行车介绍及电气设计原理学习课件
- 格式:ppt
- 大小:7.75 MB
- 文档页数:55
行车电气控制原理一、电气设备和电路布置行车电气控制电路可以分为四个部份,即提升、开闭、小车、大车,它们都分别由JZR型起重机专用的电动机来拖动。
提升、开闭和小车的传动机构都装在小车上。
大车移动机构采用分别传动,即装在桥架两侧的电动机来拖动。
磁力控制盘和所有电阻安装在起重机桥架上,全部操纵器件集中装在驾驶室内。
供给起重机的三相交流电源,是由集电拖从导电轨引到驾驶室保护控制盘。
从保护盘引出到凸轮控制器或到磁力控制盘的电源线,只有三相中的两相,另一相称为公用相(即X21),直接接到电动机的定子接线端。
二、主电路和联锁控制的保护在进线电缆上安装有空气负荷开关,作为包括三相导电轨在内的整个起重机电路的短路保护。
在起重机上,所有电动机均由过电流继电器作为公路过载保护,这些过电流继电器的整定值一般整定在被保护电动机额定电流的2.25-2.5倍。
总电流过载保护的电流继电器串接在公用相,安的整定值不应超过全部电动机额定电流的1.5倍。
为了防止人身触电事故,在栏杆门、横梁等地方装有行程开关(CAK、1LAK、2LAK),以防止有人在电源没有断开的情况下,跨入行车或桥架而发生危险。
这些限位开关都与主电路上的过流继电器相串联,其中有一对触点断开,将使主接触断开。
起重机还设有零位联锁保护,即所有凸轮控制器的手柄都必须放在零位,这样才能按起动按钮使行车准备开始工作。
三、凸轮控制器的控制情况凸轮控制器是用来直接控制绕线式电机的正反向起动、运转和停止的。
在行车投入运行以前,应当将控制器手柄放在零位,然后起动总开关按钮,使总电源接通。
这一要求是利用5和7之间触点XTK来完成的,它在零位时是处在闭合状态。
小车机构的“向前”或“向后”移动是依靠凸轮控制器对调电机进线业实现的。
当手柄转到向前任何一档时,控制器的主触点X32与XD2接通,X33与XD3接通,电动机便作向前运转。
反之如手柄转到向后位置,则X32与XD3接通,X33与XD2接通,电动机反转。
桥式起重机(行车、天车)培训课件目录•桥式起重机概述•桥式起重机安全操作规程•桥式起重机维护与保养知识•桥式起重机操作技能培训•桥式起重机安全管理与法规要求•桥式起重机发展趋势及新技术应用PART01桥式起重机概述定义与分类定义桥式起重机,又称行车或天车,是一种在固定跨间内运行,通过桥架上的起重小车或电动葫芦进行物料搬运的起重设备。
分类根据结构形式和使用场合的不同,桥式起重机可分为通用桥式起重机、冶金专用桥式起重机、防爆桥式起重机、绝缘桥式起重机、电动单梁起重机、电动单梁悬挂起重机、电动葫芦桥式起重机和防爆梁式起重机等。
工作原理及结构组成工作原理桥式起重机的工作原理主要是通过大车运行机构、小车运行机构和起升机构三大运行机构协调工作,实现物料的空间搬运。
其中,大车运行机构负责起重机的纵向移动,小车运行机构负责起重机的横向移动,起升机构则负责物料的升降。
结构组成桥式起重机主要由桥架、大车运行机构、小车运行机构和起升机构等部分组成。
其中,桥架是起重机的主体部分,由主梁、端梁、走台和栏杆等构成;大车运行机构包括电动机、制动器、减速器和车轮等;小车运行机构则包括电动机、制动器、减速器和车轮等;起升机构包括电动机、制动器、减速器和卷筒等。
应用领域与发展趋势•应用领域:桥式起重机广泛应用于工厂、仓库、码头等场所,用于搬运各种物料,如钢材、木材、水泥、煤炭等。
同时,在冶金、化工、电力等特殊行业也有广泛应用。
•发展趋势:随着科技的不断进步和工业生产的自动化程度不断提高,桥式起重机的发展趋势将主要体现在以下几个方面:一是大型化和高速化,以满足现代工业生产对高效率和高产能的需求;二是智能化和自动化,通过引入先进的控制技术和传感器技术,实现起重机的自动定位和精准搬运;三是环保和节能化,采用新型材料和高效电机等节能环保技术,降低起重机的能耗和排放;四是安全性和可靠性提高,通过加强安全设计和采用高可靠性元器件等措施,提高起重机的安全性和可靠性。
第八章天车的电气线路及原理第二节主电路主电路(动力电路)是用来驱动电动机工作的电路,它包括电动机绕组和电动机外接电路两部分。
外接电路有外接定子和外接转子电路,简称定子电路和转子电路。
定、转子电路根据控制电动机功率的不同,又分为接触器控制和凸轮控制器控制。
定子电路由接触器控制,转子电路由凸轮控制器控制。
一、定子电路定子电路是由三相交流电源、隔离开关QS、过电流继电器的线圈KOC1,KOC2,正反向接触器的主触头KMF, KMR及电动机定子绕组等组成。
转子电路是由转子绕组、外接电阻器及凸轮控制器的主触头等组成,如图8-2所示。
图8-2 主回路电路图隔离开关QS是主电路与电源接通和断开的总开关;过电流继电器KOC1, KOC2作电动机过流保护用;正反向接触器的主触头、KMF, KMR均为动合(常开)触头,两者之间具有电器联锁。
当正转接触器主触头KMF闭合时,电动机正转;当反转接触器主触头KMR闭合时,则电动机反转。
转子电路用凸轮控制器主触头控制转子电路的外接电阻,来实现限制起动电流和调节转速的目的。
要改变电动机运转方向就必须将三相电源中的任意两相对调。
表8-1为凸轮控制器控制电动机转向的情况。
当凸轮控制器的手柄置于零位时,其触头断开,电动机不工作;当凸轮控制器手柄逆时针方向转动时,触头1, 3闭合,电动机正转。
当凸轮控制器手柄顺时针方向转动时,触头2, 4闭合,电动机反转。
从表8-1也可以看出,当接触器KMF的主触头闭合时,接到电动机定子绕组Ul, V1, W1的电源相序为L1,L2,L3,电动机正转。
当接触器KMR的主触头闭合时,电动机定子绕组U1, V1, Wl的电源相序为I3, L2, Ll,电动机反转。
表8-1凸轮控制器控制电动机转向的情况二、转子电路转子电路是指通过凸轮控制器主触头的分合来改变转子电路外接电阻的大小而实现限制起动电流及调速的电路。
如图8-2所示,转子电路的外接电阻是由三相电阻器组成的,三相电阻的出线端U2, V2, W2连接在一起,另外三个出线端U1, vi , Wl用三根导线经电刷一集电环分别与转子绕组u、v, w相连接。