ⎝⎛∞-3,a ∵(0,+∞)时,f ′(x )>0;当x ∵⎪⎭⎫ ⎝⎛0,3a 时,f ′(x )<0.故f (x )在⎪⎭⎫ ⎝⎛∞-3,a ,(0,+∞)单调递增,在⎪⎭⎫⎝⎛0,3a 单调递减. (2)满足题设条件的a ,b 存在.(∵)当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1. (∵)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1. (∵)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为⎪⎭⎫⎝⎛3a f =-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【例2】(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0∵0<x <1,f ′(x )<0∵x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f (e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.题型三 函数极值与最值的综合应用【题型要点】解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论. (3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例1】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .若f (x )在x =2处取得极小值,则a 的取值范围为_______. 【解析】 f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x ,若a >12,则当x ∵⎪⎭⎫⎝⎛2,1a 时,f ′(x )<0;当x ∵(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∵(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎪⎭⎫⎝⎛+∞,21. 【例2】已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值.【解析】:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23,当x 变化时,f ′(x ),f (x )的变化情况如下表所以当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =23.(2)∵由(1)知,当-1≤x <1时,函数f (x )在[-1,0)和⎪⎭⎫⎢⎣⎡1,32上单调递减,在⎪⎭⎫⎢⎣⎡32,0上单调递增.因为f (-1)=2,⎪⎭⎫ ⎝⎛32f =427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.∵当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增. 所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.题型四 利用导数研究生活中的优化问题【题型要点】利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求函数的导数()x f ',解方程()x f '=0.(3)比较函数在区间端点和()x f '=0的点的函数值的大小,最大(小)者为最大(小)值. (4)回归实际问题,结合实际问题作答.【例1】某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 【解析】(1)因为当x =5时,y =11,所以a2+10=11,解得a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.则()x f '=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,()x f ',f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【例2】已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为f (x )万元,且f (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本) 【解析】(1)由题意得W =⎩⎨⎧⎝⎛⎭⎫10.8-130x 2x -2.7x -10,0<x ≤10,⎝⎛⎭⎫108x -1 0003x 2x -2.7x -10,x >10,即W =⎩⎨⎧8.1x -130x 3-10,0<x ≤10,98-⎝⎛⎭⎫1 0003x +2.7x ,x >10.(2)∵当0<x ≤10时,W =8.1x -130x 3-10,则W ′=8.1-110x 2=81-x 210=(9+x )(9-x )10,因为0<x ≤10,所以当0<x <9时,W ′>0,则W 递增;当9<x ≤10时,W ′<0,则W 递减.所以当x =9时,W 取最大值1935=38.6万元.∵当x >10时,W =98-⎪⎭⎫⎝⎛+x x 7.231000≤98-21 0003x×2.7x =38. 当且仅当1 0003x =2.7x ,即x =1009时等号成立.综上,当年产量为9千件时,该企业生产此产品所获年利润最大.二、高效训练突破 一、选择题1.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( ) A .25,-2 B .50,14 C .50,-2D .50,-14【解析】:因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∵[-4,-3)或x ∵(0,2]时,f ′(x )>0,f (x )为增函数,当x ∵(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2. 2.已知函数y =f (x )的导函数f ′(x )的图象如图所示,给出下列判断:∵函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内单调递增;∵当x =-2时,函数y =f (x )取得极小值; ∵函数y =f (x )在区间(-2,2)内单调递增;∵当x =3时,函数y =f (x )有极小值. 则上述判断正确的是( ) A .∵∵ B .∵∵ C .∵∵∵D .∵∵【解析】:对于∵,函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内有增有减,故∵不正确; 对于∵,当x =-2时,函数y =f (x )取得极小值,故∵正确;对于∵,当x ∵(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)上单调递增,故∵正确; 对于∵,当x =3时,f ′(x )≠0,故∵不正确.3.(2020·东莞模拟)若x =1是函数f (x )=ax +ln x 的极值点,则( ) A.f (x )有极大值-1 B.f (x )有极小值-1 C.f (x )有极大值0D.f (x )有极小值0【解析】∵f (x )=ax +ln x ,x >0,∵f ′(x )=a +1x ,由f ′(1)=0得a =-1,∵f ′(x )=-1+1x =1-xx .由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, ∵f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∵f (x )极大值=f (1)=-1,无极小值,故选A.4.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于( )A.89B.109C.169D.289【解析】函数f (x )的图象过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2,由题意知x 1,x 2是函数的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169. 5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为( ) A .2 B .2ln 2-2 C .eD .2-e【解析】:函数f (x )定义域(0,+∞),f ′(x )=2f ′(1)x -1,所以f ′(1)=1,f (x )=2ln x -x ,令f ′(x )=2x-1=0,解得x =2.当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0,所以当x =2时函数取得极大值,极大值为2ln 2-2. 6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A.[-3,+∞) B.(-3,+∞) C.(-∞,-3)D.(-∞,-3]【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:7.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( ) A .120 000 cm 3 B .128 000 cm 3 C .150 000 cm 3D .158 000 cm 3【解析】:设水箱底长为x cm ,则高为120-x2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0,得0<x <120.设容器的容积为y cm 3,则有y =-12x 3+60x 2.求导数,有y ′=-32x 2+120x .令y ′=0,解得x =80(x =0舍去).当x ∵(0,80)时,y ′>0;当x ∵(80,120)时,y ′<0. 因此,x =80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =128 000.故选B.8.(2020·郑州质检)若函数y =f (x )存在n -1(n ∵N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A .2折函数 B .3折函数 C .4折函数D .5折函数【解析】:.f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)·(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3×(-2)+2=-4. 所以函数y =f (x )有3个极值点,则f (x )为4折函数.9.(2020·昆明市诊断测试)已知函数f (x )=(x 2-m )e x ,若函数f (x )的图象在x =1处切线的斜率为3e ,则f (x )的极大值是( )A .4e -2 B .4e 2 C .e -2D .e 2【解析】:f ′(x )=(x 2+2x -m )e x .由题意知,f ′(1)=(3-m )e =3e ,所以m =0,f ′(x )=(x 2+2x )e x .当x >0或x <-2时,f ′(x )>0,f (x )是增函数;当-2<x <0时,f ′(x )<0,f (x )是减函数.所以当x =-2时,f (x )取得极大值,f (-2)=4e -2.故选A.10.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A.20 B.18 C.3D.0【解析】原命题等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f ′(x )=3x 2-3,∵当x ∵[-3,-1]时,f ′(x )>0, 当x ∵[-1,1]时,f ′(x )<0,当x ∵[1,2]时,f ′(x )>0. ∵f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19. ∵f (x )max -f (x )min =20,∵t ≥20.即t 的最小值为20.故选A.二、填空题1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a -b = .【解析】:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9, 经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 2.已知函数f (x )=x 3+ax 2+(a +6)x +1.若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a = ;若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是 .【解析】:f ′(x )=3x 2+2ax +a +6,结合题意f ′(1)=3a +9=6,解得a =-1;若函数在(-1,3)内既有极大值又有极小值,则f ′(x )=0在(-1,3)内有2个不相等的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)>0,f ′(3)>0,解得-337<a <-3.3.(2020·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)= ,f (x )的极小值为 .【解析】:由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e.4.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 .【解析】:因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.5.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为 .【解析】因为f ′(x )=3(x 2-a ),所以当a ≤0时,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增,f (x )没有极值点,不符合题意; 当a >0时,令f ′(x )=0得x =±a , 当x 变化时,f ′(x )与f (x )的变化情况如下表所示:因为函数f (x )在区间(-1,2)上仅有一个极值点,所以⎩⎨⎧a <2,-a ≤-1或⎩⎨⎧-a >-1,2≤a ,解得1≤a <4.三 解答题1.(2020·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】:(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. 所以f (x )max =f (1)=-1.所以当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∵(0,e],1x ∵⎪⎭⎫⎢⎣⎡+∞,1e .∵若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,所以f (x )max =f (e)=a e +1≥0,不符合题意;∵若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∵(0,e],解得0<x <-1a,令f ′(x )<0得a +1x <0,结合x ∵(0,e],解得-1a <x ≤e.从而f (x )在⎪⎭⎫ ⎝⎛-a 1,0上为增函数,在⎥⎦⎤⎝⎛-e a ,1上为减函数,所以f (x )max =⎪⎭⎫ ⎝⎛-a f 1=-1+⎪⎭⎫ ⎝⎛-a 1ln .令-1+⎪⎭⎫ ⎝⎛-a 1ln =-3,得⎪⎭⎫⎝⎛-a 1ln =-2,即a =-e 2.因为-e 2<-1e ,所以a =-e 2为所求.故实数a 的值为-e 2.2.(2020·洛阳尖子生第二次联考)已知函数f (x )=mx -nx-ln x ,m ∵R .(1)若函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,求实数n 的值; (2)试讨论函数f (x )在区间[1,+∞)上的最大值.【解析】:(1)由题意得f ′(x )=n -x x 2,所以f ′(2)=n -24.由于函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,所以n -24=1,解得n =6.(2)f ′(x )=n -xx2,令f ′(x )<0,得x >n ;令f ′(x )>0,得x <n .∵当n ≤1时,函数f (x )在[1,+∞)上单调递减,所以f (x )max =f (1)=m -n ;∵当n >1时,函数f (x )在[1,n )上单调递增,在(n ,+∞)上单调递减,所以f (x )max =f (n )=m -1-ln 3.(2019·郑州模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值.【解析】 f ′(x )=-x -(1-x )x 2+k x =kx -1x2.∵若k =0,则f ′(x )=-1x 2在⎥⎦⎤⎢⎣⎡e e ,1上恒有f ′(x )<0,所以f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减.∵若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(∵)若k <0,则在⎥⎦⎤⎢⎣⎡e e,1上恒有k ⎝⎛⎭⎫x -1k x 2<0.所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上单调递减,(∵)若k >0,由k <1e ,得1k >e ,则x -1k <0在⎥⎦⎤⎢⎣⎡e e ,1上恒成立,所以k ⎝⎛⎭⎫x -1k x 2<0, 所以f (x )在1e ,e 上单调递减.综上,当k <1e 时,f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减,所以f (x )min =f (e )=1e +k -1,f (x )max =⎪⎭⎫⎝⎛e f 1=e -k -1.4.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e ]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【解析】由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎪⎭⎫⎝⎛+∞,1a ;由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎪⎭⎫⎝⎛a 1,0.所以当x =1a 时,函数f (x )有极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∵⎪⎭⎫ ⎝⎛a 1,0时,函数f (x )单调递减;当x ∵⎪⎭⎫⎝⎛+∞,1a 时,函数f (x )单调递增.∵若0<1a≤1,即a ≥1时,函数f (x )在[1,e ]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.∵若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎪⎭⎫⎢⎣⎡a 1,1上为减函数,在⎥⎦⎤⎢⎣⎡e a ,1上为增函数,故函数f (x )的最小值为f (x )的极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.∵若1a >e ,即0<a <1e时,函数f (x )在[1,e ]上为减函数,故函数f (x )的最小值为f (e )=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.。
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。
导数章节知识题型全归纳专题03 导数研究极值与最值例:1.已知函数()ln x f x x x=-,则( ) A .()f x 的单调递减区间为()0,1 B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1- 【答案】C【分析】先对函数求导()221ln x x f x x--'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f xx x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<, 所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ, 所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C2.已知2x =是()22ln 3f x x ax x =+-的极值点,则()f x 在1,33⎡⎤⎢⎥⎣⎦上的最大值是( ) A .92ln 32-B .52-C .172ln 318--D .2ln 24-【答案】A【分析】 由题设得2()23f x ax x'=+-且(2)0f '=求a ,进而判断()f x 在已知区间上的单调性,比较区间内的极大值与端点值大小,即可确定最大值.【详解】 由题意,2()23f x ax x'=+-且(2)0f '=, ∴12a =,则2232(1)(2)()3x x x x f x x x x x-+--'=+-==, ∴当12x <<时,()0f x '<,()f x 单调递减;当1x <或2x >时,()0f x '>,()f x 单调递增; ∴在(]1,12,33⎡⎫⎪⎢⎣⎭,上,()f x 单调递增;(1,2)x ∈,()f x 单调递减; ∵95(3)2ln 3(1)22f f =->=-, ∴()f x 在1[,3]3上最大值是92ln 32-. 故选:A.【点睛】 关键点点睛:根据极值点求参数,应用导数判断已知区间的单调性并求极大值与端点值,比较它们的大小求最值. 变式:1.已知函数()f x 的导函数()f x '的图象如图所示,则下列选项中错误..的是( )A .1x =是()f x 的极值点B .导函数()f x '在1x =-处取得极小值C .函数()f x 在区间()2,3-上单调递减D .导函数()f x '在0x =处的切线斜率大于零【答案】A【分析】 由()f x '图象知()f x 在()0,2上单调递减,知A 错误;()f x '在()2,1--上单调递减,在()1,1-上单调递增,由极值的定义知B 正确;由()0f x '≤在()2,3-上恒成立可知C 正确;由()f x '的单调性和在0x =处切线斜率不等于零可知D 正确.【详解】对于A ,由图象可知:当()0,2x ∈时,()0f x '≤恒成立,()f x ∴在()0,2上单调递减,1x ∴=不是()f x 的极值点,A 错误;对于B ,由图象可知:()f x '在()2,1--上单调递减,在()1,1-上单调递增,()f x '∴在1x =-处取得极小值,B 正确;对于C ,由图象可知:当()2,3x ∈-时,()0f x '≤恒成立,()f x ∴在()2,3-上单调递减,()f x ∴在()2,3-上单调递减,C 正确;对于D ,()f x '在()1,1-上单调递增,()0f x ''∴≥在()1,1-上恒成立;又由图象可知:()f x '在0x =处的切线斜率不等于零,即()00f ''≠,∴()f x '在0x =处的切线斜率大于零,D 正确.故选:A.2.函数()x x f x e =在区间[]0,3上的最大值为 A .0B .1eC .22eD .33e 【答案】B【分析】求出导数,求出函数的单调区间,根据单调性判定最值.【详解】解:由题意可得()1x x f x e-'= 当()0,1x ∈时,()0f x '>;当()1,3x ∈时,()0f x '<所以函数在()0,1上单调递增,在()1,3上单调递减,所以()max 1(1)f x f e ==故选:B.【点睛】求函数区间上的最值的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定函数的极值.(4)求函数区间端点函数值,将区间端点函数值与极值比较,取最大的为最大值,最小的为最小值.3.1导数研究极值与最值:根据极值,最值求参例:1..函数32()422f x x ax bx =--+在1x =处有极大值3-,则+a b 的值等于( )A .9B .6C .3D .2【答案】B【分析】对函数求导,利用()13f =以及()10f '=解出,a b ,进而得出答案.【详解】由题意得2()1222f x x ax b '=--,因为()f x 在1x =处有极大值3-,所以(1)12220(1)4223f a b fa b =--=⎧⎨=--+=-'⎩,解得3,3a b ==,所以6a b +=,故选:B2.已知函数()1()ln x f x e x ax a a R -=--+∈,当[)1,x ∈+∞时,若()1f x ≥恒成立,则a 的取值范围为( )A .(],0-∞B .(),0-∞C .(]1,0-D .[)0,+∞【答案】A【分析】求函数导数后可知导函数为[)1,+∞上的增函数,根据a 分类讨论,求()f x 的最小值即可求解.【详解】()1()ln x f x e x ax a a R -=--+∈,11()x f x e a x-'∴=--, 当[)1,x ∈+∞时,11()x f x e a x -'=--单调递增, min ()(1)f x f a ''∴==-,(1)若0a ≤时,()0f x '≥,所以()f x 在[)1,x ∈+∞时单调递增, ()(1)1f x f ≥=恒成立,(2)若0a <时,(1)0f a '=-<,由 ()'f x 单调递增知,存在01x >,使得0()0f x '=,故0[1,)x x ∈时,()0f x '<,当 0(,)x x ∈+∞时,()0f x '>,所以()f x 在0[1,)x x ∈时单调递减,所以0()(1)1f x f <=,即在[)1,x ∈+∞上存在01x >使得0()1<f x ,所以0a <时不满足题意.综上,0a ≤,故选:A【点睛】关键点点睛:对a 分类讨论,研究导函数的单调性,根据导函数的单调性求最小值,根据最值是否满足不小1,判断a 所取范围,属于中档题.3.已知313y x x =-在区间()2,6m m -上有最小值,则实数m 的取值范围是( )A .(-∞B .(-C .⎡-⎣D .[2,1)-【答案】D【分析】 由于函数()f x 在开区间()2,6m m -有最小值,则函数()f x 的极小值点在()2,6m m -内, 且在()2,6m m -内的单调性是先减再增.【详解】因为'2()1(1)(1)f x x x x =-=+-,当11x -<<时, ()'0f x <,当1x >,()'0f x >,所以()f x 得极小值为(1)f .所以216()(1){m m f m f <<-≥,得到21m -≤<,故选:D.【点睛】易错点睛:本题考查用导数求函数的最值,属于难题. 根据题意,求出函数()f x 的导数()'f x ,利用导数求出函数()f x 的极小值来,由所给已知条件的分析,极小值点()21,6m m ∈-. 本题中的两个条件216,()(1)m m f m f <<-≥都容易漏掉,所以做题时一定要认真分析,充分挖掘题中的隐含条件,才能得到正确的答案.变式:1.设函数()xe f x x a=+,若()f x a =( ) A .12- B .12 C .32 D .2【答案】B【分析】由函数的导数()0f x '=求极值点,将极值点代入()f x 可得方程,进而求得a 值.【详解】 由已知得:2(1)()()x e x a f x x a +-'=+()x a ≠-,令()0f x '=,有1x a =-,且1x a <-上递减,1x a >-上递增,∴()f x 的极小值为1(1)a f a e --==112a -=,得12a =. 故选:B.2.若函数2()(2)ln f x x a x a x =-++既有极大值又有极小值,则实数a 的取值范围是( )A .(,2)(2,)-∞⋃+∞B .(0,2)(2,)⋃+∞C .(2,)+∞D .{2}【答案】B【分析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为()()22ln f x x a x a x =-++既有极大值又有极小值,且()()()()()22221220x a x a x a x a f x x a x x x x-++--'=--+==>, 所以()0f x '=有两个不等的正实数解, 所以02a >,且12a ≠,解得0a >,且2a ≠. 故选:B. 3.设函数()3211232x b f ax x c x =+++在0,1上取得极大值,在1,2上取得极小值,则3a b +的取值范围是( ) A .()2,1--B .()2,0-C .1,0D .()1,1- 变式:3.B【分析】因为函数()3211232x b f ax x c x =+++在0,1上取得极大值,在1,2上取得极小值, 所以'''(0)20(1)120(2)4220f b f a b f a b ⎧=>⎪=++<⎨⎪=++>⎩,然后画出变量,a b 表示的可行域如图所示,利用线性规划可求得结果 【详解】由()3211232x b f ax x c x =+++,得'2()2f x x ax b =++, 因为函数()3211232x b f ax x c x =+++在0,1上取得极大值,在1,2上取得极小值, 所以'''(0)20(1)120(2)4220f b f a b f a b ⎧=>⎪=++<⎨⎪=++>⎩,所以变量,a b 表示的可行域如图所示设3z a b =+,则1133b a z =-+,作直线13b a =-,平移过点(2,0)A -和点C 时,可求得3z a b =+取值范围, 由1204220a b a b ++=⎧⎨++=⎩,解得31a b =-⎧⎨=⎩,即(3,1)C -, 所以203331z -+⨯<<-+⨯,即20z -<< 所以3a b +的取值范围为()2,0-, 故选:B。
第三篇导数及其应用专题3.3利用导数研究函数的极值、最值【考点聚焦突破】考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)【答案】D【解析】由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.【规律方法】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.角度2已知函数求极值【例1-2】(2019·天津和平区模拟)已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.【答案】见解析【解析】(1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.x (0,2)2(2,+∞)f ′(x )+0-f (x )ln 2-1故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值.(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x f ′(x )>0,当x f ′(x )<0,故函数在x =1a处有极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .【规律方法】运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3已知函数的极(最)值求参数的取值【例1-3】(2019·泰安检测)已知函数f (x )=ln x .(1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.【答案】见解析【解析】(1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1.∴过点P (0,-1)的切线方程为y =x -1.(2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0),所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.即可,解得0<m <12.【规律方法】已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】(1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为()A.-1B.-2e -3C.5e -3D.1【答案】A【解析】f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1,则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1,令f ′(x )=0,得x =-2或x =1,当x <-2或x >1时,f ′(x )>0,当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点,则f (x )极小值为f (1)=-1.(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;②若f (x )在x =2处取得极小值,求a 的取值范围.【答案】见解析【解析】①因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0.所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 考点二利用导数求函数的最值【例2】(2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.【答案】见解析【解析】(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∈(0,e],1x∈1e ,+∞①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )-1ae上为减函数,∴f (x )max =1+令-1+3,得2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.【规律方法】1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】(2019·合肥质检)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间0,π2上的最大值和最小值.【答案】见解析【解析】(1)∵f(x)=e x·cos x-x,∴f(0)=1,f′(x)=e x(cos x-sin x)-1,∴f′(0)=0,∴y=f(x)在(0,f(0))处的切线方程为y-1=0·(x-0),即y=1.(2)f′(x)=e x(cos x-sin x)-1,令g(x)=f′(x),则g′(x)=-2e x sin x≤0在0,π2上恒成立,且仅在x=0处等号成立,∴g(x)在0,π2上单调递减,∴g(x)≤g(0)=0,∴f′(x)≤0且仅在x=0处等号成立,∴f(x)在0,π2上单调递减,∴f(x)max=f(0)=1,f(x)min==-π2 .考点三利用导数求解最优化问题【例3】(2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间)+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).(1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.【答案】见解析【解析】(1)由题意,下潜用时60v (单位时间)+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减;当v >1032时,y ′>0,函数单调递增.若c <1032,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少.若c ≥1032,则y 在[c ,15]上单调递增,∴当v =c 时,这时总用氧量最少.【规律方法】1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域;(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.【训练3】(2017·全国Ⅰ卷)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】415【解析】由题意,连接OD ,交BC 与点G ,由题意,OD ⊥BC ,设OG =x ,则BC =23x ,DG =5-x ,三棱锥的高h =DG 2-OG 2=25-10x +x 2-x 2=25-10x ,S △ABC =12·(23x )2·sin 60°=33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x=3·25x 4-10x 5,令f (x )=25x 4-10x 5,x 则f ′(x )=100x 3-50x 4,令f ′(x )=0得x =2,当x ∈(0,2)时,f ′(x )>0,f (x )单调递增;当x f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.∴体积最大值为415cm3.【反思与感悟】1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值.【易错防范】1.求函数的极值、函数的优化问题易忽视函数的定义域.2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.函数y=f(x)导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值【答案】C【解析】由函数y=f(x)导函数的图象可知,f(x)的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f(x)在x=-1,5取得极小值,在x=3取得极大值,故选项C错误.2.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则()A.a <-1B.a >-1C.a >-1eD.a <-1e【答案】A【解析】因为y =e x +ax ,所以y ′=e x +a .又函数y =e x +ax 有大于零的极值点,则方程y ′=e x +a =0有大于零的解,当x >0时,-e x <-1,所以a =-e x <-1.3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于()A.11或18B.11C.18D.17或18【答案】C【解析】∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,又f ′(x )=3x 2+2ax+b ,+a +b +a 2=10,2a +b =0,=-3,=3=4,=-11.=-3,=3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.4.函数f (x )=3x 2+ln x -2x 的极值点的个数是()A.0B.1C.2D.无数【答案】A【解析】函数定义域为(0,+∞),且f ′(x )=6x +1x -2=6x 2-2x +1x,由于x >0,g (x )=6x 2-2x +1的Δ=-20<0,所以g (x )>0恒成立,故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点.5.(2019·青岛二模)已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为()A.2e -1B.-1eC.1D.2ln 2【答案】D【解析】由题意知,f ′(x )=2e f ′(e )x -1e ,∴f ′(e)=2f ′(e)-1e ,则f ′(e)=1e.因此f ′(x )=2x -1e,令f ′(x )=0,得x =2e.∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减.∴f (x )在x =2e 处取极大值f (2e)=2ln(2e)-2=2ln 2.二、填空题6.函数f (x )=x e -x ,x ∈[0,4]的最大值是________.【答案】1e【解析】f ′(x )=e -x -x ·e -x =e -x (1-x ),令f ′(x )=0,得x =1.又f (0)=0,f (4)=4e 4,f (1)=e -1=1e ,∴f (1)=1e为最大值.7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值是________.【答案】-4【解析】f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4.f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.8.若函数f (x )=x 33-a 2x 2+x +1a 的取值范围是________.【答案】【解析】函数f (x )f ′(x )=0有2由f ′(x )=0有2个不相等的实根,得a <-2或a >2.由f ′(x )=0a =x +1x 在x +1x ∈22≤a <103.综上,a 三、解答题9.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在1e ,e上的最大值.【答案】见解析【解析】(1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=ax -2bx ,∵函数f (x )在x =1处与直线y =-12相切,=a -2b =0,=-b =-12,=1,=12.(2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x,当1e ≤x ≤e 时,令f ′(x )>0,得1e ≤x <1,令f ′(x )<0,得1<x ≤e ,∴f (x )在1e ,(1,e]上单调递减,∴f (x )max =f (1)=-12.10.(2018·天津卷选编)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极值.【答案】见解析【解析】(1)由已知,得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3,或x=t2+3.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,t2-3)t2-3(t2-3,t2+3)t2+3(t2+3,+∞)f′(x)+0-0+f(x)极大值极小值所以函数f(x)的极大值为f(t2-3)=(-3)3-9×(-3)=63;函数f(x)的极小值为f(t2+3)=(3)3-9×3=-6 3.【能力提升题组】(建议用时:20分钟)11.(2019·郑州质检)若函数y=f(x)存在n-1(n∈N*)个极值点,则称y=f(x)为n折函数,例如f(x)=x2为2折函数.已知函数f(x)=(x+1)e x-x(x+2)2,则f(x)为()A.2折函数B.3折函数C.4折函数D.5折函数【答案】C【解析】f′(x)=(x+2)e x-(x+2)(3x+2)=(x+2)(e x-3x-2),令f′(x)=0,得x=-2或e x=3x+2.易知x=-2是f(x)的一个极值点,又e x=3x+2,结合函数图象,y=e x与y=3x+2有两个交点.又e-2≠3(-2)+2=-4.∴函数y=f(x)有3个极值点,则f(x)为4折函数.12.若函数f(x)=2x2-ln x在其定义域的一个子区间(k-1,k+1)内存在最小值,则实数k的取值范围是________.【答案】1【解析】因为f(x)的定义域为(0,+∞),又因为f′(x)=4x-1x,所以由f′(x)=0解得x=12,由题意得-1<12<k+1,-1≥0,解得1≤k<32.13.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12cm且以每秒1cm等速率缩短,而长度以每秒20cm等速率增长.已知神针的底面半径只能从12cm缩到4cm,且知在这段变形过程中,当底面半径为10cm时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________cm.【答案】4【解析】设神针原来的长度为a cm,t秒时神针的体积为V(t)cm3,则V(t)=π(12-t)2·(a+20t),其中0≤t≤8,所以V′(t)=[-2(12-t)(a+20t)+(12-t)2·20]π.因为当底面半径为10cm时其体积最大,所以10=12-t,解得t=2,此时V′(2)=0,解得a=60,所以V(t)=π(12-t)2·(60+20t),其中0≤t≤8.V′(t)=60π(12-t)(2-t),当t∈(0,2)时,V′(t)>0,当t∈(2,8)时,V′(t)<0,从而V(t)在(0,2)上单调递增,在(2,8)上单调递减,V(0)=8640π,V(8)=3520π,所以当t=8时,V(t)有最小值3520π,此时金箍棒的底面半径为4cm.14.设f(x)=x ln x-ax2+(2a-1)x(常数a>0).(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.【答案】见解析【解析】(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).所以g ′(x )=1x -2a =1-2ax x .又a >0,当x g ′(x )>0,函数g (x )单调递增,当x g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )可得当x ∈(0,1)时,f ′(x )<0,当x f ′(x )>0.所以f (x )在(0,1).所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 【新高考创新预测】15.(试题创新)当x ∈[1,4]时,不等式0≤ax 3+bx 2+4a ≤4x 2恒成立,则a +b 的取值范围是()A.[-4,8]B.[-2,8]C.[0,6]D.[4,12]【答案】A【解析】因为x ∈[1,4],所以不等式0≤ax 3+bx 2+4a ≤4x 2等价于0≤ax +b +4ax2≤4,即0≤b ≤4.令t =x +4x2,x ∈[1,4],则t ′=1-8x 3=x 3-8x 3=(x -2)(x 2+2x +4)x 3,则t =x +4x 2在[1,2)上单调递减,在(2,4]上单调递增,所以当x =2时,t min =3,当x =1时,t max =5,所以3≤t ≤5,则由0≤at +b ≤4≤3a +b ≤4,≤5a +b ≤4,所以a +b =2(3a +b )-(5a +b )∈[-4,8],故选A.。