真核生物基因转录水平的反式调控
- 格式:pdf
- 大小:5.67 MB
- 文档页数:41
真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。
但是,最经济、最主要的调控环节仍然是在转录水平上。
(一)DNA水平的调控DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。
这一类的调控机制包括基因的扩增、重排或化学修饰。
其中有些改变是可逆的。
1、基因剂量与基因扩增细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。
例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。
组蛋白基因是基因剂量效应的一个典型实例。
为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。
基因剂量也可经基因扩增临时增加。
两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。
核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。
所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。
卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。
在基因扩增后,rRNA基因拷贝数高达2×106。
这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。
在基因扩增之前,这500个rRNA基因以串联方式排列。
在发生扩增的3周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。
这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。
目前对这种基因扩增的机制并不清楚。
在某些情况下,基因扩增发生在异常的细胞中。
例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。
有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。
《分子生物学》试卷(基因表达的调控) ( 课程代码)班级姓名学号名词解释 (每小题﹡分,共﹡分)1.基因表达( gene expression )2.启动子( promoter )3.多顺反子( polycistron )4.操纵子( operon )5.单顺反子( monocistron )6.顺式作用元件( cis-acting element )7. 核心启动子( core promoter )8.上游启动子元件( upstream promoter element, UPE )9. 增强子( enhancer )10. 沉默子( silencer )11.反式作用因子( trans-acting factor )12.转录因子( transcription factor, TF )13.锌指结构( zinc finger structure )14.同源结构域( homeodomain, HD )15.碱性亮氨酸拉链( basic leucine zipper, bLZ )16.转录活化结构域( transcription activation domain )17.选择性剪接( alternative splicing )18.核不均一性RNA( heterogeneous nuclear RNA, hnRNA )二、单项选择题 (从下列各题所给备选答案中选出一个正确的答案,并将其序号填在题干后的括号内。
1.下列哪项是属于乳糖操纵子的转录调控序列( C )A.ZB. YC. OD. AE. CAP2.有关真核基因转录调控的反式作用因子描述不正确的是 ( C )A.包括基本和特异性转录因子B. 通常含有DNA结合结构域C. 基因组上一段DNA序列D. 通常还有与其它蛋白结合的结构域E. 含有转录活化域3.下列哪项不属于真核基因转录调控的顺式作用元件 ( D )A. 启动子B. 增强子C. TATA 盒D. 一种RNAE. 沉默子4.有关基因表达描述错误的是( A )A.其过程总是经历基因转录及翻译的过程B.某些基因表达经历基因转录及翻译等过程C.某些基因表达产物是蛋白质分子D.某些基因表达产物不是蛋白质分子E.某些基因表达产物是RNA分子5.关于管家基因叙述错误的是( C )A.在生物个体的几乎所有细胞中持续表达B.在生物个体的几乎各生长阶段持续表达C.在一个物种的几乎所有个体中持续表达D.在生物个体的某一生长阶段持续表达E.在生物个体全生命过程的几乎所有细胞中表达6.大多数基因表达调控的最基本环节是( C)A. 复制水平B. 转录水平C.转录起始水平D.转录后加工水平E.翻译水平7.当培养基内色氨酸浓度较大时,色氨酸操纵子处于( B )A.诱导表达B.阻遏表达C.基本表达D.组成表达E.协调表达8•顺式作用元件是指(E)A.基因的5侧翼序列B.基因的3侧翼序列C.基因的5、3侧翼序列D.基因5、3侧翼序列以外的序列E.具有转录调节功能的特异DNA^列10.一个操纵子通常含有(B )A.—个启动序列和一个编码基因B.—个启动序列和数个编码基因C.数个启动序列和一个编码基因D.数个启动序列和数个编码基因E.两个启动序列和数个编码基因11.反式作用因子是指(D )A.具有激活功能的调节蛋白B.具有抑制功能的调节蛋白C.对自身基因具有表达调控的蛋白D.对另一基因具有表达调控的蛋白E.对另一基因具有功能的调节蛋白12.乳糖操纵子的直接诱导剂是(E )A. β -半乳糖昔酶B.透酶C.葡萄糖D.乳糖E.别乳糖13.阻遏蛋白结合乳糖操纵子的(B )A、P序列B、O序列C、CAP结合位点D、I基因E、Z基因14.乳糖操纵子的阻遏蛋白是由(D )A > 2基因编码B > 丫基因编码C、A基因编码D> I基因编码E >以上都不是15.对大多数基因来说,CPG序列甲基化(A)A、抑制基因转录B、促进基因转录C、与基因转录无关D、对基因转录影响不大E、以上都不是16.大肠杆菌转录启动子-10区的核昔酸序列称为(E )A.TATA 盒B.CAAT 盒C.增强子D.调节子E.PribnOW 盒17.别乳糖对乳糖操纵子的作用是(C )A.作为阻遏物结合于操纵基因B.作为辅阻遏物结合于阻遏蛋白C.使阻遏蛋白变构而不能结合DNAD.抑制阻遏基因的转录E.使RNA聚合酶变构而活化18.有关操纵子学说的正确论述是(B)A.操纵子调控系统是真核生物基因调控的主要方式B.操纵子调控系统是原核生物基因调控的主要方式C.操纵子调控系统由结构基因、启动子和操纵基因组成D.诱导物与操纵基因结合启动转录E.诱导物与启动子结合而启动转录19.属于反式作用因子的是(E )A.启动子B.增强子C.终止子D. RNA聚合酶E.转录因子20.乳糖操纵子上Z、Y、A基因产物是(B)A.脱氢酶、黄素酶、COQB.半乳糖昔酶、渗透酶、硫代半乳糖昔乙酰转移酶C.乳糖还原酶、乳糖合成酶、别构酶D.葡萄糖-6-磷酸酶、变位酶、醛缩酶E.乳糖酶、乳糖磷酸化酶、激酶21.RNA聚合酶结合于操纵子的(E)A.结构基因起始区B.阻遏物基因C.诱导物D.阻遏物E.启动子22.诱导乳糖操纵子转录的物质是(D)A.果糖B.葡萄糖C.阿拉伯糖D.别乳糖E.AMP21.CAMP对转录的调控作用是通过(C)A.CAMP转变为CAPB.CAP转变为CAMPC.形成CAMP-CAF<合物D.葡萄糖分解活跃,使CAMRt曽加,促进乳糖利用来扩充能源E.CAMP是激素作用的第二信使,与转录无关22.增强子是(D )A.特异性高的转录调控因子B.真核生物细胞内的组蛋白C.原核生物的启动子在真核生物中的别称D.增强启动子转录活性的DNA序列E.在结构基因的5'-端的DNA序列23.下列哪些不是操纵子的组成部分(A)A.阻遏蛋白B.启动子C.操纵基因D.结构基因E.PribnOW 盒24.转录前起始复合物是指(C)A.RNA聚合酶与TATAA時列结合B.RNA聚合酶与TATA序列结合C.各种转录因子与DNA模板、RNM合酶结合D.σ因子与RN碟合酶结合E.阻遏物变构后脱离操纵基因复合物25.下述关于管家基因表达的描述最确切的是(B)A.在生物个体的所有细胞中表达B.在生物个体生命全过程几乎所有细胞中持续表达C.在生物个体生命全过程部分细胞中持续表达D.特定环境下,在生物个体生命全过程几乎所有细胞中持续表达E.特定环境下,在生物个体生命全过程部分细胞中持续表达。
真核生物3'UTR的转录后水平调控及其与肿瘤的关系康南;王宇;王颖;毛伊雯;燕太强;沈丹华【摘要】真核生物3'非翻译区(3'untranslated regions,3'UTR)在转录后水平调控中起到重要作用,它参与调控mRNA的体内稳定性及降解速率,控制mRNA的利用效率,还决定mRNA的翻译位点及翻译效率,调控mRNA细胞内运输及胞质定位等多种代谢过程.3'UTR既可以与microRNAs或者RNA结合蛋白相互作用来反式调控基因的表达,从而阻止mRNA的翻译或直接降解靶mRNA,同时3'UTR也可以作为独立存在的RNA分子发挥功能,近年来通过对肿瘤全基因组相关研究发现突变发生在3'UTR或与microRNA结合区会破坏细胞内的调控机制,从而影响肿瘤的发生发展,使3'UTR成为目前研究热点,并使其有望成为肿瘤诊断和治疗的新标志物甚至药物靶点.【期刊名称】《医学研究杂志》【年(卷),期】2019(048)002【总页数】4页(P8-11)【关键词】真核生物;3'非翻译区;mRNA代谢;独立分子;突变;肿瘤【作者】康南;王宇;王颖;毛伊雯;燕太强;沈丹华【作者单位】100044 北京大学人民医院病理科;100021 中国医学科学院肿瘤医院分子肿瘤学国家重点实验室;100044 北京大学人民医院病理科;100044 北京大学人民医院病理科;100044 北京大学人民医院病理科;100044 北京大学人民医院病理科【正文语种】中文【中图分类】R34真核生物3′非翻译区(3′untranslated regions,3′UTR)即非翻译区,是指mRNA 分子两端的非编码片段,研究发现,许多mRNA的调控元件存在于5′UTR及3′UTR中,5′UTR主要起始调控mRNA翻译,3′UTR调控mRNA的多种代谢,包括出核、胞质定位、翻译效率及mRNA稳定性等[1]。
原核、真核生物基因及表达调控引言现代生物学中“基因”一词甚为流行,细胞学、遗传学、生物化学等,以及各种生物学课本中,都涉及到“基因”一词。
甚至象典型的宏观生物学科——生态学,也把一片森林称为一个“基因库”[1]。
现代生物学已经完全证明,DNA 分子是由称为核普酸的有机分子线性聚合而成。
基因就是核普酸按一定顺序排列而成的DNA分子片段,它携带着遗传信息。
基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。
其实质就是遗传信息的转录和翻译。
在个体生长发育过程中,生物遗传信息的表达按一定的时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)[2]。
原核生物和真核生物的基因及表达过程有着差异。
随着世界分子生物学研究不断深入,基因表达技术有了很大的提高。
迄今为止,人们已经研究开发出多种原核和真核表达系统用以生产重组蛋白[3]。
一.原核、真核生物基因结构原核生物基因分为编码区与非编码区,所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,非编码区位于编码区的上游及下游。
[4]在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。
RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。
真核生物基因结构见图1:图1 真核生物基因结构二.原核、真核生物基因结构的区别最主要的在于真核基因是不连续的,而原核基因是连续的。
所谓真核基因的不连续,即一个基因的编码序列也叫外显子,被一个或多个非编码序列,又叫内含子所间隔。
[5]这些内含子和外显子同属一个转录单位,转录形成前体。
经过转录的加工,即切去内含子,重新连按外显子,从而得到成熟。
而绝大多数的原核基因是连续的,没有内含子的间隔,转录产生成熟。
不仅如此,而且凡在代谢途径上功能有关的多个基因可能紧密相联,与它们的调控基因一起组成一个操纵子,转录到一条链。
基因genes:基因是负责编码RNA或一条多肽链的DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。
是决定遗传性状的功能单位。
结构基因structure genes:基因中编码RNA或蛋白质的DNA序列称为结构基因。
基因组genome:一个细胞或病毒的全部遗传信息。
(细胞或生物体的一套完整单倍体的遗传物质的总和。
)真核生物基因组是指一套完整单倍体DNA(染色体DNA)和线粒体DNA的全部序列,包括编码序列和非编码序列。
GT-AG法则:真核生物基因的外显子与内含子接头处都有一段高度保守的一致性序列,即:内含子5’端大多数是以GT开始,3’端大多是以AG结束。
端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。
该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。
端粒DNA由重复序列组成,人类端粒一端是TTAGGG 另一端是AATCCC.操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位。
所转录的RNA为多顺反子。
操纵元件:是一段能够被不同基因表达调控蛋白质识别和结合的DNA序列,是决定基因表达效率的关键元件。
顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。
包括启动子、上游启动子元件、增强子、反应元件和poly(A)加尾信号。
反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。
启动子:是能够被RNA聚合酶特异性识别并与其结合并开始转录的核苷酸序列。
(TATAbox、CAATbox、GCbox)增强子enhancer:是一段短的DNA序列,其中含有多个作用元件,可以特异性地与转录因子结合,增强基因的转录活性。
它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。
真核生物反式作用元件真核生物反式作用元件(cis-regulatory elements)是一类在真核生物基因组DNA中具有调控功能的序列,主要用于调控基因的转录水平。
它们位于基因的上游区域,可以增强或抑制基因转录,以实现特定时间和空间上的基因表达。
本文将介绍真核生物反式作用元件的分类和功能,以及它们在生物体发育和适应中的重要作用。
真核生物反式作用元件主要包括启动子(promoter)、增强子(enhancer)、终止子(terminator)和转录抑制子(silencer)等几种类型。
启动子位于基因的上游区域,介导RNA聚合酶II的结合和基因的转录起始。
它通常包括核心启动子(core promoter)和邻近启动子(proximal promoter)两个部分。
核心启动子包含转录起始位点(transcription start site),用于招募转录因子和RNA聚合酶II的结合。
邻近启动子则包括一系列调节序列,如TATA盒(TATA box)、CCAAT盒等,用于招募其他转录因子。
增强子位于基因的上游或下游区域,可以远距离调控基因的转录。
它们可以与核心启动子和邻近启动子形成DNA环状结构,使得转录因子和RNA聚合酶II得以合作。
增强子通常包括多个转录结合位点(transcription factor binding sites),用于招募转录因子。
它们可以通过转录因子的结合与其他反式作用元件相互作用,形成复杂的调控网络。
增强子的位置和数量对基因表达的调控程度有重要影响。
近年来的研究发现,多个增强子可以同时调控一个基因,形成动态、时间和空间上的基因表达模式。
终止子位于基因的下游区域,用于标记转录终止位点。
它能够与RNA 聚合酶II和RNA剪接复合体相互作用,实现基因转录的终止。
终止子通常包括多个序列元件,如多聚腺苷酸(polyadenylation signal)和剪接位点(splicing sites)。
之老阳三干创作
::,,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性真核基因转录起始需要基础特异两类转录因子依赖DNA-蛋白质、蛋白质-蛋白质相互作用转录出多顺反子RNA
实现协调调节真核基因转录产品为单顺反子RNA功能相关蛋白的协调表达机制更为复杂。
真核生物基因表达调控的环节主要在转录水平其次是翻译水平。
原核生物基因以把持子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可呵护不被酶水解mRNA 的5’端与核糖体结合可明显提高稳定性)、翻译产品及小分子RNA的调控作用。
真核生物基因表达的调控环节较多在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA 的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录真核生物基因表达需要转录因子、启动子、沉默子和增强子。
葡萄糖存在乳糖不存在此时无诱导剂。
第六章真核基因表达调控一、名词解释1.管家基因(housekeeping gene)2.可调节基因(regulated gene)3.顺式作用元件(cis-acting element)4.反式作用因子(trans-acting factors ) /转录因子(transcription factor, TF )5.基础转录因子(basal/general transcription factor)6.特异转录因子(special transcription factor)7.增强子9.锌指(zinc finger)结构10.亮氨酸拉链(leucine zipper)结构11.增强子12.基因表达13.RNAi14.miRNA15.SiRNA二、选择题1.关于基因表达调控的说法错误的是( )..A.转录起始是调控基因表达的关键B.环境因素影响管家基因的表达C.在发育分化和适应环境上有重要意义D.表现为基因表达的时间特异性和空间特异性E.真核生物的基因表达调控较原核生物复杂的多2.下列哪项属于可调节基因( )A.组蛋白编码基因B. 5s rRNA编码基因C.异柠檬酸脱氢酶编码基因D. 肌动蛋白编码基因E. 血红蛋白编码基因3.下列哪种染色质结构的变化不利于基因表达( ).A.组蛋白乙酰化B.核小体解聚C. CpG岛甲基化D.基因扩增E.染色质结构松散,对DNA酶I敏感4.下列哪项不属于真核生物基因的顺式作用元件( ).A.激素反应元件B.衰减子C.启动子D.沉默子E.增强子5.与RNA聚合酶相识别和结合的DNA片段是()A.增强子B.衰减子C.沉默子D.操纵子E.启动子6.下列哪项不参与调控真核细胞基因的特异性表达( ).A.反应元件B.特异转录因子C.增强子D.基础转录因子E.沉默子7.与原核生物相比较,真核生物的基因表达调控包括多个层次,下列哪项不是其调控复.杂性特有的分子基础( )A. 含有重复序列B. 断裂基因C. 转录与翻译分离D. 细胞内被膜性结构分隔形成多个区域E. 染色质结构8.能够与基础转录因子结合的是( )A.上游启动子元件B. TATA boxC.增强子D.反应元件E. Pribnow box9.有关基础转录因子的叙述,正确的是( )A.与非转录核心序列相结合B.决定基因表达的特异性C.其种类和数量在不同组织中差别很大D.辅助RNA聚合酶结合启动子E.在原核生物中的种类比真核生物少10.不属于特异转录因子的是( ).A. TF II DB. HSFC. APID.类固醇激素受体E. NF-K B11.关于特异转录因子的说法,正确的是( )A.调控管家基因的表达B.仅通过蛋白质一蛋白质相互作用进行调控C.仅通过DNA一蛋白质相互作用进行调控D.仅通过RNA一蛋白质相互作用进行调控E.起转录激活或者转录抑制作用12.锌指结构可能存在于下列哪种物质中( )A.阻遏蛋白B. RNA聚合酶C.转录因子D.端粒酶E.核酶13.下列哪种氨基酸在转录因子的转录激活结构域中含量丰富( )A. LysB. ArgC. AspD. HisE. Trp14.下列哪种因素不会影响真核细胞中mRNA的稳定性().A. 5'端帽子B. siRNAC. poly A尾D.去稳定元件E. miRNA15.小干扰RNA调节基因表达的机制是()A.封闭mRNA上的核蛋白体结合位点B.特异性降解靶mRNAC.形成局部双链,抑制靶mRNA的模板活性D. 使翻译出的蛋白质进入泛素化降解途径E.使翻译提早终止16.eIF-2对翻译起始具有重要的调控作用,下列哪项是它的活性形式()A.磷酸化B.脱乙酰化C.乙酰化D.脱磷酸化E. ADP-核糖基化17.不影响真核生物翻译起始的因素是( ).A. eIFB.帽子结合蛋白C. RNA编辑D. mRNA非翻译区的二级结构E. miRNA18.生物体在不同发育阶段,蛋白质的表达谱也相应变化,这主要取决于A.转录调控元件的差异B.翻译调控元件的差异C.基础转录因子的差异D. 特异转录因子的差异E. 翻译起始因子的差异19.下列哪项不是可调节基因的特点( ).A.组织特异性B.阶段特异性C.时间特异性D.空间特异性E.组成性表达20.下列哪一项是真核生物可调节基因的表达调控特有的机制( )A.基础转录因子B.衰减子C. RNA聚合酶D.增强子E.阻遏蛋白21.基础转录因子属于DNA结合蛋白,它们能够()A.结合转录核心元件B.结合增强子C.结合5’端非翻译区D. 结合3'端非翻译区E. 结合内含子22.特异转录因子不能够( ).A.结合RNA聚合酶B.结合基础转录因子C.结合其他特异转录因子D. 结合转录非核心元件E. 结合沉默子23.基因特异性表达的根本机制是( )A.顺式作用元件的种类不同B. RNA聚合酶活性的差异C.基础转录因子的质和量的差异D.特异转录因子的质和量的差异E.表达产物后加工过程的差异24.下列哪一类分子常具有亮氨酸拉链的结构特征( )A.生长因子B.酪氨酸蛋白激酶受体C. G蛋白D. 转录因子E. 丝/苏氨酸蛋白激酶25.管家基因的转录受哪些因素控制A. 基础转录因子B. 增强子C. 特异转录因子D. 启动子E. 反应元件26.真核生物的基因表达调控表现在A.转录水平B.翻译水平C.染色质水平D.转录后加工E.翻译后加工27.真核生物中,影响RNA聚合酶转录活性的因素包括A.启动子B.增强子C.基础转录因子D.衰减子E.特异转录因子28.真核生物基因表达的空间特异性的机制包括A.特异转录因子的种类不同B.同种特异转录因子的浓度不同C.特定组织的基因中存在组织特异性启动子D.特异转录因子的排列组合不同E.增强子等调控元件在不同组织的基因中分布不同29.转录因子的DNA结合结构域包含哪些结构类型A.螺旋一片层一螺旋B.锌指C.螺旋一转角一螺旋D.亮氨酸拉链E.螺旋一环一螺旋30.与siRNA相比较,miRNA的显著特点是A.单链B.在转录后水平发挥作用C.与靶mRNA碱基互补D.不降解靶mRNAE.个别碱基与靶mRNA序列不完全匹配31.转录因子的作用机制包括A. DNA—DNA相互作用B. DNA—RNA相互作用C. DNA一蛋白质相互作用D. RNA一蛋白质相互作用E.蛋白质一蛋白质相互作用32.真核生物的基因转录涉及哪些物质的相互作用A. operatorB. cis-acting elementC. polysomeD. trans-acting factorE. RNA polymerase33.在同一个体的不同组织中A.基因的表达谱不同B.基因组结构不同C.特异转录因子的种类不同D.存在的蛋白质的种类不同E.特异性启动子的种类不同34.真核生物独有的转录调控机制涉及A.启动子B.增强子C.转录因子D.组蛋白E. SD序列35.生物对环境的适应性表现在A.基因变异B.合成不同种类的mRNAC.合成不同种类的蛋白质D. 产物的反馈抑制E. 蛋白质活性的快速调节36.下列哪些情况对于真核生物的基因转录具有调控作用A.反式作用因子的磷酸化B.类固醇激素与胞内受体结合C.特定DNA序列的甲基化D.组蛋白的乙酰化E.蛋白质因子的羟基化37.管家基因的含义是A.在各组织细胞中都表达B.在特定的组织细胞中表达C. 在不同发育阶段都表达D. 在特定的发育阶段表达E.表达程度在不同时空条件下差异显著38.关于特异转录因子的描述,正确的是A.在所有组织细胞中组成性表达B.在不同组织细胞中存在的种类不同C. 在不同组织细胞中的浓度不同D. 调控管家基因的转录E.是真核生物基因表达特异性的根源所在三、简答题1.简述顺式作用元件与反式作用因子对基因表达调控的影响。
1、增强子:能提高转录起始效率的序列被成为增强子或强化子。
增强子可位于转录起始点的5’或3’末端,而且一般与所调控的靶基因的距离无关。
2、C值反常:也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然联系,某些较低等的生物C值却很大,如一些两栖动物的C 值甚至比哺乳动物还大。
3、DNA重组技术:又称基因工程,将不同的DNA片段(如某个基因或基因的一部分)按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。
4、基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。
5、SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
根据首次识别其功能意义的科学家命名。
6、核酶:是一类具有催化活性的RNA分子,通过催化靶位点RNA链中的磷酸二酯键的断裂,特异性的剪切底物RNA分子,从而阻断基因的表达。
7、RNA干扰:是利用双链小RNA高效、特异性降解细胞内同源mRNA,从而阻断体内靶基因表达,使细胞出现靶基因缺失表型的方法。
8、反式作用因子:是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。
9、操纵子:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。
10、基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器中的DNA。
11、cDNA文库:真核生物基因组DNA非常庞大,而且含有大量重复序列,无论用电泳分离技术还是用杂交方法都难以直接分离到靶基因片段。
为了较快地分离到相关基因,通过反转录mRNA得到的cDNA不含冗余序列,通过特异性探针筛选的cDNA构成的cDNA文库。
真核生物基因表达调控第十章作业1. 简述真核生物基因表达调控的7个层次。
①染色体和染色质水平上的结构变化与基因活化②转录水平上的调控,包括基因的开与关,转录效率的高与低③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。
④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制⑦对mRNA选择性降解的调控2. 真核基因表达调控与原核生物相比有何异同?相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要;②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。
不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。
②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。
③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。
④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。
3. DNA 甲基化对基因表达的调控机制。
甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA 构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。
DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。
真核生物基因的转录调控方式细胞中转录调控是真核生物基因表达的重要环节,它能使每个基因起到预期的功能。
真核生物基因的转录调控主要有以下几类:一、前体RNA调控1. 终止核糖体调控。
终止核糖体结合蛋白在前体RNA的3'末端可以抑制RNA启动子的功能,从而阻止mRNA的生成和翻译,实现终止的作用。
2. 内源性核小体调控。
除了内源性核小体对前体RNA的调控,其还和终止核糖体及非终止核糖体形成复合物,在前体mRNA的转录前期,延长mRNA的保留时间,促进表达蛋白的合成。
3. 干扰素调控。
干扰素是一种由 RNA 结构构成的多肽,可以和 mRNA 或其前体结合,实现调控效果,从而对 mRNA 的合成起到调节作用。
二、转录因子调控1. 单钩螺旋蛋白调控。
这类蛋白在细胞内以巨噬细胞因子的形式表现出来,可以直接结合 DNA,起到调控基因组的作用。
2. 二聚体蛋白调控。
二聚体蛋白可以将 DNA 上的高等水平信息转化为转录因子和 DNA 直接相互作用,从而调控基因组的表达。
3. 转录因子激活。
转录因子可以通过多种化学反应产生激活,从而激活该基因的转录和转录调控因子本身的转录,从而调控基因表达。
三、转录起始调控1. 启动子调控。
启动子位于 DNA 前体或基因的 5' 末端,可以与转录因子结合,影响RNA合成和翻译的起始,并调节其强度。
2. 增强子调控。
增强子是RNA调控的另一种重要机制,它可以将转录因子和 DNA 结合,从而促进转录的开始和调节的强度。
3. 转录抑制子调控。
转录抑制子是一种抑制基因表达的调控机制,它可以限制转录启动子的激活,从而达到抑制基因表达的作用。
以上就是真核生物基因转录调控的几类方式。
转录调控在真核生物细胞起到了重要的作用,其不仅可以影响基因的转录,而且还能影响基因表达的开始、中止和转录水平,从而控制机体中蛋白质的数量、形态和功能,对人类健康和疾病的发病机制和治疗具有重要的借鉴意义。