LA-ICP-MS锆石年代学数据处理汇编
- 格式:ppt
- 大小:4.62 MB
- 文档页数:23
斜锆石 LA-ICP-MS U-Pb 定年方法及应用李艳广;汪双双;刘民武;孟恩;魏小燕;赵慧博;靳梦琪【期刊名称】《地质学报》【年(卷),期】2015(000)012【摘要】对基性、超基性岩形成年龄进行精确测定一直以来都是同位素地质年代学领域比较棘手的科学难题。
由于采用岩石中锆石的年龄来指示基性、超基性岩的形成年龄往往存在诸多争议,越来越多的研究人员将目光投向了斜锆石,所采用的测试手段以往多为热电离质谱(TIMS)或具有原位、微区优势的二次离子质谱(SIMS) U-Pb 测年方法,进入21世纪以来,有研究人员开始尝试采用发展迅速且潜力巨大的激光剥蚀等离子体质谱(LA-ICP-MS)技术进行斜锆石 U-Pb 年龄测定。
然而,斜锆石 LA-ICP-MS U-Pb 定年方法仍处于探索阶段,相关方法论方面的研究也是鲜有报道。
本文对前人的斜锆石 U-Pb 定年研究进行了综合评述,并报道探索开发出的一套新的LA-ICP-MS 斜锆石 U-Pb 定年方法。
本文着眼于斜锆石 LA-ICP-MS U-Pb 定年方法,探索适用于斜锆石的激光条件和质谱参数,以斜锆石标准样品 Phalaborwa 为研究对象,建立了适用于斜锆石的 LA-ICP-MS U-Pb 定年测试方法,并将其应用于金川岩体中的斜锆石 U-Pb 年龄测定中,得到了较为准确的年龄结果。
本文依据“截距法”的理念编制了“BUSTER”数据处理程序,并基于斜锆石 Phalaborwa 和金川岩体斜锆石两次测试结果将其与目前常用的基于“ROM 法”或者“MOR 法”的数据处理软件“Glitter”和“ICPMSDataCal”中的“无内标单外标”模块进行了系统比较。
结果表明,就这两次测试的准确度而言,“BUSTER”要优于“Glitter”和“ICPMSDataCal”,但测试精度则不及后者,这与相关数值拟合优度及采用的误差传递策略不同有关。
另外,本文利用SHRIMP 方法对金川岩体中的斜锆石样品进行了测定,测试结果与采用本次研究所开发的斜锆石 LA-ICP-MS U-Pb 定年方法得到的测试结果在误差范围内一致。
江西武夷山地区杨林钼矿成矿岩体LA—ICP—MS锆石U—Pb年代学研究作者:黄卫平曾德华来源:《地球》2013年第03期[摘要]杨林钼矿是武夷山成矿带新发现的一小型钼矿床,成矿岩体为黑云母二长花岗岩。
本文首次利用LA-ICP-MS方法对黑云母二长花岗岩进行锆石U-Pb同位素分析,获得其成岩年龄154±2Ma。
这一年龄与武夷成矿带中的金溪熊家山钼矿、行洛坑钨钼矿、漳平北坑场钼多金属矿以及铅山篁碧钼多金属矿等矿床的成矿年龄十分接近,说明杨林钼矿与熊家山钼矿等矿床为同一动力地质背景下岩浆活动的产物。
[关键字]杨林钼矿黑云母二长花岗岩武夷山成矿带锆石U-Pb 江西[中图分类号] P597.3 [文献码] B [文章编号] 1000-405X(2013)-3-62-20 前言武夷山成矿带地处赣闽两省交界部位,是中国东南部一条重要的铜多金属成矿区带,成矿地质条件优越,区内分布着一系列大型—超大型矿床,如冷水坑银铅锌矿、永平铜矿、行洛坑钨钼矿、熊家山钼矿、紫金山铜金矿等,为国家经济建设和社会持续发展发挥重要作用。
杨林钼矿位于江西省铅山县南西直距约20km,地处扬子板块与华夏板块碰撞拼贴带萍乡—广丰深大断裂南侧,北武夷隐伏基底断裂附近,为武夷成矿带中新发现的小型钼矿床。
由于该矿床的研究程度较低,缺少精确的成岩成矿年龄数据,制约了矿床的深入研究和进一步的找矿工作。
本文首次利用LA-ICP-MA方法对与成矿关系密切的黑云二长花岗岩进行锆石U-Pb年代学研究,以期对杨林钼矿成矿年代进行限定,指导区域上同类型矿床的找矿工作。
1 矿区地质概况区内出露地层单一,主要为中元古代铁砂街岩组和第四系(图1)。
铁砂街岩组岩性主要有黑云斜长角闪变粒岩和斜长角闪变粒岩。
区内断裂发育,地表共出露6条构造破碎带,分别为北西向的F1、F2、F3、F4和北东向的F5、F6,都为张性断裂,且延深较浅。
破碎带均表现为较强烈的硅化,并伴有钼矿化,为矿区的赋矿构造[1]。
第五章微量元素分析-单矿物微量元素分析(LA-ICP-MS)内容一LA-ICP-MS概况二激光剥蚀器系统结构三激光器类型四元素分馏效应五LA-ICP-MS的应用广州地球化学研究所LA-ICP-MS一LA-ICP-MS 概况中国地质大学(武汉)国家重点实验室LA-ICP-MS 分室Agilent 7500a ICP-MSExcimer LaserL aser A blation (C oupled P lasma简称:LA-ICP-MS, LAM-ICP-MSLA-ICPMS, LAM-ICPMSz制样简单z高灵敏度z低背景z谱图简单z低检出限L i B e B N aM g A l P kC aS c T i V C rM n F eC o N iC u Z n 0.0010.010.1L i m i t o f dMajor methods of microanalysisElectron microprobe(EMP):>0.1% Ion probe including SHRIMP、Cameca:Expensive and slowLA-ICP-MS: Less expensive, fast其基本原理是将激光微束聚焦于样品表面使之熔蚀气化,由载气将剥蚀下来的微粒载入到等离子体中电离,再经质谱系统分析检测。
激光剥蚀是把固体裂解为蒸气和微小颗粒物的物理过程。
Mo LaCe PrNd Sm Th UK Ca Sc Ti VCr Mn Fe Ge As Se CsBa Hf Ta WReRb Sr YZr Nb Mo Ru Sb Te二激光剥蚀器系统结构该系统主要由光束传输光学系统、样品池(剥蚀室)和观察系统组成。
光束传输光学系统是由一个或更多的介电反射镜组成,其作用是把光束反射至聚焦物镜上。
光束传输系统可以通过聚焦或散焦作用,改变和控制剥蚀孔径的大小。
样品池是一个带有光学窗口的石英或光学的玻璃室,玻璃室中有一个样品固定台,不用在空气中打开样品室就可以旋转或在X-Y方向移动。
西北大学大陆动力学国家重点实验室 LA-ICP-MS数据处理步骤微区分析研究室制2008-4-25第一步按照作样时的EXCEL记录表,以样品名命名建一个文件夹,然后将属于该样品的子文件夹放到其中,如下图所示。
然后将该文件夹拷贝一份,在一个里面做年龄计算,在另一个拷贝的文件里面做含量计算在调数据前,请弄清楚自己所做定年样品的岩石类型,因为不同的岩石类型其年龄结果的表示方式有很大差别。
尤其是对于变质成因的锆石,首先应仔细研究锆石的晶形、CL图像,因为:(Martin., EPSL, 2008)调数据,应对照CL图像,观察激光剥蚀的位置,因为复杂锆石不同的部分,具有不同的成因,以及不同的年龄结果(如下图所示);如果所激光所剥蚀的位置为核幔边的交叉部位,那该分析点数据仅供参考,慎用。
(Rubatoo et al., EPSL, 1999)第二步进行信号的选择,处理数据。
1 在桌面上找到如下图标,双击运行。
2 弹出“Gliter”,点击“Isotope ratios”3 弹出4。
单击File——>Load Data找到所要处理的数据的文件夹,双击该文件夹5 弹出一个提示,点击确定6 弹出Standards,7 在Reference Material下选91500 U/Pb standard zircon8 (1)点击Multiple dwells,然后单击Set Dwell Times,会出现一个对话框,修改在每个元素(峰)上设置的Dwell time,锆石U/Pb测年设置的Dwell time一般为Ti 和 Pb(206,207,208)为20ms, Th、U 为10ms;其余为6ms,修改完后Accept注:修改Dwell time时,用鼠标双击每一个元素Dwell time所对应的条框,然后输入相对应的值,切记输入后按Enter;9 对照你作样时Excel的记录表,选中91500,然后Accept,每选中一个91500样品的序号前就会自动加一个“*”号注:如果记录错误,或选错91500那麽后面的步骤将很难进行,或数据有明显的错误10 单击Window——>Options,需要选三个地方(1)Select Std Yield Ration Interpolation——> Linear Fit to ratios(2)Select Signal Marker mode——>All analyses markers independent(3)将Seltect Std Uncertainty ——>改为2(将1.00000全选,输入2,即可)注:这一步非常关键,否则数据处理可能会难以进行11 选择信号Window——>Review Signal Selection12 弹出Review Signal Selection对话框,这时最好打开两个Review Signal Selection(选U),一个为Count/sec;一个为Isotope rations(选206Pb/238U),注:比值选最平的那一段,同时要注意观察Counts信号13 Glitter提供了一个可供观察的协和图(比较粗略)。
LA-ICPMS锆石U-Pb测年技术主要内容一、 LA-ICP-MS介绍二、锆石U-Pb年代学三、激光剥蚀样品制备(靶)四、激光剥蚀数据处理一、 LA-ICP-MS介绍LA-ICPMS是什么•激光剥蚀-电感耦合等离子体质谱仪——L aser A blation-I nductively C oupled P lasma-M ass S pectrometry(缩写为LA-ICPMS)•基本原理:将激光微束聚焦于样品表面使之熔蚀气化,由载气将样品微粒送入等离子体中电离,再经质谱系统进行质量过滤,最后用接收器分别检测不同质荷比的离子。
激光剥蚀-电感耦合等离子体质谱仪(LA-ICP-MS)剥蚀池6LA-ICP-MS 是一种新发展和建立起来的定年方法, 它是利用等离子体质谱计(ICPMS)进行U-Th-Pb 同位素分析.先将锆石样品用环氧树脂浇铸在一个样品柱上(mount), 磨蚀和抛光至锆石核心出露, 无需喷炭或镀金. 也无需将标样置于同一 mount 中. 将这个mount 和标样放置于同一样品舱内. 用激光剥蚀锆石使其气化, 用Ar 气传输到ICP-MS 中进行分析.LA-ICP-MS能够作什么?•同位素比值分析(精度低)•元素含量分析(主、微量)•整体分析(低空间分辨率,剥蚀直径0. 1 ~4mm,剥蚀量为1 μg ~0. 1g)•微区分析(高空间分辨,剥蚀直径1 ~100 μm,剥蚀量为1pg ~1μg)•空间分辨分析(高、低空间分辨)•深度分析•扫面分析(Mapping)岩石、矿物、流体/熔体包裹体、金属、有机物……LA-ICPMS分析的技术优势1.样品制备简单2.原位、“无损”3.低样品消耗量4.低空白/背景5.高空间分辨率(>5µm或者>100nm)6. 高效率(单点分析<3min)7. 避免了水、酸所致的多原子离子干扰8. 可以同时测定主、微量元素•Gray (1985)率先将ICP-MS与激光剥蚀系统相结合,开创了LA-ICP-MS微区分析技术(第一代ICP-MS于1984年出现);•Jackson et al. (1992) 展示了LA-ICP-MS在地质样品微量元素定量分析中的潜力;•Fryer et al. (1993)将LA-ICP-MS应用于锆石U-Pb同位素定年。
LA-ICPMS锆石U-Pb定年主要技术问题LA-ICPMS锆石U-Pb定年主要技术问题锆石是自然界岩石中的一种重要副矿物,由于它具有较高的U、Th含量使其成为U-Pb同位素地质年代学中最常研究的对象,并逐渐形成了一个应用前景极其广阔的分支学科-锆石学(zirconology)。
特别是,将锆石U-Pb年龄与其微量元素和Hf、O等同位素结合,为探讨地质作用的时标及过程提供了重要地球化学参数。
根据所测样品的性质,目前在锆石U-Pb同位素地质年代学中主要采用微量锆石法、单颗粒锆石法和微区分析三种方法。
但从分析的空间分辨率和使用的技术来看,上述方法基本可分为热电离质谱(TIMS)和微区原位(in situ)分析两类。
其中TIMS分析精度最高,但缺点是得不到锆石年龄变化的空间信息。
因此,锆石的微区原位分析构成近年来U-Pb同位素地质年代学的主导趋势。
在微区分析方法中,应用最广泛的是目前人们熟悉的离子探针(Secondary Ion Mass Spectrometry,简称SIMS),它有SHRIMP和CAMECA两种。
由于该仪器可对锆石进行微区原位高精度定年,从而成为目前研究复杂锆石年龄的最主要手段,并成为80年代以来地质科学创新成果的重大技术支撑。
离子探针锆石U-Pb 年代学研究和取得的成果不仅全面推动了地球科学的迅速发展,同时也带动了一系列同位素地球化学分析技术和方法的进步。
尽管运用离子探针可获得较高精度的年龄,但该仪器价格昂贵,且全球数量有限,难以满足锆石U-Pb定年的需求。
因此继离子探针之后,锆石的激光剥蚀等离子体质谱(LA-ICPMS)定年技术快速发展,并出现了若干LA-ICPMS锆石U-Pb微区原位定年结果可与SHRIMP 数据媲美的实例(Ballard et al., 2001; 袁洪林等,2003),从而使锆石微区U-Pb年代学更加经济和简便(Ko?ler and Sylvester, 2003)。
2009年8月Aug.,2009 矿 床 地 质 M IN ERA L DEPOSIT S第28卷 第4期28(4):481~492文章编号:0258-7106(2009)04-0481-12LA-M C-ICP-M S锆石微区原位U-Pb定年技术侯可军1,李延河1,田有荣2(1中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;2赛默飞世尔科技(上海)有限公司,北京 100007)摘 要 利用激光多接收等离子体质谱(LA-M C-ICP-M S)技术对30~1065M a的系列锆石进行了详细的定年研究。
包含离子计数器的多接收系统使得不同质量数的同位素信号可以同时静态接收,并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U比值的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右;不同质量数同位素信号的同时静态接收使得剥蚀时间缩短,剥蚀深度变浅,相比LA-ICP-M S方法,提高了激光剥蚀的空间分辨率。
对5个锆石标准和2个实际样品的测试表明,206Pb/238U年龄测定误差在1%(2σ)以内,定年结果在误差范围内与前人报道值完全一致,测试精度达到国际同类实验室先进水平。
关键词 地球化学;锆石;LA-M C-ICP-M S;U-Pb年代学中图分类号:P597+.3 文献标志码:AIn situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MSHOU KeJun1,LI YanHe1and TIAN YouRong2(1M RL Key L aboratory of M etallogeny and M ineral Assessment,I nstitute of Mineral Resources,Chinese Academyof Geological Sciences,Beijing100037,China;2Thermo Fisher Scientific(Shanghai)Co.,Ltd,Beij ing100007,China)AbstractHigh resolution in situ U-Pb zircon geochronology on zoned g rains can obtain isotope signatures from multi-ple grow th or thermal events.We present a method using laser ablation-multicollector-inductively coupled plas-ma-mass spectrometry(LA-MC-ICP-MS)to overcome com plications associated w ith intricately zoned zircon crystals through in situ sampling of zircon volumes as small as12μm,25μm and40μm in diameter by about10μm in depth.High precision U-Pb age of a series of zircon standard covering a w ide age range of30to1065Ma w as acquired using LA-MC-ICP-MS.The precision of measured Pb/U ratios in homogeneous zircon is about2% (2σ),resulting in routinely achieved precision of U-Pb ages obtained by ex ternal calibration of~1%(2σ)or bet-ter.All masses of interest can be simultaneously recorded w ith a multi-ion counting system(M IC)operating in static mode,and the sho rt ablation required to achieve such precision results in spatial resolution that is superior to comparable U-Pb zircon analy ses by single collector ICP-M S.The resulting present U-Pb age for five zircon reference samples and tw o geological samples show an excellent agreement with the previously reported ID-TIMS o r SH RIM P data.Key words:geochemistry,zircon,LA-MC-ICP-MS,U-Pb geochronology本研究得到国土资源部公益性行业科研专项经费(200811114)、国土资源大调查项目(1212010816039)和公益性科研院所基本科研业务费(K2007-2-3,Yw f060712)的联合资助第一作者简介 侯可军,1981年生,男,硕士,从事同位素地球化学研究。
doi:10.3969/j.issn.2095-1329.2023.03.003上海基底地层格架的锆石LA-ICP-MS U-Pb年龄及微体化石特征制约谢建磊(上海市地质调查研究院,上海 200072)摘 要:基底地层特征对构造单元和地震地质背景认识具有重要意义。
上海位于扬子克拉通和华夏造山系的交界区,同时位于江南造山带北东侧,构造位置比较特殊,但长期以来对其基底地层特征的认识比较薄弱。
本文对典型钻孔揭露的变质岩、凝灰岩开展了锆石LA-ICP-MS U-Pb定年和疑源类化石分析,斜长角闪岩和花岗质糜棱岩分别获得1091.1±8.8 Ma、1753±24 Ma 的原岩年龄,片麻岩获得上交点年龄2445±27 Ma、下交点年龄581±110 Ma,安山质糜棱岩206Pb/238U谐和年龄有2708~2447 Ma、1371~1097 Ma和956~903 Ma三个区间,凝灰岩获得801±13 Ma、774±12 Ma的原岩年龄,板岩中含较多炭化剧烈的Leiosphaeridia化石。
认为区内基底自下而上可划分出金山群、惠南板岩和河上镇群,分别形成于古元古代初期—中元古代、青白口纪早—中期和青白口纪晚期,总体年龄特征表现出与华夏造山系的亲缘性特征。
2447~2507 Ma、1753 Ma、1091.1 Ma、801~774 Ma和581±110 Ma等建造和改造事件是对凯若兰超大陆、哥伦比亚超大陆、罗迪尼亚超大陆和冈瓦纳超大陆汇聚裂解过程的响应。
关键词:基岩地质;基底地层;锆石定年;微体化石;金山群;惠南板岩;河上镇群中图分类号:P535 文献标志码:A 文章编号:2095-1329(2023)03-0012-11目前,华南东部大地构造单元划分中通常采用的划分单元是扬子克拉通(曾称扬子板块、扬子地块、扬子陆块)、华夏造山系(曾称华夏地块、华夏板块)、江南造山带、江绍对接带和钦杭结合带;但上述划分方案仍存在很多争论,争论的核心是其构造边界、构造属性和演化历史[1-8]。
西准噶尔萨吾尔山一带吉木乃组流纹岩LA-ICP-MS锆石U-Pb年代学及地质意义作者:支倩李永军杨高学来源:《新疆地质》2019年第02期摘 ;要:吉木乃组是西准萨吾尔山地区地质时代久存争议的地层,也是火山岩占地层总厚度比例最高的火山-沉积地层。
采用同位素年龄标定火山岩准确的地质时代,是解决本组时代分歧的有效手段。
吉木乃组顶部新发现的流纹岩中获得(304.1±2.5)Ma(n=15,MSWD=1.07)的LA-ICP-MS锆石U-Pb年龄,确认成岩时代为晚石炭世晚期(大致相当于卡西莫夫期)。
结合前人在本组下部层位采集的植物化石,限定吉木乃组时代为晚石炭世(大致为巴什基尔期—卡西莫夫期)。
流纹岩同位素定年准确约束了吉木乃组地质时代上限,为区域地层格架的建立和地层对比提供了可靠的时代依据。
关键词:西准噶尔;吉木乃组;流纹岩LA-ICP-MS锆石U-Pb年龄;晚石炭世“吉木乃组”一名由新疆地质局区测大队与中国地质科学院地质研究所1974年创建,创名地为吉木乃县哈尔加乌西南萨尔布拉克沟,原称为萨尔布拉克组。
后因该名称与柯坪地区奥陶系组名相同,《新疆维吾尔自治区区域地质志》将其更名为吉木乃组。
该组出露于萨吾尔山北坡及那林卡拉他乌一带,上与早二叠世哈尔加乌组平行不整合,下与早石炭世那林卡拉组整合或平行不整合,是一套以火山岩为主的陆相火山岩-火山碎屑岩夹陆源碎屑岩建造,局部夹可采煤层,最初因采得安加拉植物群化石,将其时代置于早石炭世[1]。
《新疆古生界(下)》将该组时代定为中石炭世(石炭纪三分法;按现二分法则为晚石炭世)[2]。
1998年新疆地矿局第四地质大队在萨吾尔山托斯特一带进行1∶5万区域地质调查时,据采获的Lepidodendron sp.,Belonophyllum sp.,Neuropteris sp.,Calamites sp.,Caenodendron primaevum等植物化石,将时代定为早石炭世晚期❶。