数模和模数转换
- 格式:ppt
- 大小:754.00 KB
- 文档页数:26
模数(A/D)和数模(D/A)转换模数(A/D)和数模(D/A)转换11.1模数转换和数模转换概述11.1.1一个典型的计算机自动控制系统一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。
传感器μV,mV控制传感器放大滤波几伏放大滤波多路开关MU某采样保持S/H模拟A/D数字I/O转换接口计算机对象执行部件多路开关MU 某模拟D/A数字I/O转换接口图11.1典型的计算机自动控制系统在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。
在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。
一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。
送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。
在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。
多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。
另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。
若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。
在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。
第11章模数(A/D)和数模(D/A)转换28711.1.2模/数转换器(ADC)的主要性能参数1.分辨率它表明A/D对模拟信号的分辨能力,由它确定能被A/D辨别的最小模拟量变化。
一般来说,A/D转换器的位数越多,其分辨率则越高。
数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
什么是数模转换和模数转换1. 引言在现代科技和通信领域中,数模转换(Digital-to-Analog Conversion)和模数转换(Analog-to-Digital Conversion)是非常重要的概念。
它们在各种应用中起着至关重要的作用,如音频处理、图像处理、数据转换等。
本文将介绍数模转换和模数转换的定义、原理和应用。
2. 数模转换数模转换是将数字信号转换为模拟信号的过程。
数字信号是以离散的二进制形式表示的信号,而模拟信号是连续变化的信号。
通过数模转换,我们可以将数字信号转换为模拟信号,以便于在模拟领域进行进一步的处理和分析。
数模转换的原理是通过采样和保持、量化和编码三个步骤实现的。
首先,采样和保持将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最后,编码将离散化后的采样信号转换为二进制代码,以便进行数字信号处理。
数模转换广泛应用于音频和视频领域。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟信号,使得我们可以聆听到高质量的音乐。
同时,在数字电视中,数模转换器将数字视频信号转换为模拟视频信号,使得我们可以观看高清晰度的电视节目。
3. 模数转换模数转换是将模拟信号转换为数字信号的过程。
模拟信号是连续变化的信号,而数字信号是以离散的二进制形式表示的信号。
通过模数转换,我们可以将模拟信号转换为数字信号,以便于在数字领域进行处理和存储。
模数转换的原理是通过采样和量化两个步骤实现的。
首先,采样将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最终,将离散化后的采样信号转换为二进制代码,以表示数字信号。
模数转换在通信领域和数据存储领域得到广泛应用。
例如,在手机通信中,模数转换器将人的声音转换为数字信号,以便于在网络中传输。
同样地,在数字存储设备中,模数转换器将模拟数据(如声音、图像等)转换为数字数据,以便于存储和处理。
什么是电路中的数模转换和模数转换电路中的数模转换和模数转换是指将数字信号和模拟信号互相转换的过程。
在现代电子设备和通信系统中,这两种转换方式起着至关重要的作用。
1. 数模转换:数模转换是将数字信号转换为模拟信号的过程。
在数字电路中,所有信息都以二进制形式表示,通过数模转换可以将数字信号转换为模拟电压、电流或其他模拟形式的信号。
常见的数模转换器是数字到模拟转换器(DAC),它将数字信号转换为模拟信号的输出。
数模转换器通常由一个数字输入和一个模拟输出组成。
数模转换器的输入可以是数字编码、数字信号或数字数据,输出信号则是连续的模拟波形。
在数模转换的过程中,数字信号经过采样和量化,然后根据一定的规则转换为相应的模拟信号。
数模转换在诸多应用中发挥着重要的作用,如音频和视频处理、通信系统中的调制解调器等。
通过数模转换,数字信号能够在模拟电路中进行处理和传输,实现数字与模拟信号之间的无缝衔接。
2. 模数转换:模数转换是将模拟信号转换为数字信号的过程。
在大部分现代电子设备中,数字信号更易于处理和存储,因此需要将模拟信号转换为数字信号以进行后续处理。
模数转换器(ADC)是常见的模数转换设备,它将模拟信号转换为离散的数字化信号。
模数转换器通常包含一个模拟输入和一个数字输出。
在模数转换的过程中,连续的模拟波形被分段采样,然后经过量化,最终转换为离散的数字信号。
适当的采样频率和精度可以确保模拟信号在数字化后能够保持较高的还原度。
模数转换在许多领域中被广泛使用,如音频和视频编码、传感器信号处理、通信系统中的调制解调器等。
通过模数转换,模拟信号可以被数字电路准确地表示和处理,实现了数字系统对模拟信号的感知和操作。
总结:数模转换和模数转换是电路中常见的信号转换方式,它们相互补充,使得数字和模拟信号能够在电子设备和通信系统中相互转换。
数模转换将数字信号转换为模拟信号,模数转换则将模拟信号转换为数字信号。
这两种转换方式的应用广泛,并在现代电子技术中扮演着重要的角色。