2011隧道年会 《隧道围岩稳定性及其控制技术研究》 赵勇
- 格式:pdf
- 大小:2.81 MB
- 文档页数:61
西攀、攀田高速公路隧道围岩稳定性研究的开题报告题目:西攀、攀田高速公路隧道围岩稳定性研究一、选题的背景和意义随着我国经济持续发展和城市化进程的加速,交通运输需求不断增长。
为了满足交通运输的需求,建设隧道已成为现代化交通建设的必需品之一。
隧道建设具有施工难度大、投资规模大、技术要求高等特点。
隧道的稳定性则是保证隧道安全运营的基本前提,因此,对隧道围岩的稳定性研究至关重要。
西攀、攀田高速公路隧道是连接四川攀枝花和凉山州的重要路线,隧道全长近20公里,涉及多种地质构造。
因此,对该隧道的围岩稳定性研究具有重要的实用价值和理论意义。
二、研究的主要内容和目标1、了解西攀、攀田高速公路隧道所处区域的地质背景和地质构造特征,分析隧道围岩所存在的稳定性问题;2、通过野外勘探、室内试验等手段,对隧道围岩的物理力学性质进行研究;3、开展围岩受力分析,建立力学模型,探究隧道围岩的稳定性问题;4、结合实际工程情况,制定相应的围岩支护措施,提高隧道围岩的稳定性水平。
三、研究的方法和步骤1、文献调研:收集相关文献资料,了解该地区地质构造特征及研究现状;2、野外勘探:通过现场实地调查和样本采集等手段,获取地质和围岩的物理力学信息;3、室内试验:对采集的围岩岩样进行室内试验,获取围岩的物理力学参数,并对围岩断裂特性和破坏模式进行分析;4、力学模型建立:依据试验数据和实际工程情况,建立围岩的受力分析模型,探究围岩的稳定性问题;5、支护措施制定:结合实际工程情况,制定相应的围岩支护措施,提高隧道围岩的稳定性水平。
四、预期的成果通过本次研究,预期获得以下成果:1、了解西攀、攀田高速公路隧道所处区域的地质背景和地质构造特征,分析隧道围岩所存在的稳定性问题;2、获得隧道围岩的物理力学参数,建立相应的力学模型,探究隧道围岩的稳定性问题;3、制定相应的围岩支护措施,提高隧道围岩的稳定性水平。
五、存在的问题和不足1、该研究所涉及的工程量较大,野外勘探等工作的时间和人力成本较高;2、相应的理论体系和方法论还需要进一步完善;3、该研究涉及的技术和理论研究的门槛较高,需要更多专业人才的参与。
隧道围岩稳定性及超前地质预报应用研究的开题报告一、研究背景隧道工程是现代城市建设中不可或缺的一部分。
由于隧道工程施工中涉及到大规模地下开挖,因此隧道围岩稳定性是影响隧道工程安全的一个主要因素。
为了保证隧道工程安全和高效,需要对隧道围岩的稳定性进行研究和预测。
超前地质预报是一种新的地质工作方法,它能够通过人工干预的方式,对隧道围岩进行预测和处理,从而提高隧道工程的施工效率和安全性。
二、研究目的本研究旨在通过对隧道围岩稳定性及超前地质预报应用的相关研究,探讨隧道围岩稳定性的影响因素和预测方法,并探讨超前地质预报在隧道工程中的应用情况和优势。
三、研究内容1. 隧道围岩稳定性的影响因素:本部分将分析影响隧道围岩稳定性的因素,包括地质条件、围岩性质、地应力和水文等因素,以建立隧道围岩稳定性的数学模型,并对模型进行验证和优化。
2. 预测隧道围岩变形和破坏的方法:本部分将探讨数值模拟法、经验公式法和分析法等多种方法,分析其优缺点,以实现对隧道围岩变形和破坏的准确预测。
3. 超前地质预报在隧道工程中的应用:本部分将介绍超前地质预报在隧道工程中的应用情况和优势,包括超前地质预报的方法和过程、超前地质预报在隧道施工中的应用实例和效果等。
四、研究意义本研究将为隧道工程中的围岩稳定性和地质预报提供新的思路和方法。
通过对隧道围岩稳定性和地质预报的研究,可以全面了解隧道施工中涉及的围岩问题,建立科学的预测方法和预警机制,保证工程的安全和效率。
五、研究方法本研究将采用文献综述、实地调查、数值模拟和实验等多种研究方法,以建立隧道围岩稳定性的数学模型和预测方法,探讨超前地质预报在隧道工程中的应用。
六、预期成果1. 完成隧道围岩稳定性和地质预报的相关研究,建立科学的预测模型和方法。
2. 探讨超前地质预报在隧道工程中的应用情况和优势,提出改进建议。
3. 发表高水平学术论文,为隧道施工提供科学的理论支撑和实际指导。
隧道工程中的围岩稳定性分析隧道工程是一项复杂而重要的工程,涉及到许多工程学科的知识。
其中一个关键的因素就是隧道围岩的稳定性。
围岩的稳定性对隧道的安全和可持续运营起着至关重要的作用。
因此,隧道工程中的围岩稳定性分析成为了工程师们研究和解决的难题。
隧道工程中的围岩稳定性分析可以分为岩石力学分析和数值模拟两个方面。
岩石力学分析是指通过实地勘探和采样,对隧道围岩的物理力学性质进行实验室测试,并通过理论计算和分析,了解围岩的强度、变形性能、破坏特性等。
这样可以为隧道设计提供关键的参数和参考依据。
进行岩石力学分析时,首先需要对围岩进行采样。
通过岩芯和地质面的观察,可以得到围岩的颜色、结构、岩石类型等基本信息。
然后,利用岩石工程力学测试,如拉伸试验、压缩试验等,确定围岩的强度和变形特性。
同时,还需要进行单轴和三轴剪切试验,以评估岩石的抗剪强度。
这些实验数据可以为后续的数值模拟提供基础。
数值模拟是利用计算机模拟隧道施工和运营过程中围岩的变形和破坏情况。
通过数值模拟,可以对围岩的稳定性进行全面准确的分析和预测。
在数值模拟中,主要采用有限元法进行计算。
首先,需要根据岩石力学分析得到的实验数据,建立围岩的材料模型和边界条件。
然后,将隧道建模,并将岩石材料模型应用于模拟中。
最后,对围岩施加负荷,通过计算机模拟围岩的变形和破坏情况。
在进行围岩稳定性分析时,需要考虑到许多因素。
其中,地下水是一个重要的因素。
地下水的存在会显著影响围岩的稳定性。
当隧道施工过程中遇到地下水时,要通过合理的抽水措施来控制地下水位,减少对围岩的影响。
此外,还要考虑到隧道周围的地质构造和应力状态等因素。
这些因素的综合分析和计算可以帮助工程师们确定围岩稳定性的状况,并制定相应的安全措施。
围岩稳定性分析的准确性对隧道工程的安全和可持续运营至关重要。
它可以帮助工程师们了解围岩的力学特性,预测围岩的变形和破坏情况,制定合理的施工方案和安全措施。
因此,在隧道工程中,围岩稳定性分析是一项必不可少的工作。
以张顶立教授为负责人的“隧道及地下工程安全性控制”教育部创新团队于2011年获得教育部正式批复。
团队以隧道及地下工程的安全性控制为核心,重点开展隧道围岩稳定性控制理论、“支护—围岩”作用机理及其应用、地下工程建设与服役期的环境影响控制等方面的研究,并以学科发展和行业的技术需求为导向,同时注重研究工作的前沿性、研究成果的先进性和工程的实际应用价值。
在隧道及地下工程安全性控制理论和应用技术方面形成的主要研究方向:复杂条件下山岭隧道安全建造技术;越江跨海隧道安全建造技术研究;城市地下工程安全性控制理论与应用技术。
研究团队秉承“面对国家重大工程需求的关键科学问题开展基础研究、结合工程需求形成核心技术”的研究理念,依托先进的试验平台和学科优势,在国内外隧道及地下工程有重要影响的前沿领域开展原创性的研究工作,在隧道及地下工程安全性控制领域发挥重要作用,将团队建成为集基础科学问题研究、关键技术研发、成果工程转化和高层次人才培养为一体的一流创新群体,成为国家隧道及地下工程安全建设的重要技术支撑,其创新能力达到国际领先水平,并具有面向国家和行业部门承担重大、综合性创新研究和解决实际问题的能力。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910302226.X(22)申请日 2019.04.16(71)申请人 中铁第四勘察设计院集团有限公司地址 430063 湖北省武汉市武昌杨园和平大道745号(72)发明人 肖明清 徐晨 王克金 邓朝辉 龚彦峰 焦齐柱 孙文昊 (74)专利代理机构 北京汇泽知识产权代理有限公司 11228代理人 秦曼妮(51)Int.Cl.G01V 11/00(2006.01)(54)发明名称一种隧道围岩稳定性量化分析方法及装置(57)摘要本发明提供了一种隧道围岩稳定性量化分析方法及装置,方法包括:获得隧道的参数信息;隧道的参数信息包括开挖断面的尺寸、中心埋深和几何形状、隧道围岩的物理力学参数;利用所获得的参数信息,计算临界稳定断面;临界稳定断面为与开挖断面中心埋深相同、几何形状相似且在无支护状态下隧道围岩能够自稳的最大断面;若开挖断面的尺寸大于临界稳定断面的尺寸,确定隧道围岩需要支护;若开挖断面的尺寸不大于临界稳定断面的尺寸,计算临界稳定断面内的围岩作为支护结构时的安全系数,根据计算所得的安全系数确定隧道围岩是否需要支护;如果确定需要支护,还可以求出支护力的大小。
应用本发明实施例,提高了隧道围岩稳定性分析的可靠性。
权利要求书3页 说明书10页 附图4页CN 110007367 A 2019.07.12C N 110007367A权 利 要 求 书1/3页CN 110007367 A1.一种隧道围岩稳定性量化分析方法,其特征在于,所述方法包括:获得隧道的参数信息;所述隧道的参数信息包括开挖断面的尺寸、中心埋深和几何形状、隧道围岩的物理力学参数;利用所获得的参数信息,计算临界稳定断面;所述临界稳定断面为与开挖断面中心埋深相同、几何形状相似且在无支护状态下隧道围岩能够自稳的最大断面;判断所述开挖断面的尺寸是否大于所述临界稳定断面的尺寸;若所述开挖断面的尺寸大于所述临界稳定断面的尺寸,确定所述隧道围岩需要支护;若所述开挖断面的尺寸不大于所述临界稳定断面的尺寸,计算临界稳定断面内的围岩作为支护结构时的安全系数,根据计算所得的安全系数确定隧道围岩是否需要支护。
大窑沟二号隧道围岩稳定性模型实验研究及数值分析的开题报告一、选题背景二号隧道位于大窑沟锦屏线上,全长约2.8km,是一座复杂的岩溶隧道。
在隧道施工中,隧道围岩稳定性是工程施工过程中的重要问题。
因此,对于二号隧道围岩稳定性的研究具有重要的现实意义。
二、研究目的本次研究的主要目的是通过模型实验研究和数值分析,确定二号隧道围岩的稳定性,并找出影响围岩稳定的主要因素。
三、研究内容1. 收集有关大窑沟二号隧道的资料,包括地质资料、隧道设计方案和现场监测数据等。
2. 进行二号隧道围岩稳定性的模型实验研究。
在实验室中建立二号隧道的围岩模型,对隧道围岩的受力特性、变形规律及破坏方式进行分析。
3. 进行二号隧道的数值模拟。
采用FLAC3D软件,建立二号隧道围岩的三维有限元模型,模拟隧道施工过程中的变形和破坏过程。
4. 分析影响二号隧道围岩稳定性的主要因素。
通过模型实验和数值模拟,找出影响二号隧道围岩稳定的主要因素,并提出相应的措施。
四、研究方法1.模型实验法:采用岩石力学试验台进行模型实验,观测测试二号隧道围岩的力学性质、内部变形规律、破坏模式等。
2.数值模拟法:采用FLAC3D软件建立三维有限元模型,模拟二号隧道施工过程中的围岩变形和破坏过程。
3.综合分析法:通过实验和数值模拟结果的对比分析,找出围岩稳定的主要因素,并提出相应的措施。
五、预期结果通过模型实验和数值模拟分析,可以得到大窑沟二号隧道围岩的稳定性情况,找出影响围岩稳定的主要因素,提出相应的措施,以保证施工过程的安全和工程的成功。
六、论文结构第一章绪论1.1 研究背景和意义1.2 国内外研究现状1.3 研究内容和方法第二章大窑沟二号隧道的构造与地质条件2.1 大窑沟二号隧道地理位置和线路特点2.2 大窑沟二号隧道地质条件第三章大窑沟二号隧道的围岩模型实验研究3.1 模型实验原理和设备3.2 模型实验过程和结果分析3.3 模型实验结论第四章大窑沟二号隧道的数值模拟分析4.1 FLAC3D软件原理和应用4.2 模拟分析过程和结果分析4.3 模拟分析结论第五章影响大窑沟二号隧道围岩稳定性的因素分析5.1 实验结果和模拟分析对比分析5.2 影响围岩稳定的主要因素分析5.3 针对不同因素提出的措施第六章结论和展望6.1 研究结论总结6.2 研究局限和未来展望。
隧道围岩动态变形规律及控制技术研究赵勇【摘要】基于前人既有研究成果和日本龟浦隧道围岩变形试验,结合郑西客运专线大断面黄土隧道围岩大变形的工程实践,阐述隧道施工影响下围岩变形动态规律,提出围岩变形控制的技术要点和技术措施,并提出相应的围岩变形控制建议.研究结果表明:隧道开挖后的围岩变形可分为掌子面前方的先行变形、掌子面变形及掌子面后方变形3种形式,且这3种变形是同时发生的.控制开挖工作面失稳、拱顶失稳、拱脚下沉和围岩大变形等是隧道围岩变形控制的要点.开挖过程控制和辅助工法控制是隧道围岩变形控制的重点,其中初期支护及时闭合和合理辅助工法的选取是关键.【期刊名称】《北京交通大学学报》【年(卷),期】2010(034)004【总页数】5页(P1-5)【关键词】隧道工程;围岩变形;控制要点;控制技术【作者】赵勇【作者单位】北京交通大学,隧道及地下工程教育部工程研究中心,北京,100044;铁道部工程设计鉴定中心,北京,100844【正文语种】中文【中图分类】U451.2隧道的结构体系是由周围地质体和人工修筑的支护构件组成的,并且周围地质体起着主导作用,这是与地面结构体系完全不同的.从工程结构的角度看,这种结构体系的形成是通过一定的施工过程或者说一定的力学过程来实现的,这个过程状态的变化如图1所示[1].可以看出,隧道施工就是一个开挖与支护的过程,施工过程就是应力释放与应力控制、利用和控制围岩动态变形的过程.图1 施工过程与围岩力学状态变化过程示意图Fig.1 Construction and surrounding rock mechanical state change process chart对于隧道围岩变形规律及控制技术的研究,国内外学者做了大量工作,并取得了丰富的研究成果[2-5].本文作者基于前人的研究,结合日本龟浦隧道围岩变形试验和郑西客运专线大断面黄土隧道围岩大变形的工程实践,根据实测数据总结隧道围岩变形动态规律,并提出具体的控制措施.1 隧道围岩变形动态规律大量的数值计算和现场监测资料均表明,隧道围岩变形是在开挖工作面的前方开始,而在开挖工作面后方距离d=1.5~2.0D(洞径)处的变形才与最大径向变形基本相等,这是隧道开挖引起围岩变形的一般规律.日本龟浦隧道施工时,在隧道拱顶上方2 m 的位置设一个长50 m的水平铝管,实测的弯曲应变计算变形如图2所示.图2 龟浦隧道掌子面变形监测实例Fig.2 The heading face displacement monitoring example of GuiPu Tunnel我国郑西客运专线大断面黄土隧道开挖监测数据分析的规律也大致相同.图3为2006-11—2007-09的实测数据,其中1#~8#分别对应隧道左右导洞及主洞断面上的8个测点.各分步施工引起隧道拱顶沉降占总沉降的比例分别为:超前沉降,5%~14%;导洞开挖,35%~50%;导洞开挖至全断面封闭前,40%~50%;全断面封闭后,3%~9%.可以看出,反映在掌子面前方到后方一定范围内的拱顶下沉分布规律为:隧道开挖后在掌子面前方一定范围(2~5倍洞径)产生下沉,称之为“先行变形”;在掌子面处,产生一定量的“初始变形”,此值与地质条件关系密切,约为最终变形值的20%~30%,这个变形是开挖后瞬间发生的;在掌子面后方,随掌子面的推进,产生不断增大的变形,其特点是初期的变形速度很大,而后增长的速度逐渐减缓,并趋于稳定.其变形过程如图4所示[2].图3 大断面黄土隧道双侧壁导坑法施工拱顶沉降曲线Fig.3 Vault crown settlement curve of both-side head excavating method construction in large section loess tunnel因此,隧道开挖后隧道的变形可分为掌子面前方的先行变形、掌子面变形及掌子面后方变形3种,且这3种变形是同时发生的.图4 隧道开挖围岩变形三维示意图Fig.4 Surrounding rock deformation during tunnel excavation three-dimensional chart2 隧道围岩变形控制要点隧道围岩变形控制的要点在于控制开挖工作面的失稳、坍塌,拱顶的失稳、坍塌,台阶法中拱脚下沉、失稳和围岩大变形等.2.1 控制掌子面失稳、坍塌1)倾斜掌子面.采用倾斜形状的掌子面开挖,配合掌子面喷混凝土封闭措施,可以抑制掌子面的变形,减少作业人员的风险,控制地表的下沉,大幅度改善进度和封闭时间,提高喷混凝土的品质和耐久性.2)掌子面锚杆.设置掌子面锚杆的目的是控制围岩开挖后的先行变形和掌子面变形,也是为全断面和半断面开挖创造条件.掌子面锚杆的长度一般在12~24 m之间,为开挖方便,通常采用玻璃纤维锚杆.采用掌子面锚杆技术的关键是长锚杆的快速施工工艺和配套施工机具.3)留核心土.在台阶法施工中,为了掌子面的稳定,经常采用弧形开挖法,即留核心土法.日本进行的一项研究表明:不留核心土时,掌子面挤出量超过70 mm的部分可达到掌子面前方1.3 m;而留核心土时,掌子面挤出量超过70 mm的部分只达到掌子面前方0.6 m 处.可见核心土对掌子面起到控制挤出的效果.2.2 控制拱顶失稳、坍塌控制拱顶失稳坍塌的技术要点是采用超前支护和加强初期支护.1)超前支护.根据构筑方法,超前支护通常分为短超前支护、中超前支护和长超前支护3种情况.①短超前支护:一般支护长度为2~5 m,通常采用超前小导管、插板法和预衬砌技术;②中超前支护:一般支护长度为5~10 m,通常采用中管棚(直径89 mm,长度10 m)或水平喷射注浆方式;③长钢管超前支护:一般采用长度在15~20 m、直径大于108 mm的长钢管,即大管棚超前支护,以有效控制拱顶失稳、坍塌.2)加强初期支护.加强初期支护通常有两种做法,其一是加大喷混凝土的厚度,加密钢架间距或缩小锚杆间距;其二是改变喷混凝土的性能,提高钢架的规格和采用抗拔力大的锚杆.实践证明,第二种方法更有利于控制拱顶下沉.采用初期高强度喷混凝土技术能减薄喷层厚度,有效加快施工进度,符合技术发展的趋势.2.3 控制拱脚下沉、失稳在台阶法施工中,控制拱脚下沉的方法通常有扩大拱脚、设置锁脚锚杆、临时仰拱封闭和设置横撑等方法.日本近期开发出了利用弯曲钻机,设置弯曲形脚部钢管桩或采用高承载力的脚部支撑钢管来控制钢架的下沉,效果较好,如图5所示.另外,也可用喷射混凝土来加固拱脚,如图6所示.图5 控制隧道拱脚下沉失稳的曲线形钢管桩工法Fig.5 Shaped form pipe pile method for controlling tunnel arch springing subsidence instability图6 控制隧道拱脚下沉失稳的拱脚喷射混凝土工法Fig.6 Shotcrete method for controlling tunnel arch springing subsidence instability2.4 控制软岩大变形通常认为初期变形速率快、变形值大、长时间无收敛趋势,且超过预计变形值的变形,可以称为“大变形”.这种围岩一般为软弱围岩,这种变形也通常被称作“软岩大变形”.控制软岩大变形的方法有:①在喷混凝土中设置伸缩缝来吸收一部分变形;②采用长锚杆(8~15 m)来控制围岩的后期变形;③采用掌子面锚杆控制围岩的先行变形等.这些方法对解决大变形问题起到一定的作用,特别是长锚杆和掌子面锚杆.日本在东海道新干线的饭山隧道(长22.2 km)的大变形地段试验,采用多重支护方法取得了成功.多重支护方法的特点是:不需要进行反复扩挖和反复支护,即没有拆除顶替已经承载的支护构件和对围岩的多次扰动的问题,留出充分的变形富裕值,先释放一部分变形进行第一次支护,然后继续释放变形.第一次支护达到极限状态后,再继续第二次支护,必要时可继续第三次支护,将变形控制在容许范围之内.多重支护的基本观点是:容许一次支护变形,以减轻作用在二次支护的土压,并在最内侧形成健全的壳体,使整个支护稳定.因此,二次支护的设置最好在围岩内应力释放到某一程度后实施.3 隧道围岩变形控制技术3.1 开挖过程控制隧道开挖后,随着时间的推移,变形也在发展.一般说,开挖过后,变形发展很快,即初期变形速度很快,而且变形值也比较大,如果能够控制住初期的变形速度,就可以控制隧道围岩的松弛.因此通常强调开挖后要迅速喷射混凝土,迅速架设钢支撑,其目的就是要求初期支护及时闭合.另外需要关注的是从开挖到初期支护全断面闭合的时间.在复杂地形、地质条件下,从开挖到全断面初期支护的闭合时间,要求越短越好.闭合距离也是越短越好.因为,初期支护全断面闭合的过程,就意味着隧道围岩变形逐渐趋于稳定的过程.而闭合距离,基本上要求在距掌子面2~3倍隧道开挖跨度之内,甚至更短一些.因此,有效控制隧道围岩变形的开挖方法,应该是首选全断面法,其次是短台阶法.总之,开挖分部越少,封闭时间越短,变形就越小.3.2 辅助工法控制以改善围岩条件为目的而采用的辅助或特殊工法称为辅助工法,如图7所示.隧道开挖中最危险的应力释放面是掌子面和一次开挖长度的无支护区间.为了控制其危险度,了解地下水分布状况和掌子面前方围岩的动态是非常重要的.图7 辅助工法概念示意图Fig.7 Assistant construction method concept chart 在隧道围岩变形及控制技术措施中,辅助工法占据重要地位.常用稳定掌子面的辅助工法有:超前锚杆、超前长钢管、掌子面喷混凝土、掌子面锚杆、脚部补强锚杆、临时仰拱等.在地下水处理中常用排水钻孔等工法.在控制地表下沉对策中有:长超前钢管、管棚等.在地下水对策中有:排水钻孔、降低地下水位、排水坑道等工法.4 隧道围岩变形控制建议隧道施工主要分为开挖和支护两大工序,变形控制是开挖和支护中的技术关键点.开挖是应力释放的过程,不同的开挖方法,应力释放的过程及程度也是不同的.支护则是应力控制的过程,不同的支护方法应力控制的过程和程度也是不同的.除开挖、支护作业外,其他作业都是辅助性的,如运输、排水、通风、量测、地质超前预报等.但这些作业也是左右开挖、支护成败的关键,不能忽视.因此,控制隧道围岩变形的关键措施主要指开挖、支护过程中控制围岩变形的措施及必要的辅助作业工法.在隧道施工过程中,开挖和支护是密切相关的,根据围岩地质情况,其关系可大致分为只挖不支、先挖后支和先支后挖3种情况.1)只挖不支,适用于坚硬、自支护能力比较高,应力释放后能够自行控制稳定的围岩,围岩级别为Ⅰ级、Ⅱ级.关键技术:减少爆破振动和少扰动的开挖技术.基本措施建议:控制开挖进尺,控制一次起爆炸药量,采用电子雷管,采用机械开挖或机械与爆破并用的开挖方法.2)先挖后支,适用于一般地质条件,围岩级别为Ⅲ级、Ⅳ级.关键技术:加强初期支护控制围岩的松弛、坍塌,确保开挖工作面的稳定.基本措施建议:采用全断面法或超短台阶法,提高初期支护的支护效果,控制隧道围岩变形的发展和收敛;严格控制各开挖工作面的步距,尽快闭合;提高机械化程度,缩短各单项作业的时间.3)先支后挖,适用于特殊地质、地形条件,一般用于软岩大变形、掌子面或拱脚易失稳、底部鼓起等情况,围岩级别为Ⅴ级、Ⅵ级.关键技术:加强超前预支护,确保开挖工作面稳定,控制围岩松弛、坍塌,提高围岩的自支护能力.基本措施建议:采用掌子面超前锚杆、喷混凝土封闭掌子面、倾斜掌子面或留核心土的施工方法;超前管棚、管幕、插板等超前支护;加强初期支护,采用高强度、高刚度喷混凝土技术;采用锁脚锚杆等控制拱脚下沉.只挖不支的场合主要是控制爆破振动,采取减少围岩扰动的施工方法;先挖后支的场合主要是控制掌子面后方的变形,采取加强初期支护和快速封闭的施工方法;先支后挖的场合重点是控制掌子面前方的变形和掌子面变形,采取超前预支护、掌子面支护和掌子面后方支护,及时封闭的措施和工法.5 结语1)隧道围岩变形包括掌子面前方的先行变形、掌子面变形及掌子面后方的变形,其中掌子面变形是隧道开挖过程围岩变形发展的重要阶段,是隧道围岩变形控制的重点.2)隧道围岩变形控制是隧道围岩稳定性控制的核心,要采取系统的控制措施.既要控制掌子面前方的先行变形,又要控制掌子面和掌子面后方的变形.3)隧道围岩变形控制的要点在于控制开挖工作面失稳、拱顶失稳、拱脚下沉和失稳及围岩大变形等几种形式.4)隧道围岩变形控制重在开挖过程控制和辅助工法控制,其中初期支护及时闭合和合理辅助工法的选取是控制隧道围岩变形的关键.5)隧道开挖和支护相互作用关系可分为只挖不支、先挖后支和先支后挖3种情况,且每种情况有其关键技术和建议的基本措施,在隧道施工过程中,应根据围岩条件和工程特点选定合理的工序.参考文献:[1]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.GUAN Baoshu.Generality of Tunnel Mechanics[M].Chengdu:Southwest Jiaotong University Press,1993.(in Chinese)[2]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.WANG Mengshu.Technology of Shallow Tunnel Excavation[M].Hefei:Anhui Education Press,2004.(inChinese)[3]张顶立,王梦恕,高军,等.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.ZHANG Dingli,WANG Mengshu,GAO Jun,et al.Research on Construction Technology of Large Span Tunnel in Complex Rock[J].Chinese Journal of Rock Mechanics andEngineering,2003,22(2):290-296.(in Chinese)[4]吕勤,张顶立,黄俊.城市地铁暗挖施工地层变形机理及控制实践[J].中国安全科学学报,2003,13(7):29-34.LU Qin,ZHANG Dingli,HUANG Jun.Mechanism of Stratum Deformation and Its Control Practice in Tunneling Urban SubwayAt Shallow Depth[J].China Safety Science Journal,2003,13(7):29-34.(in Chinese)[5]岳广学,何平,蔡炜.隧道开挖过程中地层变形的统计分析[J].岩石力学与工程学报,2007,26(增2):3793-3803.YUE Guangxue,HE Ping,CAI Wei.Statistic Analysis of Stratum Deformation During Tunnel Excavation[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(S2):3793-3803.(in Chinese)。
国家能源局关于印发2011年度软科学研究优秀成果奖
获奖名单的通知
文章属性
•【制定机关】国家能源局
•【公布日期】2012.12.25
•【文号】国能政策[2012]434号
•【施行日期】2012.12.25
•【效力等级】部门规范性文件
•【时效性】现行有效
•【主题分类】基础研究与科研基地
正文
国家能源局关于印发2011年度软科学研究优秀成果奖获奖名
单的通知
(国能政策[2012]434号)
各省(区、市)发改委、能源局,有关行业协会、学会、研究机构、中央管理的能源企业:
国家能源局组织开展了2011年度软科学研究优秀成果奖评选工作,根据《国家能源局软科学研究优秀成果奖奖励办法》(国能政策[2011]268号),经过推荐申报、专家评审、局专题会议审议、公示等程序,评出一等奖2项、二等奖10项、三等奖19项。
现经批准,予以公布。
附件:2011年度国家能源局软科学研究优秀成果奖获奖名单
国家能源局
2012年12月25日附件:
2011年度国家能源局软科学研究优秀成果奖获奖名单。
岩溶地区大断面隧道围岩稳定性及控制技术
无
【期刊名称】《科学技术研究成果公报》
【年(卷),期】2003(000)003
【总页数】1页(P41)
【作者】无
【作者单位】无
【正文语种】中文
【中图分类】U452.12
【相关文献】
1.铁路大断面高瓦斯隧道围岩稳定性及突出风险研究 [J], 刘伟
2.复杂条件超大断面隧道围岩控制技术研究 [J], 孙智;王春河;油新华;孙会彬;李术才;董文祥;牛晋平
3.浅埋特大断面隧道围岩与初支稳定性分析 [J], 于清浩;刘夏冰
4.特大断面浅埋隧道围岩变形控制技术研究 [J], 王子茂;郭红静;李晓军
5.基于隐伏溶洞对大断面隧道围岩稳定性影响分析 [J], 许垒
因版权原因,仅展示原文概要,查看原文内容请购买。
岩溶地区隧道围岩稳定性影响研究作者:***来源:《西部交通科技》2023年第11期摘要:文章为探究岩溶地区修建隧道围岩稳定性的变化规律,采用ANSYS软件建立计算模型,系统研究溶洞位置、溶洞大小、溶洞与隧道间距对隧道各个位置变形的影响规律,得到以下结论:溶洞位于隧道正上方和正下方时拱顶的沉降最小,当溶洞位置与隧道相水平时,隧道拱顶的沉降变形最大;当溶洞位置处于隧道正上方时,隧道底部的隆起变形最小,而当溶洞位置处于隧道正下方时,隧道底部的隆起变形较大,且大于溶洞位于隧道顶部时的隆起变形;当隧道右侧存在溶洞时,隧道左拱腰产生的变形大多为背离隧道的变形,但右拱腰既有背离隧道的变形,又有侵入隧道的变形;随着溶洞与隧道中线夹角的增大,右拱脚变形值呈先增大后减小的趋势,当溶洞位置与隧道相水平时,右拱脚的变形量达到峰值,但溶洞位于隧道右下角时,隧道左拱脚处的变形达到最大值。
研究结果可为岩溶地区隧道的设计及施工提供参考。
关键词:岩溶地貌;交通隧道;ANSYS;围岩稳定性0引言随着我国交通建设事业的蓬勃发展,在西南地区新建了大量的公路及铁路线路来改善西南地区的出行条件。
但西南地区降雨丰沛,多山多河的气候及地质条件使该地区存在大量的岩溶地貌,分布有大量的溶洞,给隧道的修建及日后的运营带来极大的安全隐患。
对于在岩溶地区修建隧道,叶堃等[1]基于玉京山隧道建设中遇到的大型溶洞的研究成果,提出了暗河改道、溶洞回填、桥梁跨越的总体处置措施;袁以堂等[2]通过建模研究发现,加强仰拱衬砌可以有效限制仰拱变形,并能使仰拱的受力更加均匀合理;盖孝乾[3]研究发现,存在溶洞使得地表的沉降显著增大,且当隧道距溶洞距离大于4倍隧道直径时,溶洞的存在并不会对隧道围岩的应力分布产生影响;张晋龙[4]基于弹性理论与数值仿真计算结果发现,可以通过特征值的变化来判定隧道围岩是否稳定;甄映州[5]基于强度折减法对隧道围岩的稳定性进行研究,认为高铁隧道施工应尽量保证与溶洞平行,避免在溶洞下方修建高铁隧道;常洲等[6]研究了溶洞位置对隧道稳定性的影响,认为溶洞的存在对隧道侧部的影响最大,对隧道顶部的影响最小,并根据溶洞与隧道相对位置的不同,对侧部、顶部、底部处的溶洞给出了不同的工程处理建议;于涛[7]通过研究发现在交通荷载作用下,位于隧道侧方的溶洞对隧道稳定性有显著影响,隧道与溶洞边距越小,动荷载下隧道围岩的稳定性越弱;方振华等[8]对成贵铁路中溶洞的处置进行研究,结果表明在岩溶地区修建隧道时,隧道顶板和侧壁的稳定性较差,但隧道地板的稳定性较好。
隧道围岩的稳定性分析与评价隧道是现代交通建设中不可或缺的一部分,而隧道的稳定性对于交通运输的安全性和效率起着至关重要的作用。
因此,对隧道围岩的稳定性进行分析与评价显得至关重要。
本文将从不同的角度对隧道围岩的稳定性进行探讨。
首先,我们需要了解隧道围岩的特点。
隧道围岩是指隧道开挖时所遇到的周围岩石或土层,其特点主要包括力学性质和岩层结构。
力学性质包括岩石的强度、变形特性和破坏模式,而岩层结构则主要涉及岩层的纵向和横向切割裂缝、节理等。
了解这些特点可以为后续的稳定性分析提供基础。
其次,隧道围岩的稳定性分析可采用多种方法。
其中一种常用的方法是数值模拟,通过使用计算机程序模拟隧道开挖过程中的围岩响应,进而评估其稳定性。
这种方法可以考虑多种因素,如地下水位、地应力分布、围岩强度等,从而较为准确地预测隧道的稳定性。
另外,实验模型也是评价隧道围岩稳定性的重要手段。
通过在实验室中制作隧道围岩模型,并施加不同的荷载,可以观察和测量模型的变形和破坏情况,从而获得对真实工程的参考和指导。
接下来,我们需要关注隧道围岩稳定性评价的指标。
常用的评价指标包括围岩的变形和破坏程度、岩体的开挖后裂隙扩展情况以及周围环境对隧道围岩稳定性的影响等。
这些指标可以通过观测和记录岩体的位移、应力、应变、岩石裂隙的发育情况以及地下水位的变化等来评价。
此外,也可以通过进行各种力学实验获得更准确的参数值,从而提高评价的可靠性和准确性。
最后,我们需要考虑隧道围岩的稳定性评价的应用。
首先,对于已经建成的隧道,在设备和材料条件允许的情况下,可以通过监测围岩的稳定性指标,及时发现问题并采取措施进行修复和加固,以确保隧道的安全使用。
其次,对于正在建设中的隧道,稳定性评价可以帮助设计者选择合适的支护措施和参数,并为施工过程中的安全措施提供依据。
最后,对于规划中的隧道项目,稳定性评价可以帮助决策者选择合适的线路,避免潜在的围岩稳定性问题。
综上所述,隧道围岩的稳定性分析与评价对于交通运输的安全和效率至关重要。
隧道围岩稳定分析中Hoek-Brown强度准则的运用姜曦【摘要】Combining with classical rock mass mechanics, the essay analyzes causes of tunnel surrounding rock instability, and shows surrounding rock stability analysis method based on Hoek-Brown strength criterion. Integrating with the engineering cases, it discusses its priority in tunnel surrounding rock analysis, and holds that the method of using Hoek-Brown strength criterion to tell the extension fracture of complete and hard surrounding rock is feasible.%结合经典岩体力学理论分析了隧道围岩失稳的原因,然后提出了基于Hoek-Brown强度准则的围岩稳定分析方法,并且结合工程实例论述了其在隧道围岩分析中运用的优越性,认为用其判别完整坚硬围岩的破裂扩展情况的方法是可行的。
【期刊名称】《山西建筑》【年(卷),期】2011(037)031【总页数】2页(P147-148)【关键词】隧道;围岩稳定;强度准则【作者】姜曦【作者单位】不详【正文语种】中文【中图分类】U451.21 概述目前国内高速公路和高速铁路的大量建设,隧道的使用也越来越广泛。
因此隧道围岩的稳定性分析变得日益重要,因为围岩稳定性分析又是地下工程,尤其是隧道工程设计、施工中的重要环节,直接影响着工程的安全性和经济合理性。
同时,围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关。
隧道围岩动力稳定性研究与时间序列建模分析的开
题报告
主题:隧道围岩动力稳定性研究与时间序列建模分析
一、研究背景
隧道施工是建设交通、水利、能源等各类工程的必要组成部分,而隧道稳定性是隧道建设中一个重要的问题。
隧道围岩固结沉降、地压变形、结构变形、破坏等问题,严重影响隧道的使用寿命和安全性能。
因此,研究隧道围岩动力稳定性并采取合理措施进行预测和防护,对于保证隧道的长期稳定和安全具有极其重要的意义。
时间序列建模分析是隧道围岩动力稳定性预测和防护的一种有效方法。
时间序列建模分析是将信号随时间变化的情况建立数学模型,然后利用该模型对信号的未来走势进行预测。
时间序列建模分析在多个领域得到广泛应用,是一种高效、准确的分析方法。
在隧道围岩动力稳定性分析中也是如此。
二、研究内容
1. 隧道围岩动力稳定性分析
通过实际调查和理论分析,对隧道的地质条件、围岩类型、围岩破坏形式、围岩变形程度等进行深入研究,以确定其稳定性。
采用数学模型对隧道工程的力学特性进行分析,预测与评估隧道围岩的稳定性及其发展趋势,为隧道施工提供依据和建议。
2. 时间序列建模分析
采用相应的时间序列分析方法,对隧道围岩动力变化规律进行建模研究,预测隧道围岩的变化趋势及其影响。
通过分析时间序列的变化特点,探究其变化原因及规律,为隧道围岩动力稳定性的预测和防护提供科学的理论依据。
三、研究意义
该研究能够深入探究隧道围岩的动力稳定性问题,在建设过程中提出优化设计、施工技术和防护措施,有助于确保隧道长期稳定和安全。
同时,通过时间序列建模分析,对隧道围岩动力变化趋势进行预测,更好地指导工程实践。
分析影响隧道围岩稳定性因素习小华摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。
关键词:围岩稳定性;天然应力状态;地质构造毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。
从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。
但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。
因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。
1 岩石性质及岩体的结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。
如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。
这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。
如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。