生物医用高分子材料的表面改性
- 格式:pdf
- 大小:355.07 KB
- 文档页数:4
生物医用材料表面改性技术综述随着医疗技术的发展和生物医用材料的广泛应用,生物医用材料表面改性技术越来越受到关注。
在生物医学领域,生物医用材料的表面改性技术可以有效地改善材料的性能,提高其生物相容性和生物亲和力,减少材料与生物组织之间的反应和排斥,提高其临床应用效果。
本文将综述生物医用材料表面改性技术的原理、分类以及应用现状。
一、生物医用材料表面改性技术原理生物医用材料表面改性技术的原理主要是通过对生物医用材料的表面进行化学或物理方法的改变,来实现对材料表面性质的调控,从而使其更加适合医学应用。
表面改性技术的主要作用是改进材料表面的形态结构、表面粗糙度、表面化学组成和表面能,以达到改善生物相容性和生物亲和力的目的。
二、生物医用材料表面改性技术分类1、化学改性技术化学改性技术是将生物医用材料表面进行化学修饰,使其呈现出希望的生物相容性和生物亲和性。
化学改性技术主要包括表面活性剂改性、胶原蛋白覆盖、化学交联和生物活性物质的掺杂等。
表面活性剂改性技术是利用表面活性剂的表面作用力将化合物吸附在表面上,从而改变表面化学性质的方法。
该技术可以改变表面能和表面化学成分,这样就可以增加材料表面的吸附能力和亲水性等,从而促进细胞黏附和增强生物相容性。
胶原蛋白覆盖是指用高分子胶原蛋白在生物医用材料表面覆盖一层胶原蛋白,从而提高其生物相容性和生物亲和力。
胶原蛋白具有良好的生物活性和生物亲和力,可以与细胞黏附,具有很好的生物相容性。
化学交联技术是指通过交联剂将分子或者高聚物与生物医用材料表面共价结合来实现改性。
这种方法可以改变生物医用材料表面的物化性质,从而达到改善其生物相容性和生物亲和力。
2、物理改性技术物理改性技术是改变生物医用材料表面性质,通过物理手段实现。
物理改性技术的方法较多,如电化学处理、离子注入、高压氧气等等。
这些方法可以改变材料表面的形态结构、表面粗糙度和表面能,从而提高其生物相容性和生物亲和力。
3、微纳米技术微纳米技术是利用微纳米技术制造出微米或纳米级别的表面纹理或其它结构,从而改变生物医用材料表面特性的方法。
聚全氟乙丙烯膜表面抗炎性和抗凝血性改性摘要:本文利用高频低温等离子体技术与紫外(UV)接枝技术,在疏水性FEP膜表面接枝具有特殊功能的环丙沙星和肝素,对其表面进行改性,以赋予FEP材料优异的生物相容性和抗菌性。
关键词:聚全氟乙丙烯表面改性生物相容性抗菌性聚全氟乙烯(FEP)材料具有良好的耐腐蚀性、无毒、化学稳定性和良好的加工性能,被广泛应用于生物医学领域。
近几年来,研究发现通过对生物医用高分子材料表面进行适当的改性,在材料表面偶合或者结合具有抗菌性能和抗凝血性能的高分子,赋予材料表面优良的生物相容性能,能够有效阻止在生物体体内的细菌感染[1]和凝血现象[2]的形成。
环丙沙星为第三代喹诺酮类抗菌药物,具广谱抗菌活性,杀菌效果好,对大肠杆菌、绿脓杆菌、流感嗜血杆菌、金黄色葡萄球菌等具有优良的抗菌作用。
本文为了在FEP表面化学键合环丙沙星和肝素混合物,以提高其抗炎性和抗凝血性。
1 实验部分1.1 实验材料与仪器聚全氟乙丙烯(FEP)膜:0.1 mm厚,切成2 cm×4 cm样品,用丙酮、去离子水依次超声清洗各3次,5 min/次,室温真空干燥24 h后密封保存备用;金黄色葡萄球菌、大肠杆菌,菌株来源-中国科学院微生物研究所菌种保藏中心;环丙沙星,市售;肝素钠(Hp,优级纯)、N,N´-二甲基甲酰胺(DMF,分析纯),国药集团(上海)化学试剂有限公司;N,N′-二环己基碳二酰亚胺(DCC)、4-二甲氨基吡啶(DMAP)为化学纯,中国医药集团(上海)化学试剂公司;丙烯酸(AAc)为分析纯,天津市福星化学试剂厂;Ar:99.999%以上的高纯气体。
XPA-5型升降式光化学反应仪,南京胥江机电厂;PECVD500-HF 辉光等离子体设备,北京泰科诺科技有限公司;衰减全反射红外光谱仪(ATR-FIIR),Tensor 27型、德国Bruker公司;X射线光电子能谱仪(XPS),AXIS ULTRA型,英国Kratos Analytical公司;HH-6s数显恒温水浴锅,金纺市精达仪器制造厂;101-OAB型电热鼓风干燥箱,天津市泰斯特仪器有限公司;DZF-6020真空干燥箱,上海一恒科技有限公司;TGL-16M高速台式冷冻离心机,长沙湘仪离心机仪器有限公司。
高分子材料表面润湿性改性研究一、引言高分子材料广泛应用于现代化工、制造、医学等领域,但其表面润湿性常常不足以满足特定需求。
因此,科学家需要改性高分子材料表面润湿性以满足特殊的应用需要。
这篇文章着重从不同角度探讨改性高分子材料表面润湿性的研究进展。
二、润湿性概述表面润湿性是润滑剂、颜料、胶粘剂、涂料、聚合物等材料应用中至关重要的性质,是基于表面形态、表面能量和液体表面张力的互作用原理。
通过表面张力的影响,液体能够黏附在具有亲和力的表面上,从而使材料表现出润湿性。
表面润湿性对于许多应用非常关键,包括生物学、生物医学、纳米技术、涂料等多个领域,因此,高分子材料表面润湿性的改性研究越来越受到重视。
三、改性方法目前,有许多途径来改性高分子材料表面润湿性,除了物理和化学方法之外,在材料平台上,活性涂层、多功能纳米材料和基于生物特征的改性方法受到越来越多的关注。
1. 物理方法物理方法是通过对高分子材料表面进行局部调整改变其润湿性。
典型的方法包括激光纹理加工、电化学阳极氧化、热处理和等离子体处理。
激光纹理加工能够形成非常细致的结构和形态,在改善高分子材料表面润湿性方面具有很大的潜力。
电化学阳极氧化是利用电化学氧化法对金属、高分子等表面进行改性。
热处理包括热压和退火是一种简单有效的方法,通过调节温度和时间来改善润湿性。
等离子体处理可通过工艺参数调节得到不同的表面化学键和化学成分,从而改变表面润湿性。
2. 化学方法化学方法是通过对高分子材料表面进行化学修饰使其具有良好的润湿性。
在化学方法中,活性涂层和多功能纳米材料是当前广受关注的领域。
活性涂层可以在材料表面上形成功能性化合物层,从而获得所需的表面润湿性、切削和摩擦性能。
活性涂层的目的是选择单一或混合高分子材料,利用活性化合物集成表面上的亲水、疏水性,太阳能吸收、电化学、光学、生物响应等。
多功能纳米材料的目标是,通过合成具有多种作用的复合材料,实现材料的优化性质。
多功能纳米材料有多种结构和形态,因此,它们有不同的性质,如增强材料的机械性能、抗氧化和防腐等。
高分子材料的界面改性及应用研究一、介绍高分子材料是一种重要的工程材料,在工业生产、医疗卫生、能源领域等方面都有广泛的应用。
然而,由于高分子材料表面的缺陷和自由基等缺陷,使其在使用过程中容易出现劣化、老化以及化学反应等问题。
所以界面改性技术的应用升级已变得越发重要。
二、高分子材料界面改性的方法界面改性技术是通过在高分子材料表面附加一种或多种化学物质的方式,改变高分子材料表面的化学和物理性质以及结构,从而达到优化物体性能的目的。
界面改性主要有以下几种方法:1.表面包覆法表面包覆法是在高分子粒子表面生成一层包裹。
主要应用于高分子材料的稳定性和物理力学性能的提高以及抗氧化性能的改善。
常见的包覆材料有硅酸盐、钛酸盐等。
2.气相沉积法气相沉积法是把目标材料的气体原子或分子通过蒸发、溅射等方式冲击到高分子材料表面上去。
它可用于制备高分子涂层、表面修饰。
3.表面活性改性法表面活性改性法是通过在高分子材料表面改变表面活性基团的方式,从而改变其物理和化学性质的方法。
常见的表面活性基团有羟基、胺基、羰基等。
4.离子注入法离子注入法是利用加速器将目标离子加速到高速度,在高分子材料表面形成一层薄层,从而实现界面改性的方法。
常见的离子有氮、氩等。
三、高分子材料界面改性的应用研究界面改性技术对高分子材料性质的改善,使其在各种领域得到广泛应用。
下面以几个示例介绍其应用研究:1.在医疗方面,通过界面改性技术,增加了不同颜色的荧光纳米包被物质的吸附能力,使比色比荧光更具选择性信号,有望在癌症早期筛查和诊断中得到广泛应用。
2.在电力行业,通过界面改性技术,制备出耐高温、防辐照的电线、电缆等,提升了电线电缆的使用寿命。
3.在机械工程方面,通过界面改性技术,可以制备出具有耐磨、耐冲击、抗静电等特性的高分子材料,从而提高机械设备的使用寿命和安全性。
四、结论高分子材料界面改性技术作为先进的表面改性技术,在材料科学与技术领域具有重要的应用前景。
高分子材料加工及表面改性技术高分子材料,其实就是具有很高分子量的化合物。
这种材料具有比较高的强度和韧性,可以应用在很多领域中,例如工业、医学、电子等等方面,而高分子材料加工及表面改性技术,则是围绕着这种材料的处理技术而展开的研究和实践。
在这篇文章中,我将针对高分子材料的加工和表面改性技术进行探讨。
一、高分子材料加工技术高分子材料的加工技术,主要包括成型加工、加工工艺以及加工装备等三个方面。
1. 成型加工成型加工,是指将高分子材料加工成所需形状和尺寸的工艺过程。
其中,最常见的成型加工方法,便是注塑成型。
注塑成型是一种通过芯棒将熔化的高分子塑料注入模具中冷却成型的方法。
该方法在整个加工处理过程中,需要用到注塑机、机械手等设备。
此外,还有挤出成型、吹塑成型、压缩成型等不同的成型加工方法。
这些方法,适用于不同的高分子材料以及不同的加工需求。
2. 加工工艺加工工艺,则是指通过调节加工参数,使高分子材料达到最佳加工状态。
对于不同的高分子材料,其加工参数也会有所不同。
举例来说,在进行注塑加工处理时,需要考虑高分子材料的注塑温度、注塑压力、注塑速度、模具温度等因素。
3. 加工装备高分子材料加工中,加工装备则是重要的辅助性因素。
相应的,加工装备的维护保养,以及开展相应的技术培训,也是加工成功的关键之一。
二、高分子材料表面改性技术除了高分子材料加工技术以外,改善高分子材料表面性能的技术也受到了广泛的关注。
表面改性技术,可以通过物理、化学、生物等多种途径,将高分子材料的表面性能得到改进。
1. 物理方法物理方法,指的是通过物理手段来进行表面改性。
例如,通过使用阳极氧化、喷砂处理以及激光加工等方法,对高分子材料的表面进行改良。
在这些方法中,激光加工则属于一种比较高效的表面处理技术。
通过使用激光加工设备,可以在材料表面形成微米级别的表面结构和纳米级别的结晶区域,从而达到更好的表面改性。
2. 化学方法化学方法,指的是在高分子材料表面添加化学物质,从而起到改性的作用。
生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。
生物医用高分子材料的功能医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官,具有延长病人生命、提高病人生存质量等作用。
生物医用高分子材料的发展前景我国医用高分子材料的研究起步较早、发展较快。
目前约有50多个单位从事这方面的研究,现有医用高分子材料60多种,制品达400余种,用于医疗的聚甲基丙烯酸甲酯每年达300 t。
然而,我国医用高分子材料的研究目前仍然处于经验和半经验阶段[5],还没有能够建立在分子设计的基础上。
因此,应该以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。
医用高分子材料要应用于生物体必须同时要满足生物功能性、生物相容性、化学稳定性和可加工性等严格的要求。
生物医用材料的研究和发展方向主要包括以下几方面:1 、组织工程材料组织工程是应用生命科学与工程的原理和方法构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。
它的主要任务是实现受损组织和器官的修复或再建,延长寿命和提高健康水平。
其方法是:将特定组织细胞“种植”于一种生物相容性良好、可被人体逐步降解吸收的生物材料上,形成细胞-生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的与自身功能和形态相适应的组织或器官。
这种具有生命力的活体组织或器官能对病损组织或器官进行结构、形态和功能的重建,并达到永久替代。
2、生物医用纳米材料———药物控释材料及基因治疗载体材料高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内,以一定的速度在体内缓慢释放,从而达到治疗某种疾病或调节生育的目的。