中性点不接地系统的单相接地故障特征
- 格式:pdf
- 大小:424.95 KB
- 文档页数:11
配电线路单相接地故障信号特征探究摘要:配电网是向用户输送电能的重要环节,配电网络对整个系统供电可靠性息息相关,目前,我国用户停电大部分是由配电网引起的。
国内外中压配电网大都采用中性点不接地方式和经消弧线圈接地方式,即小电流接地方式,我国主要以小电流接地方式为主。
在发生小电流接地故障时,系统三相之间的线电压基本保持不变,系统可以带故障运行两小时,以便于提高供电可靠性。
尽管单相接地故障可以继续运行,但会造成非故障相对地电压升高,特别是间歇性弧光接地时或者再叠加雷击、操作等过电压,容易使非故障线路绝缘薄弱点击穿,引发相间短路故障,使事故范围和危害程度扩大。
为了保障系统安全和供电可靠性,有必要对故障点采取处理措施或者提前预判线路的对地绝缘状态。
目前,小电流接地选线、定位技术已基本成熟,但配电线路对地绝缘状态监测技术很少有研究。
本文分析了配电线路单相接地故障信号特征。
关键词:配电网;对地绝缘;单向接地故障;1.引言配电线路是电能向用户输送的重要环节,也是决定用户供电质量和供电可靠性的重要环节,目前我国用户停电绝大部分是由配电网引起的。
中压配电网发生故障的概率要远大于高压输电网,其中单相接地故障最多,约占配电网故障总数的80%。
在中压配电网采用非有效接地运行方式时,系统发生故障,不会形成短路回路,接地故障电流仅由分布电容产生,此种情况被称为小电流接故障。
在发生小电流接地故障时,系统三相之间的线电压基本保持不变,系统可以带故障运行两小时,以便于提高供电可靠性。
尽管单相接地故障可以继续运行,但会造成非故障相对地电压升高,特别是间歇性弧光接地时或者再叠加雷击、操作等过电压,容易使非故障线路绝缘薄弱点击穿,引发相间短路故障,使事故范围和危害程度扩大。
对于电缆线路,接地电弧长时间存在,会加重对故障点的破坏,严重时也会引发相间短路故障。
如果故障点周围存在易燃物质如干草、枯叶等,弧光接地释放的火花将会引发火灾,造成巨大的财产损失和环境破坏。
中性点不接地系统的单相接地故障特征1.发生相间短路:由于中性点不接地,当一个相线与地相连时,中性点电压会产生较大的幅值,可能达到相电压的一半甚至更高。
这会导致相间短路故障的发生,使得电力网络中的保护装置动作,造成系统的故障。
2.极限接地过电压:中性点不接地系统中,当系统发生相间短路时,中性点电压会升高,造成系统的过电压。
这会导致绝缘系统的耐压能力超过其额定电压而发生击穿,极限接地过电压的产生将对系统的稳定性造成严重的威胁。
3.零序电流的存在:在中性点不接地系统中,会发生零序电流的存在。
由于系统中的负载、非线性设备和不对称工作的原因,电流存在不对称的情况,导致系统中产生零序电流。
对于无限制地接的系统,零序电流会通过接地系统回流,但在中性点不接地系统中,零序电流无处回流,形成积累,对系统的性能产生负面影响。
4.地电流的存在:由于中性点不接地,系统中的电流无法通过接地系统回流,而是通过其他路径流出。
这会导致地电流的存在,造成地下管线腐蚀、土壤电势的升高以及对地结构的侵蚀。
地电流的存在也会对周围环境产生影响,如对植被的破坏等。
5.故障定位困难:由于中性点不接地系统中无法直接测量电流和电压之间的关系,故障的定位变得困难。
故障发生后,需要通过其他附加的检测装置进行故障的定位和诊断,这增加了故障处理和维修的复杂性。
总之,中性点不接地系统的故障特征主要包括相间短路、极限接地过电压、零序电流的存在、地电流的存在以及故障定位困难等。
这些问题对系统的稳定性和性能产生不利影响,因此在电力系统设计和运行中需要考虑中性点的接地问题,选择合适的接地方式,以确保系统的正常运行和安全性。
第二节 小接地电流系统单相接地故障的保护一、中性点不接地系统单相接地的特点和保护方式(一)单相接地的特点图5—12(a)所示为一中性点不接地的简单系统。
为分析方便,假定电网负荷为零,并忽略电源和线路上的压降。
电网各相对地电容为0C ,这三个电容相当一对称负载,其中性点就是大地。
所以正常运行时,电源中性点对地电压等于零,即0=∙N U ,又因为忽略电源和线路上的压降,所以各相对地电压即为相电势。
各相电容0C 在三相对称电压作用下,产生三相电容电流也是对称的,并超前相应电压 90。
其相量如图5—12(b)所示。
三相对地电压之和与三相电容电流之和都为零,所以电网正常运行时无零序电压和零序电流。
图 5-12 中性点不接地的简单系统(a )系统图;(b )正常运行时的相量图;(c)接地故障时的相量图当A 相线路发生一点接地时,接地相对地电容0C 被短接,A 相对地电压变为零。
此时中性点对地电压就是中性点对A 相的电压,即A N E U ∙∙-=。
线路各相对地电压和零序电压分别为A KC KB KA K j A AC KC j A A B KB KA E U U U U eE E E U e E E E U U ∙∙∙∙∙∙∙∙∙-∙∙∙∙∙-=++==-==-==)(31330015015000 (5-17)上式说明,A 相接地后B 相和C 相对地电压升高3倍,此时三相电压之和不为零,出现了零序电压。
其相量如图5—12(c)所示。
保护安装点各相电流和故障点三倍零序电流分别为)(3)()(00000KC KB C B A K KC KB C B A KCC KBB U UC j I I I I U U C j I I I U C j I U C j I ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙+=++=+-=+-===ωωωω (5—18)上式说明,两非故障相出现超前相电压90的电容电流,流向故障点的电流,即为零序电容电流。
中性点不接地系统单相接地时判断与处理摘要:在中性点不接地系统中单相接地故障是最常见的,约占配电网故障的80%以上。
本文主要对中性点不接地系统在发生单相接地时,出现的一些故障现象、表计和信号装置的动作情况加以分析,从而来判断出接地故障是站内接地还是站外接地,是真接地还是假接地,以便于运行人员依据这些信息作出正确的判断,并按照有关事故处理规程的规定,采取相应的措施,迅速地将故障排除。
关键词:小电流接地系统零序电压零序电流绝缘监察真假接地1.前言:我国电力系统中性点的运行方式主要有:中性点不接地,中性点经消弧线圈接地和中性点直接接地三种,前两种接地系统称为“小电流接地系统”。
在小电流接地系统中单相接地故障是最常见的,约占配电网故障的80%以上。
同样石化电网35KV系统单相接地故障发生率也是比较高的,从对渣油总降的统计来看,仅2000年一年发生的次数就达十次之多,而且都集中在8-10月份(见下表)。
单相接地时,由于故障电流小,使得故障选线较困难。
常规变电所是靠绝缘监视装置发出信号,告知运行人员。
然后由运行人员通过接在电压互感器二次相电压中表的量值来判断故障点。
由于绝缘监视装置只能判断某一电压等级系统有无接地,而不能指出故障点所在的线路,所以为了找出故障点,必须依次短时断开各条线路开关,确认是非故障线路后再恢复供电。
这样,严重影响了供电的可靠性。
我们石化电网是按顺序来试拉的,重要的负荷后拉,不重要的负荷先拉,因此有时故障消除的时间就比较长,在这个过程中,可能会引发弧光接地过电压或短路等后果,影响整个装置的安全生产。
2001年3月14日11时40分,渣油总降煤渣356进线电缆头因电缆层的绝缘老化,B相电缆头绝缘层被击穿触发单相接地,电弧引起电缆层燃烧,所幸当班值班员发现及时,处理得当,没有引起重大的后果,而此电缆头在1998年12月8日已发生过接地故障,这总是一种隐患,所以石化电网35KV系统单相接地的问题必须得加以重视。
变电站中性点不接地系统单相接地故障解析发布时间:2022-11-08T07:01:47.529Z 来源:《福光技术》2022年22期作者:尹红兵周立芳[导读] 在高电阻中性点接地系统中,小电流可以最大限度地减少电弧的危害,降低人身安全。
此外,通过消除单相接地故障引起的电压暂降,减少变换器和电机驱动产生的零序谐波电流,电源质量得到了提高。
中性点接地系统具有相同的优点,但也存在暂时过电压问题。
在这种情况下,长时间运行容易发生两相接地短路,电弧接地间歇性故障会导致整个电力系统过电压。
此外,电力供应中断。
变电站中性点不接地系统单相接地故障解析尹红兵周立芳云南电网有限责任公司文山供电局文山市 663000摘要:在高电阻中性点接地系统中,小电流可以最大限度地减少电弧的危害,降低人身安全。
此外,通过消除单相接地故障引起的电压暂降,减少变换器和电机驱动产生的零序谐波电流,电源质量得到了提高。
中性点接地系统具有相同的优点,但也存在暂时过电压问题。
在这种情况下,长时间运行容易发生两相接地短路,电弧接地间歇性故障会导致整个电力系统过电压。
此外,电力供应中断。
关键词:变电站;中性点不接地系统;单相接地;故障解析1高压供配电系统中性点接地方式电源系统中的中性点是将电源连接到星形的三相发电机或变压器。
电力系统中性点与地面之间的连接称为电力系统中性点接地。
电气系统中继器接地方式是一个与系统供电要求、系统供电可靠性、人身安全、电涌保护器、继电保护、通信干扰和接地要求密切相关的综合技术问题。
我国电力系统中性接触:非接地中性点、径向线圈接地的中性点、小电阻(电阻)接地的中性点以及直接间接存在的中性点。
中性点未接地,中性点由中性线绕组和具有小电阻类型的中性点(称为中性点)接地。
中性点直接称为中性点的允许接地。
在我国,中继器通过中继器接地,中继器通过中继器线圈接地,中继器通过小电阻接地,110kV电网一般直接间接接地。
2单相接地易发生两相接地短路故障的分析 35kV总线系统主要提供电力线,大多数电缆长度和操作环境复杂。
中性点不接地系统单相接地故障及对策探讨发表时间:2020-12-23T15:11:36.870Z 来源:《中国电气工程学报》2020年8期作者:把多文[导读] 在我国的电网分布中,3~10kV的电网基本都使用中性点不接地形式,其最大的优势就是在单向故障发生的时候把多文伊犁新天煤化工有限责任公司新疆 835000摘要:在我国的电网分布中,3~10kV的电网基本都使用中性点不接地形式,其最大的优势就是在单向故障发生的时候,故障电流数值相对较小,故障容易自行解除,使得整体的电网系统运行可靠性得到了极大的提升,但恰恰因为故障电流数值较小,导致故障定位难度较高。
故此,本文针对如何有效快速处理中性点不接地系统单相接地故障展开了研究探讨。
关键词:中性点不接地系统;单向故障;危害;对策1、中性点不接地系统简介我国的配电网络中使用的形式包括中性点直接接地、中性点经消弧线圈接地、中性点不接地三种,前者本质上是一种大电流接地系统,其余的两者则是小电流接地系统。
其中的中性点不接地系统因其自身供电较为可靠稳定,并且在输电环节也并不会对通信和信号系统产生较大的干扰,但凡事利弊共存,该系统也同样具备着对绝缘水平要求较高、存在着弧光接地过电压的危害等缺陷。
该系统存在的单相接地电流数值需要符合如下的要求:第一,6~10kV之间的电网的电流数值需要小于等于30A。
第二,10~60kV之间的电网电流数值需要小于等于10A。
在满足这些条件要求的情况下,单相接地电流存在着自熄的可能。
中性点单向不接地系统主要被运用在如下几个场景中:第一,应用在500V电压之下的三相三线设施中,但380V和220V的设施除外。
第二,3~10kV电网电流数值要求小于等于30A时候。
第三,20~63kV电网电流数值要求小于等于10A的时候。
第四,在3~20kV系统中直接接入发电机且电流数值要求小于等于5A的时候。
2、中性点不接地系统单相接地特点和故障危害2.1中性点不接地系统单相接地特点就当前的情况来看,中性点不接地系统内的单相接地具备如下几个特点:第一,接地相电压数值降低,且在金属地面上这个数值会降低到零。
中性点不接地系统单相接地故障的分析及判断【摘要】通过对中性点不接地系统中单相接地故障的分析,总结了单相接地故障的特点和故障象征,特别指出了实际工作中容易与单相接地故障混淆的谐振及电压互感器断线的故障象征,为运行人员准确判断提供了依据;根据相关电网规程规定给出了单相接地故障的主要处理原则和方法,为故障处理提供了依据,确保电网安全稳定运行,对于电网运行工作具有很好的指导作用。
【关键词】单相接地故障中性点不接地判断1前言电力系统按中性点接地方式可分为中性点直接接地系统和不接地系统。
在我国,110kV以下电力系统大多采用中性点不接地或经消弧线圈接地的运行方式,即中性点不接地系统[1]。
在中性点不接地系统中,由于树木、线路上绝缘子单相击穿、单相断线以及小动物危害等多种因素引发的一相设备对地绝缘下降的故障,即单相接地故障。
单相接地故障是配电系统中最常见的故障,正确判断及处理单相接地故障,对于保证系统安全运行、减少用户停电损失非常重要[2,3]。
2单相接地故障分析2.1 故障特点图1 单相接地故障示意图以C相为例(如图1),当系统中C相某一点发生单相接地故障时,C相对地电压为零,系统中性点发生偏移,非故障相的相电压均偏移一个相电压UC,UA’=√3UA且滞后UA30度,同样地,UB’=√3UB且超前UB30度,UA’+UB’=3U0=-3UC。
UAB’、UBC’、UCA’依然对称。
流经故障点的电流iD=ica+icb=3U/Xc,即系统全部电容电流之和。
由此可以看出,当发生单相接地故障时,故障相相电压为零,非故障相相电压升高为线电压,任意两相之间线电压不变且依然对称,因此不影响对用户的连续供电,这是中性点不接地系统中单相接地故障的最大优点。
由上面的分析可知,发生单相接地故障时,非故障相电压升高为线电压,为正常电压水平的√3倍,若长时间运行,可能会造成系统中绝缘薄弱环节发生击穿,发展为相间短路,导致线路跳闸,扩大事故。
中性点不接地系统单相接地故障浅析中性点不接地系统是指电力系统中,中性点没有接地,所有使用对地绝缘的设备都通过专门的中性点隔离变压器连接到电力系统中。
这种系统可以有效地避免场地不足、跨步电压高、电磁干扰等问题,提高了电力系统的可靠性和安全性。
但是,由于该系统中的所有金属部件都没有接地,一旦出现单相接地故障,将极大地危及电力系统的安全性。
因此,对于中性点不接地系统单相接地故障的分析和防范至关重要。
中性点不接地系统的特点中性点不接地系统相对于其他电力系统的特点在于中性点没有接地。
这种系统中,所有使用对地绝缘的设备,如变压器、电缆、开关等,都通过专门的中性点隔离变压器连接到电力系统中。
这种设计可以有效地避免场地不足、跨步电压高、电磁干扰等问题,提高了电力系统的可靠性和安全性。
然而,中性点不接地系统也存在着一些缺陷。
首先,中性点不接地使得系统中的所有金属部件都没有接地,而如果出现单相接地故障,将极大地危及电力系统的安全性。
其次,中性点不接地系统对系统的运行、维护、检修、故障预警等提出了更高的要求,需要更加严格、科学的管理方法和工作流程。
中性点不接地系统单相接地故障的原因可以从以下几个方面进行分析:1.设备故障变压器、电缆、开关等设备出现绝缘故障,导致电流通过地面回路,形成单相接地故障。
2.操作失误系统中的操作错误,如接错相序、擅自更改设备接线等,都可能导致单相接地故障的发生。
3.环境干扰天气、温度、湿度等环境因素的变化,也可能影响到系统的正常运行,从而导致单相接地故障的发生。
中性点不接地系统单相接地故障的危害中性点不接地系统单相接地故障的危害可以从以下几个方面进行分析:1.设备损坏单相接地故障会导致设备绝缘受损,设备内部部件烧坏、磨损等,从而加快设备老化,缩短设备寿命。
2.供电中断单相接地故障会影响到系统的供电质量,可能导致设备停机、生产受阻等问题。
3.电击危害单相接地故障会引起电压异常,电压在地面上出现梯度,可能造成电击危害,危及人身安全。
中性点非有效接地方式电力系统单相接地故障的特点和小电流选线原理的探讨房晓鹏发表时间:2017-11-20T10:01:10.907Z 来源:《电力设备》2017年第21期作者:房晓鹏[导读] 摘要:由于在中性点非有效接地系统中,发生短路故障时,系统电流回路无法构成,故障电流很小,因此,本系统也可称为小接地电流系统(有时也称中性点非直接接地系统)。
(临涣焦化股份有限公司安徽淮北 235100)摘要:由于在中性点非有效接地系统中,发生短路故障时,系统电流回路无法构成,故障电流很小,因此,本系统也可称为小接地电流系统(有时也称中性点非直接接地系统)。
本文主要论述了中性点非有效接地电力系统单相接地故障时,零序分量的特点,并根据零序分量的不同特点,对小电流选线装置的工作原理进行了分析。
关键词:小电流选线装置;中性点非有效接地;零序分量引言电力系统中性点工作方式,是综合考虑了供电的可靠性、国过电压、系统绝缘水平、继电保护的要求、对通信线路的干扰以及系统稳定的要求等因素而确定的。
在我国采用的中性点工作方式有:中性点直接接地,中性点经消弧线圈接地,中性点经高电阻接地和中性点不接地四种。
中性点不接地、中性点经高电阻和经消弧线圈接地方式又叫中性点非有效接地系统在中性点直接接地的系统中,当发生一点接地故障时,即构成单项接地短路,这时所产生的故障电流很大,所以称中性点直接接地的系统为大接地电流系统。
在66KV及以下电压等级的电力系统中,采用中性点不接地、经高电阻或经消弧线圈接地的工作方式。
在这三种接地方式中,当一相发生接地故障式故障电流是各元件对地的电容电流,往往比负荷电流小的多,所以这种系统又叫小接地电流系统。
中性点非有效接地电力系统发生单相接地时,非故障两项的对地电压将升至线电压(),发生单相接地故障时,凡是对地有电容的线路都将有零序电流流过,但是由于零序电流较小,又有很大的分散性,选择接地线路有一定的困难;若系统中有消弧线圈,困难更大。