真核生物的基因转录及调控
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图真核生物基因表达中可能的调控环节)。
但是,最经济、最主要的调控环节仍然是在转录水平上。
(一)DNA水平的调控DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达。
这一类的调控机制包括基因的扩增、重排或化学修饰。
其中有些改变是可逆的。
1、基因剂量与基因扩增细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同。
例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍。
组蛋白基因是基因剂量效应的一个典型实例。
为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝。
基因剂量也可经基因扩增临时增加。
两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体。
核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要。
所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍。
卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA)。
在基因扩增后,rRNA基因拷贝数高达2×106。
这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要。
在基因扩增之前,这500个rRNA基因以串联方式排列。
在发生扩增的3周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目。
这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物。
目前对这种基因扩增的机制并不清楚。
在某些情况下,基因扩增发生在异常的细胞中。
例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控。
有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关。
真核生物基因的转录过程和调控方
式
真核生物基因的转录过程是指将DNA作为模板,通过RNA聚合酶识别和复制DNA序列并转换成mRNA,从而实现基因信息从DNA到RNA的传递。
真核生物基因的调控方式包括:
1、剪接调控:DNA的剪接可以改变基因的表达,这是由DNA片段的延伸或切断决定的。
2、启动子调控:启动子位于基因上游,它可以调节RNA聚合酶对该基因的转录程度。
一般来说,调控元件如转录因子结合到启动子位点,能够使基因的转录更加有效。
3、调控元件调控:调控元件可以结合到基因的启动子位点,从而改变其转录水平,也可以结合到基因的终止子,从而影响到基因的表达量。
4、miRNA调控:miRNA是一种小RNA分子,它可以与mRNA的3'UTR结合,影响mRNA的翻译或降解。
真核生物基因表达调控的机制
真核生物基因表达调控的机制
真核生物中的基因表达调控是一个复杂而且受多种影响的过程,其机制也极为复杂,主要包括以下七个方面。
一、基因结构调控
基因的结构调控可以通过改变基因的翻译或者转录起始点,改变基因的拷贝数量,改变基因的外显子结构等,从而调节基因表达。
这种机制也称为“结构调控”。
二、编码序列调控
基因编码序列可以用来调节基因表达。
包括基因内部的种类多样性,基因突变等,都会影响基因编码序列,从而影响基因表达。
三、转录因子调控
转录因子可以调节基因转录的开始时间,结束时间,影响基因转录的效率,从而影响基因表达。
四、mRNA加工调控
当mRNA处于加工过程中,其加工过程也会受到调控,这种调控会影响mRNA的翻译效率,从而影响基因的表达。
五、mRNA翻译调控
翻译调控是一种比较常见的调控机制,它可通过影响mRNA的结构、翻译初始效率以及翻译开始时间来调节基因的表达。
六、蛋白质稳定性调控
蛋白质稳定性的调控是指通过改变蛋白质的稳定性,来影响基因
的表达。
七、基因激活与抑制
基因激活与抑制是指通过外界影响,改变激活因子或者抑制因子的表达,来影响基因表达。
以上就是真核生物基因表达调控的七个机制,同时,也是基因组学研究中需要重点关注的重要机制。
第二节真核基因转录水平的调控一、真核生物的RNA聚合酶有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。
二、真核基因顺式作用元件(一)、顺式作用元件概念指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。
(二)、种类启动子、增强子、静止子1、启动子的结构和功能启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。
但真核同启动子间不像原核那样有明显共同一致的序列。
而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。
RNA聚合酶Ⅱ启动子结构1)TATA框(TATA frame):其一致顺序为TATAA(TAA(T。
TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。
对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。
TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。
2)CAAT框(CAAT frame):位置在-75附近,一致序列为GGC(TCAATCT。
CAAT框可能控制着转录起始的频率。
(3)GC框在-90bp左右的GGGCGG序列称为GC框。
一个在-30—+15即核心启动子(core promoter element,另一为上游启动子区(upstream promoter element在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。
基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子2、增强子的结构和功能增强子(enhancer):又称为远上游序列(far upstream sequence 。
它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。
真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。
真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。
2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。
转录调控包括转录因子的结合和调节,以及染色质状态的改变。
转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。
它们可以增强或抑制基因的转录,从而影响基因表达。
3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。
这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。
这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。
4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。
染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。
常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。
5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。
这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。
它们可以影响基因的转录后处理和调控基因表达的多样性。
综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。
原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。
真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
②原核基因表达调控主要为负调控,真核主要为正调控。
③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。
④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。
⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。
原核生物基因以操纵子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。
真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。
真核生物基因表达调控的层次
真核生物的基因表达调控是一个复杂的过程,涉及到多个层次。
其中,最基本的层次是DNA的转录和RNA的翻译,但这仅仅是整个调控过程的开始。
下面是真核生物基因表达调控的层次:
1. DNA水平的调控:DNA序列本身可以影响基因表达的水平,比如启动子区域和转录因子结合位点的存在与否会影响基因的转录率。
2. 转录后的调控:转录后的RNA还需要经过修饰和加工,比如剪切、剪接和聚合酶2的磷酸化等过程,这些过程会影响RNA的转运和翻译。
3. RNA水平的调控:包括RNA稳定性的调节、RNA转运和RNA的局部化等,这些都会影响RNA的生命期、在细胞内的位置和RNA对翻译的影响。
4. 翻译水平的调控:包括翻译速率的调节、翻译后修饰、蛋白质复合物的组装等,这些都会影响蛋白质的产生和功能。
5. 蛋白质水平的调控:包括蛋白质的定位、蛋白质的修饰和蛋白质的降解等,这些都会影响蛋白质的功能和稳定性。
总之,真核生物基因表达调控的层次非常多,每个层次都有其独特的调节机制和生物学意义。
了解这些层次的调控可以更深入地理解基因表达的复杂性和多样性。
- 1 -。
真核生物基因的转录调控方式细胞中转录调控是真核生物基因表达的重要环节,它能使每个基因起到预期的功能。
真核生物基因的转录调控主要有以下几类:一、前体RNA调控1. 终止核糖体调控。
终止核糖体结合蛋白在前体RNA的3'末端可以抑制RNA启动子的功能,从而阻止mRNA的生成和翻译,实现终止的作用。
2. 内源性核小体调控。
除了内源性核小体对前体RNA的调控,其还和终止核糖体及非终止核糖体形成复合物,在前体mRNA的转录前期,延长mRNA的保留时间,促进表达蛋白的合成。
3. 干扰素调控。
干扰素是一种由 RNA 结构构成的多肽,可以和 mRNA 或其前体结合,实现调控效果,从而对 mRNA 的合成起到调节作用。
二、转录因子调控1. 单钩螺旋蛋白调控。
这类蛋白在细胞内以巨噬细胞因子的形式表现出来,可以直接结合 DNA,起到调控基因组的作用。
2. 二聚体蛋白调控。
二聚体蛋白可以将 DNA 上的高等水平信息转化为转录因子和 DNA 直接相互作用,从而调控基因组的表达。
3. 转录因子激活。
转录因子可以通过多种化学反应产生激活,从而激活该基因的转录和转录调控因子本身的转录,从而调控基因表达。
三、转录起始调控1. 启动子调控。
启动子位于 DNA 前体或基因的 5' 末端,可以与转录因子结合,影响RNA合成和翻译的起始,并调节其强度。
2. 增强子调控。
增强子是RNA调控的另一种重要机制,它可以将转录因子和 DNA 结合,从而促进转录的开始和调节的强度。
3. 转录抑制子调控。
转录抑制子是一种抑制基因表达的调控机制,它可以限制转录启动子的激活,从而达到抑制基因表达的作用。
以上就是真核生物基因转录调控的几类方式。
转录调控在真核生物细胞起到了重要的作用,其不仅可以影响基因的转录,而且还能影响基因表达的开始、中止和转录水平,从而控制机体中蛋白质的数量、形态和功能,对人类健康和疾病的发病机制和治疗具有重要的借鉴意义。
真核生物转录调控的研究进展一、概述真核生物转录调控是分子生物学领域的前沿课题,对于理解生物体基因表达调控机制、揭示生命活动规律具有重要意义。
转录调控作为基因表达过程中的关键环节,其复杂性和动态性使得研究者们不断深入挖掘其内在机制。
在真核生物中,转录过程受到多层次、多因素的精细调控。
这包括顺式作用元件与反式作用因子之间的相互作用,以及转录复合物在启动子区域的组装和调控。
顺式作用元件是DNA序列中的特定区域,能够识别并结合反式作用因子,从而调控转录的起始和效率。
反式作用因子则是一类能够调控基因转录的蛋白质,包括转录因子、辅助因子等。
随着高通量测序、染色质免疫沉淀、生物信息学等技术的发展,人们对真核生物转录调控的认识不断深化。
越来越多的转录因子、顺式作用元件以及它们之间的相互作用被揭示,为我们理解转录调控的复杂性和动态性提供了有力支持。
研究者们还发现了一些新的转录调控机制,如长非编码RNA、转录后修饰等,这些新发现为转录调控研究提供了新的视角和思路。
真核生物转录调控的研究仍面临诸多挑战。
转录调控网络的复杂性使得我们难以全面理解其工作原理;不同组织、不同发育阶段以及不同环境条件下的转录调控机制可能存在差异,这使得研究更加复杂和困难。
未来真核生物转录调控的研究需要更加深入地探索其内在机制,并结合实际应用,为疾病治疗、生物育种等领域提供新的思路和方法。
1. 真核生物转录调控的重要性真核生物转录调控是生命活动中至关重要的一个环节,它决定了基因表达的时间、地点和程度,进而影响了生物体的生长、发育和代谢等各个方面。
在真核生物中,基因表达的调控主要发生在转录水平,通过转录因子、辅助因子和RNA聚合酶等复杂的相互作用来实现。
深入研究真核生物转录调控机制,不仅有助于我们理解生命活动的本质,也为疾病的治疗和生物技术的应用提供了重要的理论基础。
真核生物转录调控在发育过程中起着关键作用。
在生物体的发育过程中,不同组织和器官的形成需要特定基因的精确表达。
真核生物基因表达调控的特点及主要调控环节真核生物基因表达调控是一个复杂而精密的系统,涉及到多种调控机制和调控环节。
通过这些调控机制和环节,真核生物能够在不同的细胞类型和不同的发育阶段中表达特定的基因,从而实现细胞功能的多样化和分化。
下面我们将详细介绍真核生物基因表达调控的特点以及主要调控环节。
首先,真核生物基因表达调控具有高度的精细性和特异性。
在真核生物细胞中,每个细胞都包含着相同的基因组,但不同细胞类型和组织会表达不同的基因。
这种差异性主要是通过转录调控来实现的,即通过对特定基因的转录进行调控,使得只有需要的基因在特定的时间和空间表达。
这种精细性和特异性的调控是真核生物细胞功能多样化和分化的重要基础。
其次,真核生物基因表达调控涉及多种调控机制和调控因子。
在真核生物细胞中,基因表达的调控是一个复杂的过程,需要多种调控机制和调控因子的参与。
其中,转录因子是最为重要的调控因子之一,它们可以结合到基因的启动子区域,促进或抑制该基因的转录。
此外,还有一些非编码RNA、表观遗传学修饰等调控机制也在基因表达调控中扮演着重要角色。
这些调控机制和调控因子相互作用,共同调控着基因的表达。
另外,真核生物基因表达调控还存在着复杂的信号传导网络。
在细胞内部,存在着多种信号通路和信号分子,它们可以感知外界环境的变化,并将这些信息传递给细胞核,从而影响基因的表达。
这些信号传导网络可以通过激活或抑制转录因子的活性,改变基因的表达水平。
通过这种方式,细胞可以根据外界环境的变化做出相应的调整,保持内部稳态。
综上所述,真核生物基因表达调控具有高度的精细性和特异性,涉及多种调控机制和调控因子,以及复杂的信号传导网络。
这些特点和调控环节共同构成了真核生物基因表达调控系统的核心。
通过深入研究这些调控机制和调控环节,可以更好地理解细胞功能的多样化和分化过程,为疾病的治疗和生命科学研究提供重要的理论基础。
8 真核生物的基因转录及调控一选择题(单选或多选)1锌指蛋白与锌的结合 ( )(a)是共价的(b)必须有DNA的存在(c)通过保守的恍氨酸和组氨酸残基间协调进行(d)位于蛋白质的妒螺旋区域2锌指蛋白与DNA的结合( )(a)位于DNA大沟(b) 通过"锌指"的C端进行(c)利用蛋白的α-螺旋区域(d)每个"指"通过形成两个序列特异的DNA接触位点(e)通过"指"中保守的氨基酸同DNA结合3 甾醇类受体转录因子( )(a)结合的激素都是相同的(b) 与DNA的结合不具序列特异性(c)与锌结合的保守序列不同于锌指蛋白"(d)通过第二"指"C端的氨基酸形成二聚体(e)参与转录激活,与DNA和激素结合分别由不同的结构域完成 4糖皮质激素类的甾醇受体( )(b)所结合的DNA回文序列都不相同(c)结合的回文序列相同,但组成回文序列两段DNA间的序列不同(d)RXR受体通过形成异源二聚体后与同向重复序列结合(e)这类受体存在于细胞核中5 同源异型域蛋白( )(a)形成具有三个α-螺旋的结构(b) 主要通过α-螺旋3和N端的臂与DNA接触(c)与原核生物螺旋-转角-螺旋蛋白(如λ阻遏物)的结构很相似(d)通常存在于细胞核中(e)在果蝇早期发育调控中起重要作用6 HLH蛋白( )(a)在序列组成上与原核生物螺旋-转角-螺旋蛋白具有相关性(b)向通过环区与DNA结合(c)形成两个α-螺旋与DNA的大沟结合(d)形成两性螺旋,其中疏水残基位于螺旋的一侧(e)以上都不是7 bHLH蛋白( )(a)在环中含有保守的碱性氨基酸(b) 不能形成同源二聚体(c)非诱导表达(d)通过它们碱性区与HLH相互作用(e)只有与HLH形成异源二聚体后才与DNA结合(f)以上都不是8 以下关于亮氨酸拉链蛋白的叙述哪一项是正确的?( )(a)它们通过保守的亮氨酸残基与DNA结合(b)它们与HLH蛋白相似之处是:它们都具有相邻的DNA结合结构域和二聚化的结构域(c)Jun蛋白可以形成同源二聚体而Fos蛋白不可以(d)Fos/Jun复合物与Jun/Jun复合物结合的DNA序列不同(e)Fos/Jun与DNA的结合比Jun/Jun牢固9选出所有正确的选项:( )(a)基因必须经过完全的甲基化才能表达(b) 具有活性的DNA是非甲基化的(c)随着发育阶段的改变,DNA的甲基化也要发生变化(d)在DNA复制过程中,通过识别半甲基化的酶,甲基化得以保存10下列哪些转录因子含有TBP?( )(a)TFⅡB (b)TFⅢA (c)SLl (d)TFⅡD (e)TFⅢB (f)UBF1 11下列哪些转录因子是装配因子?( )(a)SPl (b)TFⅢB (c) TFⅡH (d)以上都不是12以下关于TBP的陈述哪些是正确的?( )(a)TBP诱导DNA发生弯曲(b)TBP结合于DNA双螺旋的大沟(c)TBP通过与不同的蛋白结合来识别不同的启动子(d)TBP与聚合酶Ⅰ、聚合酶Ⅰ和聚合酶Ⅲ的共同亚基作用13.TATA框存在于( )(a)聚合酶Ⅱ识别的所有启动子中(b)聚合酶Ⅱ识别的大部分启动子中(c)聚合酶Ⅱ识别的极少数启动子申(d)聚合酶Ⅲ识别的所有启动子中(e)聚合酶Ⅲ识别的大部分启动子中(f)聚合酶Ⅲ识别的极少数启动子中14.RNA聚合酶Ⅱ的C端结构域(CTD)的磷酸化与( )相关(a)与起始前复合体的结合(b)TFⅡH的激酶活性(c)TFⅡD 中特异TAF蛋白的存在(d)从起始聚合酶到延伸聚合酶的转换(e)起始因子TFⅡA,TFⅡB及TFⅡD的释放15下列哪个(些)情况能解释为什么一些基因在它们的转录因子存在时并不总是处于活性状态?( )(a)转录因子结合位点的邻近序列(b)有其他蛋白的结合(c)转录因子结合位点的染色质结构状态(d)缺少共激活蛋白(e)以上都是二、判断题1 真核细胞中的RNA聚合酶仅在细胞核中有活性。
2 在RNA的合成过程中,RNA链沿3'→5'方向延长。
3 候选三磷酸核苷通过对生长中 RNA链的α磷酸的亲和攻击加到链上。
4 核不均一RNA是mRNA和 rRNA的前体而不是tRNA的前体。
5 密码子AUG专门mRNA分子编码区的终止作用。
6 Trna fMet的反密码子是TAC。
7 RNA 聚合酶能以两个方向同启动子结合,并启动相邻基因的转录。
但是,模板链的选择由另外的蛋白因子确定。
8 细菌细胞用一种RNA 聚合酶转录所有的RNA,而真核细胞则有三种不同的RNA聚合酶。
"9 转录因子具有独立的DNA结合和转录激活结构域。
10每个转录因子结合位点被单个转录因子识别。
11纠正下列一段话中的错误:在E.coli中,通过RNA 聚合酶同操纵基因的结合来起始转录。
与转录起点碱基互补的 dNTP 同δ亚基结合,然后是第二个dNTP 通过与第一个dNTIP形成2'→5'磷酸二酯键而结合上。
当生成的RNA链约有 12个核苷酸长度时,β’亚基脱离 DNA 聚合酶,RNA 链在全酶的作用下继续延伸。
当 DNA 聚合酶在 RNA链上遇到终止密码子时,转录作用停止。
三简答题1一个tRNA 基因的启动子序列突变将会分别对 (1)基因产物和 (2)细胞或生物体的表型有什么影响?2列举原核生物同真核生物转录的差异。
3增强子具有哪些特点?4哪些转录因子含有 TBP?为什么它们被称为定位因子?请用一个模型解释为什么所有三种RNA聚合酶都能与TBP发生作用?5 什么是转录起始前复合体?6 RNA聚合酶Ⅲ的内部启动子位于起始位点下游50个核苷酸的位置,它是如何被定位并正确起始转录的?7 对带有内部启动子的RNA聚合酶Ⅲ基因有什么样的编码限制因素?8当一段活性转录DNA受损时,模板首先被修复。
请用一个模型解释这一现象。
9 真核生物中,基因的表达受不同水平的调控,请列举其中3种。
10甾醇类转录因子与锌指蛋白类转录因子的区别是什么?11亮氨酸拉链蛋白所识别的DNA有何特点?如何理解亮氨酸拉链转录因子的二聚体结构同识别位点的关系?12 虽然同源异型蛋白与锌指蛋白差别很大,但是它们识别DNA序列的结构元件相似的,这个元件是什么?13协同控制(coordinate control)下的基因是如何被同时激活的?14列出调控转录因子被激活的7种途径,并各举一例。
15许多转录因子是细胞原癌基因的产物,为什么突变的转录因子可能导致癌变?16转录因子能够与装配成核小体的DNA序列结合吗?17有两个模型可以解释染色质中的基因是如何被转录的。
优先模型(Preemnptive model)中,转录因子和RNA聚合酶是如何与启动子结合的?为什么在动态模型中需要ATP?18为什么酵母SWI与SNF基因的突变会影响不同靶基因的转录?19一般认为,染色体中具有多个调控基因表达的结构域。
每个结构域中可以找到那些功能位点,它们的作用如何?20 MyoD是一种bHLH蛋白,对肌肉细胞的发育很重要,它的活性是如何被调控的?21酵母U6 sRNA基因有一个TATA盒位于上游,在基因内有一个弱的A盒,基因下游的远端还有一个保守的B盒。
体外实验时,RNA聚合酶Ⅱ和Ⅲ都可以转录这个基因,但体内实验发现只有RNA聚合酶Ⅲ可以转录它。
如何确定该基因启动子的聚合酶特异性?22举例说明单链核酸中形成茎环结构的重要性。
23用负超螺旋环状DNA样品进行体外转录实验。
但是预实验中并没有获得满意的结果,试讨论改迸实验的可行方法。
24 组蛋白H2A基因在所有细胞中都进行表达,而免疫球蛋白基因只在淋巴样细胞中表达。
两类基因的启动子都含有转录因子Oct-l的结合位点,Oct-l也存在于这两类细胞中,但为什么免疫球蛋白只在淋巴样细胞中表达?25 RNA聚合酶Ⅱ起始转录后,起始复合物必须转变为延伸复合物。
因此聚合酶复合物必须解旋一小段DNA。
在线性DNA上,解旋需要ATP,TFⅡE,TFⅡH和解旋酶活性。
然而,超螺旋DNA的转录并不需要这些因子。
请解释这一现象。
26 RNA聚合酶Ⅲ特异性地转录小分子RNA,但为什么不转录5.8SrRNA?四分析题2 TFⅢA是5SrRNA基因表达所需的转录因子,这个蛋白含有9个锌指结构域,与5SrRNA基因内的一段序列和5SrRNA本身结合。
(1)如何定位TFTA蛋白的DNA结合位点?(2)什么样的突变可以证明锌指是DNA结合所需的?(3)有人发现TFⅢAC端缺失19个氨基酸后与DNA结合的能力与野生型一样,但是不能激活5SrRNA基因的转录,请解释原因。
(4)Xenopus的卵母细胞中合成并贮存了大量的5SrRNA,随着5SrRNA的积累,TFInnA与之结合,这对5SRNA基因的转录有何影响?调控这个过程的机制是什么?4 为什么被RNA聚合酶Ⅲ识别的启动子不常见?5什么是增强子?它们与其他调控序列有何不同?6 在酵母中,上游激活序列是如何调控半乳糖基因的表达?。