原花青素提取方法的研究进展
- 格式:docx
- 大小:27.27 KB
- 文档页数:5
原花青素的提取和对美容的作用【摘要】原花青素(Procyanidins,PC)是从多种植物中提取的一类物质。
具有多种生物活性,是一种很强的抗氧化剂,能清除自由基抑制脂质过氧化发生,PC的低聚体发挥了重要作用。
它对皮肤有很好的保护作用,主要是因为原花青素具有抗氧化、改善皮肤过敏、美容养颜、祛斑的作用。
本作品主要是在已知方法的基础上探求更简便、高效的方法来提取葡萄糖中的原花青素,提高原料利用率,减少资源浪费。
并且研究其对美容的作用。
【关键词】原花青素高效抗氧化保护美容0引言原花青素(Procyanidins,PC)是植物王国中广泛存在的一大类多酚类化合物的总称,起初统归于缩合鞣质或黄烷醇类,随着分离鉴定技术的提高和对此类物质的深入研究与深刻认识,现已成为独树一帜的一大类物质并称之为原花青素。
原花青素主要分布在葡萄、银杏、大黄、山楂、小连翘、花旗松、日本罗汉柏、白桦树、野草莓、海岸松、甘薯等植物中,但研究发现葡萄籽提取物中原花青素的含量最高。
20世纪80年代以来,人们对数十种植物的原花青素低聚体和高聚体进行了生物、药理活性的研究,发现原花青素是一种很强的抗氧化剂,其具有的特殊抗氧活性和清除自由基的能力为其在化妆品领域中的应用开辟了广阔前景,在化妆品领域有很大的发展空间和前景。
1原花青素的结构原花青素(Proanthocyanidins,简称PC)是植物王国中广泛存在的一大类多酚化合物的总称。
原花青素在自然界中广泛存在,人们对它的研究已有30多年的历史,几十年来,在涉及的众多植物中,葡萄中的花青素具有含量高、原料成本低的优势。
1961年,德国Kralf 的等人从山楂新鲜果实的乙醇提取物中首次分解出两种多酚化合物,1967年,美国Jsolyn M.A等人又从葡萄皮和葡萄籽提取物中分离出4中多酚化合物,他们得到的多酚化合物在酸性介质中加热均可产生花青素。
早在50年代,法国科学家就发现可以在松树皮中提取大量的原花青素,其提取物中可含85%的原花青素。
葡萄籽中原花青素的提取工艺研究摘要:本文初步研究了葡萄籽中原花青素溶剂提取工艺,考察了溶剂种类、溶剂浓度、提取时间、提取温度、料液比等因素对原花青素提取量的影响,最终确立最佳提取条件:溶剂为乙醇(乙醇浓度为60%),提取时间为50min,提取温度为60℃,料液比为1:6。
关键词:葡萄籽;原花青素;溶剂提取中图分类号:ts2644文献标识码:a基金项目:吉林省教育厅“十一五”科学技术研究项目(项目编号:吉教科合字[2010]第517号)葡萄是日常生活中非常常见的水果,可以直接使用,但绝大部分作为酿酒原料,而酿酒后的葡萄籽多被作为工业废渣弃去,这不仅浪费资源而且污染环境。
研究发现,葡萄籽中富含原花青素。
花青素具有抗氧化、抗突变、抗癌细胞等多种生物活性。
原花青素是一种可供选择的、极好的保健品原料,此外还具有抗辐射、抗疲劳,改善记忆力等作用。
本文初步探索有关葡萄籽中原花青素的溶剂提取方法,研究了最佳溶剂提取条件,为下步分离提纯提供理论依据。
1材料与方法11材料巨丰葡萄籽;原花青素,无水乙醇、乙酸乙酯、丙酮、甲醇、三氯甲烷、水均为分析纯。
12设备食品粉碎机,北京环亚天元机械技术有限公司;722紫外可见分光光度计,上海悦丰仪器仪表有限公司;电子天平,上海卓精bsm —2100;恒温水浴锅,广州威德玛环境仪器有限公司;85-2数显恒温磁力搅拌器;紫花牌循环水真空泵;飞鸽牌系列离心机。
13试验方法131标准曲线的绘制分别取原花青素标准液100、200、300、400、5 00ml于10ml刻度试管中,加入无水乙醇定容至10ml,塞紧后充分摇匀,制得浓度分别为104、208、312、416、52 0ug/ml的标准系列溶液。
在500nm处以无水乙醇作空白调零扣除背景值,测定标准系列溶液吸光值a,并绘制原花青素浓度-吸光值标准曲线。
溶液中原花青素浓度在104~520ug/ml范围内,与吸光值a呈线性关系,其回归方程式为a=3612c-0032,相关系数r=09991。
.综述.原花青素对心血管疾病防治作用的研究进展"秦启杰'综述,张震文2#,彭晓明2审校(1兰州市第一人民医院神经内科,甘肃兰州730000&.甘肃中医药大学附属医院脑病科,甘肃兰州730000)[摘要]随着经济的快速发展和人4生活水平的提高,心血管疾病已成为全球范6内导致人类死亡的首要危险因素,给O 者、家人及社会造成了严重的经济负担,生活质量严重下0。
原花青素是一种天然多酚类化合物,是由不同数量的表儿茶素、儿茶素缩合而成的聚合物,原花青素具有保护血管、抗动脉粥样硬化、抗炎、抗氧化、清除氧自由基、抗血小板凝集、0脂、0压等作用,可通过多种机制对心血管疾病进行调控,从而0低心血管疾病发生率”因B,原花青素对心血管疾病的预防和{疗作用越来越受到重视。
该文主要对原花青素治疗心血管疾病及相关疾病的研究进展进行了简要综述。
[关键词]原花青素类;心血管疾病;动脉粥样硬化;心肌再灌注损伤;高血压;糖尿病;肥胖症;综述DOI:10.3969/j.issn.1009-5519.202101019中图法分类号:R54;R282.71文章编号:1009-5519(2021)01-0072-04文献标识码:A心血管疾病(CVD)约占全球死亡人数的1/3[1]#是威胁人类生命健康的重大疾病。
在世界范围内CVD患病率及病死率均呈逐年上升趋势。
据不完全统计,全球CVD导致的死亡人数由1990年的1259万增至2015年的1792万$世界卫生组织预计,全球CVD死亡人数在2030年将增至2220万$ 2012—2013年CVD和卒中占卫生总支出的14%,高于任何主要诊断组4$全球CVD发病趋势不容乐观,给患者家庭及社会带来极大危害$CVD已成为世界医疗卫生事业的重大难题$目前,用于CVD治疗的临床药物存在疗效欠佳或依存性不好问题,新药研制迫在眉睫$原花青素是一类黄酮类化合物,广泛存在于植物的皮、壳、籽、核%花、叶中,葡萄籽中原花青素含量最高&'$BOWSER 等&'研究表明,原花青素中富含黄烷醇,黄烷醇是由许多单体组成的化合物,如儿茶素、表儿茶素、楮酸表儿茶素等,其低聚物和聚合物被称为原花青素。
花青素的研究进展及其应用一、本文概述花青素是一类广泛存在于自然界中的天然色素,因其独特的色彩和生物活性,在食品、医药、化妆品等多个领域具有广泛的应用前景。
近年来,随着科学技术的不断发展,花青素的研究逐渐深入,其在抗氧化、抗炎、抗肿瘤等方面的生物活性得到了广泛关注。
本文旨在综述花青素的研究进展,包括其提取工艺、生物活性、作用机制等方面的最新研究成果,同时探讨花青素在各个领域的应用现状及其未来发展趋势。
通过本文的阐述,旨在为花青素的研究与应用提供全面的参考,为相关领域的研究者和从业人员提供有价值的指导和帮助。
二、花青素的结构与性质花青素是一类广泛存在于自然界中的天然色素,其化学结构属于黄酮类化合物,主要存在于植物的花、果实、茎和叶等部位。
花青素的基本结构是由两个苯环通过一个吡喃环连接而成,呈现出独特的蓝色或紫色。
这些色彩不仅使植物呈现出五彩斑斓的外观,而且赋予了植物诸多生物活性。
花青素的主要性质包括其稳定性、水溶性以及抗氧化性等。
花青素在水溶液中呈现鲜艳的色泽,且其颜色随pH值的变化而变化,这一特性使其在食品工业中具有广泛的应用前景。
花青素具有较强的抗氧化性,能够有效清除体内的自由基,从而起到延缓衰老、预防疾病的作用。
在结构上,花青素具有多种类型,如黄酮醇、黄酮、黄烷酮等,不同类型的花青素在结构和性质上存在一定的差异。
这些差异使得花青素在生物活性方面表现出多样性,如抗炎、抗癌、抗心血管疾病等。
花青素的结构与性质使其成为一类具有重要研究价值的天然色素。
通过深入研究花青素的结构与性质,不仅可以揭示其在植物生长发育和逆境响应中的生物学功能,还可以为花青素在食品、医药等领域的应用提供理论依据和技术支持。
三、花青素的提取与分离花青素作为一类具有丰富生物活性的天然色素,其提取与分离技术在近年来得到了广泛的研究与发展。
花青素的提取主要依赖于其溶于有机溶剂的特性,常用的提取方法包括溶剂提取法、超声波辅助提取法、微波辅助提取法以及超临界流体萃取法等。
原花青素提取方法的研究进展【摘要】原花青素是一种具有重要生理活性的多酚类化合物。
本文综述了天然原花青素的提取方法,其中包括有机溶剂提取、微波提取、超声波提取、超临界CO2萃取以及酶法等,以期为开发利用原花青素提供依据。
【关键词】原花青素;提取方法;研究进展原花青素(简称PC)是植物界中广泛存在的一大类多酚类化合物。
植物化学家通常将从植物中分离得到的一切无色的、在无机酸存在和加热处理下能产生红色的花青素(Cyanidin)的一类多酚化合物统称为原花青素。
许多研究表明,原花青素是清除自由基很强的抗氧化剂,其抗氧化、清除自由基的能力是VE的50倍、VC的20倍,它能防治80多种因自由基引起的疾病,包括心脏病、关节炎等,还具有改善人体微循环功能。
目前,原花青素已广泛应用于食品、药品、化妆品等领域。
全世界对原花青素的研究越来越深入,其中对原花青素提取方法的研究是一大重点。
原花青素传统的提取方法是有机溶剂提取法,但这种方法存在着对有效成分损失大、周期长、工序多、提取率不高等缺点,因此近10年来,在植物有效成分的提取方面出现了许多新技术、新方法,如超临界CO2萃取技术、超声波提取技术、微波萃取技术以及酶解技术等。
现将原花青素提取方法综述如下。
1原花青素的分类及分布原花青素是一大类多酚化合物的总称,起初统称归于缩合鞣质或黄烷醇类。
最简单的原花青素是儿茶素、表儿茶素或儿茶素与表儿茶素形成的二聚体。
此外,还有三聚体、四聚体等直至十聚体。
按聚合度的大小,通常将二~四聚体称为低聚体(ProcyanidolicOligomers,简称OPC),将五聚体以上的称为高聚体(ProcyanidolicPolymers,简称PPC)。
OPC为水溶性物质(PPC水溶性较差)、极易吸收;OPC消除自由基的能力与分子结构、聚合度有关。
二聚体中,因两个单体的构象或键合位置的不同,可有多种异构体,易分离鉴定的8种结构形式分别命名为B1~B8,其中,B1~B4是由C4~C8键合,B5~B8是由C4~C6键合。
原花青素生物活性的研究进展摘要: 原花青素是一种广泛存在于植物中的多酚化合物。
原花青素有很强的生物活性,如抗氧化活性、防治心血管疾病、抗癌、抗高血压、降血脂、降血糖等,已广泛应用于食品、药品、化妆品等领域。
本文将对其生理活性进行综述。
关键词: 原花青素; 生物活性;原花青素是一种由黄烷-3- 醇单体缩合而成的聚多酚类物质, 因在酸性介质中加热可产生相应的花色素而得名[1~2]。
原花青素是极具发展前景的天然植物提取物,在植物界中广泛存在, 对它的研究已有几十年的历史,国内外研究均证实其具有优越的抗氧化活性、酶抑制活性、血管保护活性、抗炎活性、抗辐射及抗肿瘤活性等。
原花青素的生物活性强、自然来源丰富、可通过饮食摄取,对人体健康和疾病防治有重要作用。
1 抗氧化活性原花青素含有多个酚性羟基,在体内被氧化后释放出H+ ,它能竞争性地与自由基及氧化物结合,从而保护脂质不被氧化,阻断自由基链式反应[3]。
原花青素具有极强的抗氧化活性,是一种良好的氧游离基清除剂和脂质过氧化抑制剂,具有很强的抗氧化活性和自由基清除功能[4]。
实验证实原花青素及其代谢产物的自由基清除活性一般强于VC和VE[5]。
高峰等[6]证实原花青素可使人血清丙二醛(malondialdehyde,MDA)含量下降4.80%,超氧化物歧化酶(superoxide dismutase,SOD)活力升高2.31%,谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活力升高2.45%,并且能显著降低CCl4中毒小鼠肝脂质过氧化损伤,表明原花青素具有较强的抗氧化活性。
2 防治心血管疾病2.1 抗心肌缺血再灌注损伤研究表明,原花青素能显著降低室性心动过速和心室颤动的发生率和持续时间,同时显著降低血清谷草转氨酶( GOT)的释放,还可保护心肌组织中GSH-Px 的活性;减少心肌梗死时心肌细胞磷酸肌酸激酶和乳酸脱氢酶的释放,减少心肌梗死的面积,促进缺血再灌注后心脏收缩功能的恢复,且能显著增加Na + -K + -ATPa1 亚基的表达,对缺血再灌注后的心肌具有保护作用[8]。
原花青素的研究进展原花青素是一种天然生物活性物质,在植物中广泛分布。
近年来,原花青素因其独特的化学组成和多种生物活性而备受。
本文将综述原花青素的研究现状、研究方法及未来研究方向。
一、原花青素概述原花青素(Proanthocyanidins,简称PAs)是天然酚类化合物中的一种,由不同数量的儿茶素或表儿茶素通过C-C键连接而成。
原花青素在植物中主要分布于种子、果实、花瓣和叶片等部位,具有抗氧化、抗炎、抗肿瘤、降血脂等多种生物活性。
二、原花青素的研究现状随着人们对原花青素的度不断提高,其研究已经涉及多个领域。
目前,研究者们主要原花青素的抗氧化、抗炎、抗肿瘤等生物活性。
研究表明,原花青素能够清除自由基、抑制脂质过氧化,具有明显的抗氧化作用。
此外,原花青素还具有明显的抗炎作用,能够抑制炎症因子的表达,减轻炎症反应。
抗肿瘤方面,原花青素能够抑制癌细胞增殖、诱导癌细胞凋亡,对多种癌症具有治疗和预防作用。
三、原花青素的研究方法原花青素的提取方法有多种,包括溶剂提取法、微波辅助提取法、超声波辅助提取法等。
其中,溶剂提取法是最常用的方法,以乙醇、甲醇等有机溶剂为主。
原花青素的分离方法包括高速逆流色谱、高效液相色谱等。
对于原花青素的结构测定,常用的方法有核磁共振、质谱等。
另外,为了明确原花青素的生物活性,研究者们还采用了细胞生物学、分子生物学等技术手段。
四、结论与展望原花青素作为一种天然活性物质,具有抗氧化、抗炎、抗肿瘤等多重生物活性,在预防和治疗多种疾病方面具有潜在的应用价值。
然而,目前关于原花青素的研究仍然存在一些不足之处,如提取纯度不高、体内代谢机制不明等问题。
未来研究方向之一是优化原花青素的提取纯度和方法,以提高其在实践中的应用效果。
另外,深入研究原花青素的体内代谢机制和生物活性也是非常重要的方向,有助于揭示其作用机理和实际应用效果。
同时,开展原花青素的构效关系研究,明确其作用的关键结构和活性基团,对于发现新的原花青素类药物和功能食品具有重要意义。
原花青素的研究进展原花青素是一种由黄烷-3-醇单体缩合而成的天然生物类黄酮物质,是一种聚多酚类的化合物,在自然界中分布广泛,其生物活性极强。
本文主要从原花青素的化学结构、生物活性、分析方法及应用等方面的进行介绍,系统地为原花青素下一步的研究及应用提供思路和参考。
标签:原花青素;化学结构;生物活性;分析方法;应用原花青素(procyanidins),又名缩合鞣质,缩合单宁,是花青素类物质的缩合物,主要存在于蔬菜、花卉及水果的果核及果皮中。
原花青素具有极强的生物活性,目前已广泛应用于食品、药品和保健品等领域里。
本文主要从原花青素的化学结构、生物活性、分析方法及应用等方面的进行介绍,系统地为原花青素下一步的研究及应用提供思路和参考。
1.原花青素的化学结构原花青素是一种由黄烷-3-醇单体缩合而成的天然生物类黄酮物质,是一种聚多酚类的化合物。
根据原花青素的聚合程度可分为单倍体、寡聚体和多聚体。
其中单倍体是构成原花青素最基本的结构单元,常见的原花青素单倍体有:儿茶素、表儿茶素、表没食子儿茶素、表阿夫儿茶精,其化学结构见图1。
寡聚体是由2-10个单倍体聚合而成的,该成分为原花青素中研究最多的一类。
多聚体由10个以上的单倍体聚合而成,一般以混合物的形式存在。
2.原花青素的生物活性2.1抗氧化活性原花青素具有极强的抗氧化和清除自由基活性,其作用机制是原花青素的分子结构中的多个酚羟基释放出H+,竞争性地和自由基结合从而保证机体不被氧化。
其自由基清除活性远高于同等含量的维生素C和维生素E,是人类目前发现的活性最强的自由基清除剂之一。
2.2抗肿瘤活性原花青素是通过抗氧化、抗炎、调节信号分子的表达促进肿瘤细胞凋亡、阻滞细胞周期生长来达到抗肿瘤目的的。
原花青素对于多种肿瘤细胞都具有显著的杀伤作用,对于多种致癌剂在启动及促癌阶段都具有显著的抑制作用。
原花青素可有效促进癌细胞的凋亡并提高机体免疫的作用,有研究证明了原花青素可以诱导人类乳癌细胞的凋亡。
原花青素的资源及研究进展张小军1夏春镗1*吴建铭1谢正荣2(1.同济大学生命科学与技术学院上海 200092;2.昆山市农业局 215300)摘要:原花青素是花青素类物质的缩合物,从不同资源制备的原花青素其组分与结构各不相同,功能也有差异。
本文从分类学角度分析了原花青素资源的分布,并对其中的一些重要资源进行评价和分析,为新的原花青素资源的探索提供了方向,并为原花青素的开发提供参考。
关键词:原花青素;分类学;资源;收率;分布Research and Progress of ProanthocyanidinXiaojun Zhang1Chuntang Xia1*Jianming Wu1Zhengrong Xie2(1.School of Life Science and Technology,Tongji University,Shanghai,200092,China;2.Department ofAgriculture,Kunshan City,215300,China)Abstract:Proanthocyanidin could be seen as the polymer of cyanidin.There are different polymerization degree and molecular structure of proanthocyanidins, and therefore different biological functions in different resources. Our research analysis the distribution of proanthocyanidin resources by the manner of taxonomy. Evaluation for some important resources of proanthocyanidin could be provided as reference for the research and development of proanthocyanidin.Key words:proanthocyanidin;taxonomy;resources;yield; distribution原花青素(proanthocyanidin,PC)可视作花青素(cyanidin)类物质的聚合物,因其在加热的状态下能产生红色的花青素而得名,是一类在植物界广泛存在的多酚化合物。
生研1002班姚远学号:2010001225葡萄籽中原花青素(OPC)的提取与纯化一、原花青素简介原花青素是一种水溶性色素,可以随着细胞液的酸碱改变颜色。
细胞液呈酸性则偏红,细胞液呈碱性则偏蓝。
花青素(Anthocyanins)是构成花瓣和果实颜色的主要色素之一。
花青素为植物二级代谢产物,在生理上扮演重要的角色。
花瓣和果实的颜色可吸引动物进行授粉和种子传播。
常见于花、果实的组织中及茎叶的表皮细胞与下表皮层。
花青素属于酚类化合物中的类黄酮类(Flavonoids)。
基本结构包含二个苯环,并由3碳的单位连结(C6-C3-C6)。
花青素经由苯基丙酸路径和类黄酮生合成途径生成,由许多酵素调控催化。
以天竺葵色素(Pelargonidin)、矢车菊素(Cyanidin)、花翠素(Delphinidin)、芍药花苷配基(Peonidin)、矮牵牛苷配基(Petunidin)及锦葵色素(Malvidin)六种非配醣体(Aglycone)为主。
花青素因所带羟基数(-OH)、甲基化(Methylation)、醣基化(Glycosylation)数目、醣种类和连接位置等因素而呈现不同颜色。
[9]颜色的表现因生化环境条件的改变,如受花青素浓度、共色作用、液胞中pH値的影响(Clifford)。
橙色和黄色是胡萝卜素的作用。
1910年在胡萝卜中发现了β-胡萝卜素,以后共发现另外2种胡萝卜素异构体,分别是:α、β、γ三种异构体。
1958年β-胡萝卜素获得专利,目前主要从海洋中提取,也可人工合成。
[1]食品中几种重要花青素的结构自然界有超过300种不同的花青素。
他们来源于不同种水果和蔬菜如紫甘薯、越橘、酸果蔓、蓝莓、葡萄、接骨木红、黑加仑、紫胡罗卜和红甘蓝、颜色从红到蓝。
这些花青素主要包含飞燕草素(Delchindin)、矢车菊素(Cyanidin)、牵牛花色素(Petunidin)、芍药花色素(Peonidin)。
花青素颜色随PH值发生变化,从当PH值为3时的覆盆子红到当PH值为5时的深蓝莓红。
原花青素的研究进展发表时间:2012-08-24T15:42:40.247Z 来源:《心理医生》2011年12第205期供稿作者:罗珊赵雅宁李建民[导读] 原花青素的强抗氧化活性、酶抑制性、细胞保护作用和维生素E再生作用,在抗衰老等一系列领域得到青睐。
罗珊赵雅宁李建民(河北联合大学护理与康复学院063000)【中图分类号】Q946.83+6【文献标识码】A【文章编号】1007-8231(2011)12-2252-02 原花青素(proanthocyanidins,PC)是一大类多酚类化合物的总称。
PC在植物界中广泛存在,主要存在于松树、葡萄、可可、苹果等植物中,但葡萄中原花青素的纯度和含量较高。
近年来国外许多国家对多种植物尤其是葡萄中的各种原花青素进行了广泛深入研究,证实了其具有优越的抗氧化活性、抗辐射、抗炎活性、酶抑制活性、抗肿瘤活性和血管保护活性等多种生物活性,并在药品、保健品、化妆品中都有广泛应用,是具有广泛发展前景的天然植物提取物。
1原花青素的化学结构与性质原花青素是由不同数量的儿茶素、表儿茶素或没食子酸缩合而成,最简单的原花青素是二聚体,还有三聚体、四聚体等直至十聚体。
根据聚合度的大小,通常将2~4聚体称为低聚体原花青素。
将5聚体以上的称为高聚体原花青素。
其中低聚体原花青素为水溶性物质,其清除自由基的能力极强,这与其分子结构和聚合度有着密切关系[1]。
2原花青素的生物活性2.1清除自由基和抗氧化人体中产生的自由基是指具有未配对电子的原子、离子或分子等类物质。
常见的自由基主要包括:( 1 )超氧阴离子自由基;( 2 )羟基自由基;( 3 )氢自由基;( 4 )活性氧(指氧自由基及其衍生物)。
这些自由基能攻击体内细胞膜,造成细胞膜被侵蚀,细胞完整性丧失。
细胞损伤,导致器官、身体各种退行性病变及癌症的发生。
原花青素中二聚体分布最广,具有很强的抗氧化活性。
原花青素之所以具有稳定的状态是由于其相邻二酚羟基电子非定域化结构。
原花青素类化合物结构、含量测定及其功能研究进展1 简介原花青素(Proantho Cyanidins,PC),又名缩合鞣质,可视作花青素( cyanidin)类物质的聚合物,是自然界中广泛存在的一类多酚类化合物。
通常将从植物中分离得到的一切无色的、在无机酸存在和加热处理下能产生红色花青素( cyanidin)的一类多酚化合物统称为原花青素(赵平2011)。
最初是在20 世纪40 年代从花生仁的包衣中提取出来,在50 年代又被法国科学家从海松树皮中发现并提取出来,并将其提取率提高到达85%。
近来,研究证明原花青素是很强的抗氧化剂,可以清除自由基,其抗氧化、清除自由基的能力是维生素E的50 倍、维生素 C 的20 倍,能防治80 多种因自由基引起的疾病,包括心脏病、关节炎等,还具有改善人体微循环功能(张长贵2009)。
目前,原花青素作为营养强化剂、天然防腐剂、天然抗氧化剂、DNA 保护剂等,被广泛应用于食品、药品、化妆品等领域。
2 化学结构及分类原花青素是以黄烷-3-醇为结构单元通过C-C 键聚合而形成的化合物,起初称为黄烷醇类或归于缩合鞣质。
其结构分类主要取决于五方面:(1)黄烷-3-醇单元的类型;(2)单元之间的连接方式;(3)聚合程度(组成单元的数量);(4)空间构型;(5)羟基是否被取代(如羟基的酯化、甲基化等)。
根据原花青素的聚合程度可分为单倍体(monomer)、寡聚体(oligomer)和多聚体(polymer)(Alan et al 2008 )。
其中单倍体是基本结构单元,寡聚体由2~10 个单倍体聚合而成,多聚体则由10 个以上的单倍体聚合而成(张慧文2015)。
2.1 单倍体单倍体是构成原花青素的结构单元,属于黄烷-3-醇类化合物,该类成分可通过一定方式连接形成原花青素。
单倍体一般是儿茶素(catechin)和表儿茶素(epiactechin),但是也有其他的单倍体,如多一个羟基的表没食子儿茶素(epigallocatechin)或少一个羟基的表阿夫儿茶精(epiafzelechin)(LELONO et al 2013 )。
原花青素提取方法进展作者:张星和杨晓娜来源:《南方农业·下旬》2014年第10期摘要原花青素是一种具有强烈抗氧化能力的黄酮类化合物。
基于此,综述了原花青素提取方法的发展,包括有机溶剂加水提取、仪器辅助提取、超临界CO2萃取以及酶解法等,为进一步开发利用原花青素提供了参考。
关键词原花青素;提取方法;进展中图分类号:TQ914 文献标志码:A 文章编号:1673-890X(2014)10--2原花青素(proantho cyanidins,PC)是自然界中广泛存在的多酚类物质。
现已证明,PC 能清除自由基,其抗氧化、清除自由基的能力是VE的50 倍、VC的20倍,因此已广泛应用于化妆品、药品、食品等领域[1]。
近来发现,PC具有抗癌活性和保护心血管的功能,而被作为防癌、防治心血管疾病药物的有效成分。
全世界对PC的研究越来越深入,其中对PC提取方法的研究是一大重点。
现将PC常用提取方法综述如下。
1 水提取法最早是Masquelier[2]从松树皮中用沸水粗提然后乙酸乙酯纯化得到原花青素。
用水作提取剂,提取时间长,温度高,会使原花青素裂解损失;同时,杂质也较多,很少单独使用。
2 有机溶剂加水提取法根据相似相溶的规律,丙酮、甲醇、乙酸乙酯和乙醇是目前常用的有机溶剂。
其中,乙醇因来源丰富价格低、毒性小使用最为广泛[3]。
吕丽爽[4]以乙醇作为溶剂提取葡萄籽中的低聚原花青素,并得出当乙醇浓度为61.4%,在48.6 ℃下提取30 min,提取3次,提取率可达到90%以上的结论。
乙酸乙酯提取得到的产物活性好,产率低。
甲醇水溶液一般作为原花青素含量测定时的溶剂。
熊何健等[5]比较了甲醇、乙醇、丙酮水溶液对葡萄籽PC的提取产率。
结表明,70 %丙酮水溶液最好。
原花青素物质常与蛋白质、纤维素结合在一起,不易提出,通常选用有机溶剂或水提取,具有断裂氢键的作用。
但有机溶剂会带来环境污染和产品的有毒有机物残留问题。
原花青素提取方法的研究进展【摘要】原花青素是一种具有重要生理活性的多酚类化合物。
本文综述了天然原花青素的提取方法,其中包括有机溶剂提取、微波提取、超声波提取、超临界CO2萃取以及酶法等,以期为开发利用原花青素提供依据。
【关键词】原花青素;提取方法;研究进展原花青素(简称PC)是植物界中广泛存在的一大类多酚类化合物。
植物化学家通常将从植物中分离得到的一切无色的、在无机酸存在和加热处理下能产生红色的花青素(Cyanidin)的一类多酚化合物统称为原花青素。
许多研究表明,原花青素是清除自由基很强的抗氧化剂,其抗氧化、清除自由基的能力是VE的50倍、VC的20倍,它能防治80多种因自由基引起的疾病,包括心脏病、关节炎等,还具有改善人体微循环功能。
目前,原花青素已广泛应用于食品、药品、化妆品等领域。
全世界对原花青素的研究越来越深入,其中对原花青素提取方法的研究是一大重点。
原花青素传统的提取方法是有机溶剂提取法,但这种方法存在着对有效成分损失大、周期长、工序多、提取率不高等缺点,因此近10年来,在植物有效成分的提取方面出现了许多新技术、新方法,如超临界CO2萃取技术、超声波提取技术、微波萃取技术以及酶解技术等。
现将原花青素提取方法综述如下。
1原花青素的分类及分布原花青素是一大类多酚化合物的总称,起初统称归于缩合鞣质或黄烷醇类。
最简单的原花青素是儿茶素、表儿茶素或儿茶素与表儿茶素形成的二聚体。
此外,还有三聚体、四聚体等直至十聚体。
按聚合度的大小,通常将二~四聚体称为低聚体(ProcyanidolicOligomers,简称OPC),将五聚体以上的称为高聚体(ProcyanidolicPolymers,简称PPC)。
OPC为水溶性物质(PPC水溶性较差)、极易吸收;OPC消除自由基的能力与分子结构、聚合度有关。
二聚体中,因两个单体的构象或键合位置的不同,可有多种异构体,易分离鉴定的8种结构形式分别命名为B1~B8,其中,B1~B4是由C4~C8键合,B5~B8是由C4~C6键合。
在各类原花青素中,二聚体分布最广,研究得最多,也是最重要的一类原花青素。
三聚体中,也因组成的单体及其相连接碳原子位置的不同形成各种各样的结构并命名为C1、C2等,其中C1在自然界中分布最丰富。
研究表明,原花青素主要分布于以下的植物中:葡萄、英国山楂、单子山楂、花生、银杏、日本的罗汉柏、北美的崖柏、土耳其的侧柏、花旗松、白烨树、野生刺葵、番荔枝、野草萄、日本莽草、扁桃、高粱、耳叶番泻、两谷椰子、可可豆、贯叶金丝桃、头状胡枝子、粘胶乳香树、海岸松、洋萎陵菜和大黄等。
2提取方法2.1水提取法由于有机溶剂会带来环境污染和产品的有毒有机物残留,人们在大力发展对环境友好的绿色提取技术———水提取法。
Masquelier最早从松树皮中用沸水粗提、乙酸乙酯纯化得到原花青素。
1998年Duncan和Gilmour发明一种从植物材料(树皮、树叶、葡萄籽、皮、大豆、绿茶)中提取原花青素的方法。
将材料粉碎(≤15mm),常压、60~100℃或高压100~125℃条件下采用脱氧热水提取(1min~20h),过滤采用超滤或反渗透或两者连用,浓缩滤液,真空喷雾或冷冻干燥,此法主要是提取分子量≤5000D的水溶性原花青素,得率为0.5%~10.0%之间,通常为6.5%~9.6%(随取样部位的差异而定),分离得到原花青素B1、B3、B6和C2。
获得的产物对AAPH引发的亚油酸的氧化有明显抑制作用,1μg/mL能达到70%~79%的抑制率。
毒理学检测表明:对于按人体重剂量给药组和100倍人体质量的剂量给药组24h内无毒害和副作用产生,慢性毒理学(5个月)试验也无明显毒、副作用。
1999年Karim等人发明了在加压条件下,采用脱氧去离子水提取植物材料中的原花青素。
将提取液超滤后,采用疏水性微孔聚合物树脂作填料的柱色谱方法,选用极性洗脱液(乙醇+水)洗脱,将洗脱液采用反渗透方法除去乙醇,干燥得到原花青素。
选水作为提取剂,浸提耗时长,温度高,容易造成原花青素的损失;同时水的极性较大,溶出杂质也较多,很少单独使用。
2.2传统有机溶剂提取传统的有机溶剂提取法有回流、渗漉及恒温水浴等方法。
甲醇、丙酮、乙醇和乙酸乙酯是提取葡萄籽原花青素常用的有机溶剂,它们对原花青素有很好的溶解性,它们的极性大小顺序为甲醇>乙醇>丙酮>乙酸乙酯。
乙醇是常用的提取溶剂,价格低廉,来源丰富。
乙酸乙酯提取出的原花青素成分生物活性较好,但是由于极性较小,对原花青素的提取并不完全。
甲醇和丙酮水溶液(50%~75%)对原花青素都有较好的提取性能,同时也多用做原花青素含量测定时的提取溶剂。
熊何健等人比较了甲醇、乙醇、丙酮水溶液对多酚的提取效果,结果表明:70%丙酮水溶液为最好溶剂。
丙酮水溶液提取效果好的原因:原花青素分子含有多个苯环和醚键,油溶性较强,同时又有大量的羟基连接在分子骨架上,在水中具有很好的溶解性,拥有油水双溶性的丙酮与之相互匹配,原花青素的溶解度自然增加,其提取率相应得到提高。
Sun等人认为葡萄籽中的原花青素物质通常以结合态与蛋白质、纤维素结合在一起,一般不易提出,通常选用有机溶剂或水提取,具有断裂氢键的作用。
同时由于有机溶剂的渗透性较差,一般不单独使用,常需要水作为传质剂。
Romanczyk等人发明从可可中提取原花青素时,对脱脂可可豆用质量分数70%甲醇/去离子水提取后,再用质量分数70%丙酮/去离子水溶剂提取2次,真空浓缩,除去有机溶剂后,再溶于水中,用CHCl3提取,其水相用乙酸乙酯提取后,真空浓缩除去乙酸乙酯,水相冷冻干燥,得到原花青素。
由于有机溶剂提取时间长,对热不稳定成分易被破坏,杂质含量高,不易纯化,萃取溶剂消耗量大以及污染环境等缺点,许多学者都在研究开发新型提取方法。
2.3微波辅助提取法微波辅助提取过程中,微波辐射导致植物细胞内的极性物质,尤其是水分子,产生大量热量,使得细胞内的温度迅速上升,液态水汽化产生的压力将细胞膜和细胞壁冲破,形成微小的孔洞,进一步加热,导致细胞内部和细胞壁水分减小,细胞收缩,表面出现裂纹。
由于孔洞和裂纹的存在,胞外溶剂容易进入细胞内,溶解并释放细胞内原花青素。
微波的频率很高,能深入渗透物体,对细胞的结构有较大作用。
微波加热的热效率高,温度升高快速而均匀,因此,应用微波加热提取手段,能够显著缩短提取时间,较大程度地提高原花青素的提取效率。
刘征涛等人发明了一种采用频率为2450MHz或915MHz、功率为500~15000W的微波对葡萄籽在选自水、碳链长为C1~C3的醇、乙醚、丙酮、乙酸乙酯、甲苯或其混合物的溶剂中进行处理,从葡萄籽提取原花青素类物质的新方法。
该方法较常规化学法工艺简便、高效、快速,成本低,废液排放量少。
王克亮等人利用微波辅助提取葡萄整籽中的原花青素,研究了不同操作条件及不同因素对原花青素浸取率的影响。
试验结果表明,对葡萄整籽最佳提取条件为:浸泡时间48h,固液比1∶3,微波作用时间30min,溶剂浓度40%,占空比30%。
当满足上述条件时浸取率高达5.976%。
经正交分析可知,在5个影响因素中微波作用时间和溶剂浓度对原花青素浸取率的影响最显著。
李凤英等人研究了微波对葡萄籽原花青素的浸出和结构的影响。
结果表明,以乙醇为介质,微波处理有利于葡萄籽中原花青素的浸出,葡萄籽整粒用料液比(g/L)1∶1的体积分数70%乙醇溶液,微波处理10s,在50℃水浴浸提30min,原花青素浸提量为4.109mg/g,较不用微波处理同等水浴条件浸提量增加1.715mg/g。
通过对微波联合水浴浸提和单纯水浴浸提的原花青素的紫外图谱显示短时微波处理对原花青素的分子结构没有破坏作用。
微波辅助提取原花青素根据提取设备的不同一般提取时间从几分钟到几十分钟不等,同时在操作方面也具有一定的优越性,但是提取过程使用了有机溶剂,这是微波辅助提取的最大缺点。
2.4超声辅助提取法应用超声技术来强化提取过程,可有效提高提取效率,缩短提取时间,而且,超声波破碎过程不会改变被浸泡的化学成分的结构和性质。
超声的机械作用通过破坏细胞壁和加强细胞内的传质作用,提高了植物中有机化合物的提取速度。
超声波在液体内传播时,液体介质不断受到压缩和拉伸,在拉力作用下,液体断裂形成暂时的近似真空的空洞,压缩时,这些空洞就会发生崩溃,出现局部高温以及放电现象,产生空化作用。
超声波空化可以从稳态空化转化成瞬态空化,空化泡瞬间长大破裂,吸收的能量在极短的时间和极小的空间内释放出来,形成高温高压的环境,同时伴随有一定强度的冲击波和微声流,从而破坏细胞壁结构,使其在瞬间破裂,释放细胞内的有效成分,使溶剂渗透到细胞中,令其中的化学成分溶于溶剂中,从而大大提高了提取率。
在提取原花青素之类的热敏性物质显示出了优越的性能。
钟振声等人研究了从葡萄籽中提取原花青素的改进工艺,主要考察超声波作用对原花青素提取率和提取物含量的影响,并与传统溶剂法进行了对比。
试验表明,把风干的葡萄籽破碎成0.6~1mm的微小颗粒,先按1g葡萄籽加3mL溶剂的比例加入石油醚,常温浸泡48h 脱除油脂;再按照1g葡萄籽加20mL溶剂的比例,分别用乙醇〔(C2H5OH)=95%〕、丙酮〔(CH3COCH3)=99%〕和纯水在常温下浸泡2h,浸泡期间采用超声波震荡加强传质,原花青素的提取率分别达到4.63%、4.59%和2.55%(以葡萄籽的投料质量计算),提取率分别比不施加超声波震荡的传统溶剂提取法提高11%、66%和48%。
吴澎等人采用超声波法,用乙醇作提取溶剂从西伯利亚白刺果籽中提取原花青素,研究了各种提取条件对白刺籽原花青素提取率的影响。
试验结果表明,白刺果籽中原花青素提取的最佳工艺条件是:体积分数60%,乙醇为浸提剂,超声波辅助提取,提取时间为20min,提取3次,料液比为1g/4mL。
波兰Oszmianski1996年申请专利,以丙酮为溶剂,采用超声波从葡萄籽中提取低聚原花青素,乙酸乙酯在-18℃萃取,三氯甲烷沉淀产物。
超声辅助提取原花青素根据提取设备的不同一般提取时间从几十分钟到一两个小时不等,但是提取过程使用了有机溶剂,这也是超声辅助提取的最大缺点。
2.5超临界CO2萃取超临界CO2萃取是近20年来迅速发展起来的一种新型萃取分离技术,它是以超临界状态下的CO2流体为溶剂来提取分离混合物的过程,具有很强的溶解能力和渗透能力以及良好的流动性和传递性。
超临界CO2萃取正越来越多的用于葡萄籽中原花青素的萃取,其萃取率高,而且使原花青素不受到空气和光的影响,但由于设备昂贵,推广使用比较困难。
孙云鹏等人发明一种采用超临界CO2加丙酮和水组成的极性改性剂,从银杏叶中萃取原花青素的方法。
在萃取温度60~90℃,萃取压力20~35MPa下加入50%~80%丙酮与20%~50%水组成的极性改性剂,萃取时间2~4h,进行静态、动态萃取。