模数与数模转换
- 格式:doc
- 大小:266.02 KB
- 文档页数:5
第17章 模数和数模转换数模转换即将数字量转换为模拟电量(电压或电流),使输出的模拟电量与输入的数字量成正比。
实现数模转换的电路称数模转换器模数转换即将模拟电量转换为数字量,使输出的数字量与输入的模拟电量成正比。
实现模数转换的电路称模数转换器17.1 数模(D/A ) 转换器一、D/A 转换器的基本原理及分类1.数模转换的基本原理要求:输出的模拟量与输入的数字量成正比。
输入数字量 D = (D n -1 D n -2 ⋅⋅⋅ D 1 D 0 ) 2= D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20 输出模拟电压 u O = D △ = (D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20)△△ 是 DAC 能输出的最小电压值,称为 DAC 的单位量化电压,它等于 D 最低位(LSB)为 1、其余各位均为 0 时的模拟输出电压(用 U LSB 表示)。
2.倒T 型网络D/A 转换器,基本原理如图示:D D n 输模D A CD 01D n -2n -1¡-u O位二进制数入拟电压输出u O2R模拟开关 S i 打向“1”侧时,相应 2R 支路接虚地;打向“0”侧时,相应 2R 支路接地。
故无论开关打向哪一侧,倒 T 型电阻网络均可等效为下图:从 A 、B 、C 节点向左看去,各节点对地的等效电阻均为 2R 。
即I 3 = 23 I 0, I 2 = 22 I 0, I 1 = 21 I 0, I 0 = 20 I 0可见,支路电流值 Ii 正好代表了二进制数位 D i 的权值 2i。
模拟开关 S i 受相应数字位 Di 控制。
当 Di = 1 时,开关合向“1”侧,相应支路电流 Ii 输出;Di = 0 时,开关合向“0”侧, Ii 流入地而不能输出。
i Σ = D 3 I 3 + D 2 I 2 + D 1 I 1 + D 0 I 0= ( D 3 23 + D 2 22 + D 1 21 + D 0 20) I 0 = D I 03.D/A 转换器主要指标常用 DAC 主要有权电阻网络 DAC 、 R - 2R 、T 形电阻网络 DAC 、R - 2R 倒 T 形电阻网络 DAC 和权电流网络 DAC 。
模数(A/D)和数模(D/A)转换模数(A/D)和数模(D/A)转换11.1模数转换和数模转换概述11.1.1一个典型的计算机自动控制系统一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。
传感器μV,mV控制传感器放大滤波几伏放大滤波多路开关MU某采样保持S/H模拟A/D数字I/O转换接口计算机对象执行部件多路开关MU 某模拟D/A数字I/O转换接口图11.1典型的计算机自动控制系统在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。
在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。
一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。
送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。
在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。
多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。
另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。
若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。
在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。
第11章模数(A/D)和数模(D/A)转换28711.1.2模/数转换器(ADC)的主要性能参数1.分辨率它表明A/D对模拟信号的分辨能力,由它确定能被A/D辨别的最小模拟量变化。
一般来说,A/D转换器的位数越多,其分辨率则越高。
【关键字】精品第7章数-模转换与模-数转换第1讲数-模转换一、教学目的:1、数模转换的基本原理。
2、理解常见的数模转换电路。
3、掌握数模转换电路的主要性能指标。
二、主要内容:1、数模转换的定义及基本原理2、权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数3、DAC主要性能指标三、重点难点:权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数。
四、课时安排:2学时五、教学方式:课堂讲授六、教学过程设计复习并导入新课:新课讲解:[重点难点]权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数,逐次逼近型A/D转换器、双积分型A/D转换器的电路结构特点、工作原理及其主要技术参数。
[内容提要]本章介绍数字信号和模拟信号相互转换的基本原理和常见转换电路。
必要性与意义:自然界中,许多物理量是模拟量,电子系统中的输入、输出信号多数也是模拟信号。
而数字系统处理的数字信号却具有抗干扰能力强、易处理等优点;利用数字系统处理模拟信号的情况也越来越普遍。
由于数字系统只能对数字信号进行处理,因此要根据实际情况对模拟信号和数字信号进行相互转换。
随着计算机技术和数字信号处理技术的快速发展,在通信、自动控制等许多领域,常常需要将输入到电子系统的模拟信号转换成数字信号后,再由系统进行相应的处理,而数字系统输出的数字信号,还要再转换为模拟信号后,才能控制相关的执行机构。
这样,就需要在模拟信号与数字信号之间建立一个转换接口电路—模数转换器和数模转换器。
A/D转换定义:将模拟信号转换为数字信号的过程称为模数转换(Analog to Digital),或A/D转换。
能够完成这种转换的电路称为模数转换器(Analog Digital Converter),简称ADC。
D/A转换定义:将数字信号转换为模拟信号的过程称为数模转换(Digital to Analog),或D/A转换。
什么是数模转换和模数转换1. 引言在现代科技和通信领域中,数模转换(Digital-to-Analog Conversion)和模数转换(Analog-to-Digital Conversion)是非常重要的概念。
它们在各种应用中起着至关重要的作用,如音频处理、图像处理、数据转换等。
本文将介绍数模转换和模数转换的定义、原理和应用。
2. 数模转换数模转换是将数字信号转换为模拟信号的过程。
数字信号是以离散的二进制形式表示的信号,而模拟信号是连续变化的信号。
通过数模转换,我们可以将数字信号转换为模拟信号,以便于在模拟领域进行进一步的处理和分析。
数模转换的原理是通过采样和保持、量化和编码三个步骤实现的。
首先,采样和保持将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最后,编码将离散化后的采样信号转换为二进制代码,以便进行数字信号处理。
数模转换广泛应用于音频和视频领域。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟信号,使得我们可以聆听到高质量的音乐。
同时,在数字电视中,数模转换器将数字视频信号转换为模拟视频信号,使得我们可以观看高清晰度的电视节目。
3. 模数转换模数转换是将模拟信号转换为数字信号的过程。
模拟信号是连续变化的信号,而数字信号是以离散的二进制形式表示的信号。
通过模数转换,我们可以将模拟信号转换为数字信号,以便于在数字领域进行处理和存储。
模数转换的原理是通过采样和量化两个步骤实现的。
首先,采样将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最终,将离散化后的采样信号转换为二进制代码,以表示数字信号。
模数转换在通信领域和数据存储领域得到广泛应用。
例如,在手机通信中,模数转换器将人的声音转换为数字信号,以便于在网络中传输。
同样地,在数字存储设备中,模数转换器将模拟数据(如声音、图像等)转换为数字数据,以便于存储和处理。
模数转换和数模转换
模数转换是指把模拟信号转换为数字信号的过程。
这个过程中,模拟信号被采样,量化和编码成数字信号。
采样是指在时间上对模拟信号进行离散化,常见的采样方式有时间采样和空间采样。
量化是指将连续的模拟信号离散化为有限个离散值。
量化的精度越高,数字信号的质量就越好。
编码是指将量化后的数字信号转换为二进制码,通常使用的编码方式有脉冲编码调制(PCM)、差分脉冲编码调制(DPCM)和自适应差分脉冲编码调制(ADPCM)等。
数模转换是指把数字信号转换为模拟信号的过程。
这个过程中,数字信号被解码为模拟信号,然后经过重构滤波器得到连续的模拟信号。
数模转换的解码过程包括去编码、去量化和去采样三个过程,它们的顺序和编码过程相反。
重构滤波器是数模转换中非常重要的部分,它的作用是将数字信号还原为连续的模拟信号。
常用的重构滤波器有理想重构滤波器、线性重构滤波器和最小均方误差重构滤波器等。
模数转换和数模转换是数字信号处理中非常重要的基本操作,它们在音频处理、视频处理、通信系统等各个领域都有广泛的应用。
- 1 -。
3. 模数转换器(1) 模/数(A/D )转换器A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。
在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。
1) 逐次逼近型A/D 转换器逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。
逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。
天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。
称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。
这样就以一系列二进制码的重量之和表示了被称物体的重量。
例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。
称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。
然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。
用下表7.1表示整个称重过程。
表7.1 逐次逼近法称重物体过程表图7.7 逐次逼近型A/D 转换器方框图利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。
逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。
逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。
转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。
转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。
首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。
这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。
若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1保留。
数码的取舍通过电压比较器的输出经控制器来完成的。
依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。
此时寄存器里保留下来的数码即为所求的输出数字量。
2) 并联比较型A/D 转换器并联比较型A/D 转换器是一种高速A/D 转换器。
图8-9所示是3位并联型A/D 转换器,它由基准电压REF U 、电阻分压器、电压比较器、寄存器和编码器等五部分组成。
REF U 是基准电压、i u 是输入模拟电压,其幅值在0到REF U 之间,012d d d 是输出的3位二进制代码,CP 是控制时钟信号。
由图8-9可知,由8个电阻组成的分压器将基准电压REF U 分成8个等级,其中七个等级的电压接到7个电压比较器1C 到7C 的反相输入端,作为它们的参考电压,其数修正值分别为REF U /14、3REF U /14…13REF U /14。
输入模拟电压i u 同时接到每个电压比较器的同相输入端上,使之与7个参考电压进行比较,从而决定每个电压比较器的输出状态。
当i u 0<REF U /14时,7个电压比较器的输出全为0,CP 到来后,寄存器中各个触发器都被置0状态。
经编码器编码后输出的二进制代码为012d d d =0。
依次类推,可以列出i u 为不同等级时寄存器的状态及相应的输出二进制数,如表8-1所示: 表8-1 双并联比较型A/D 转换器真值表并联比较型A/D 转换器的最大优点是转换速度快,它是各种A/D 转换器中速度最快的一种。
这是因为输入信号电压i u 同时加到电压比较器的所有输入端,从加入i u 到二进制数的稳定输出所经历的时间为电压比较器、触发器和编码器的延迟时间之和。
而且各位代码的转换几乎是同时进行的,增加输出代码位数对转换速度的影响很小。
并联比较型A/D 转换器的主要缺点是使用的比较器和触发器较多。
随着分辨率的提高,所需元件数目要按几何级数增加。
输出为3位二进制代码时,需要电压比较器和触发器的个数均为23-1=7。
当输出为n 位二进制数时,需要个数为2n-1。
例如:当n =10时,需要的电压比较器和触发器的个数均为210-1=1023。
相应的编码器也变得复杂起来。
显然,这种A/D 转换器的成本高,价格贵,是不经济的。
在一般场合较少使用。
(2) 模/数(A/D )转换器的主要技术性能 1.分辨率分辨率是指A/D 转换器输出数字量的最低位变化一个数码时,对应输入模拟量的变化量。
通常以A/D 转换器输出数字量的位数表示分辨率的高低,因为位数越多,量化单位就越小,对输入信号的分辨能力也就越高。
例如,输入模拟电压满量程为10V ,若用8位A/D 转换器转换时,其分辨率为10V/28=39mV ,10位的A/D 转换器是9.76Mv,而12位的A/D 转换器为2.44mV 。
2.转换误差转换误差表示A/D 转换器实际输出的数字量与理论上的输出数字量之间的差别。
通常以输出误差的最大值形式给出。
转换误差也叫相对精度或相对误差。
转换误差常用最低有效位的倍数表示。
例如,某A/D 转换的相对精度为±(1/2)LSB ,这说明理论上应输出的数字量与实际输出的数字量之间的误差不大于最低位为1的一半。
3.转换速度A/D转换器从接收到转换控制信号开始,到输出端得到稳定的数字量为止所需要的时间,即完成一次A/D转换所需的时间称为转换速度。
采用不同的转换电路,其转换速度是不同的,并行型比逐次逼近型要快得多。
低速的A/D转换器为1~30ms,中速A/D转换器的时间在50μs左右,高速A/D转换器的时间在50ns左右,ADC809的转换时间在100μs左右。
4. 数/模转换器DAC(1)数/模转换器的基本概念把数字信号转换为模拟信号称为数-模转换,简称D/A(Digital to Analog)转换,实现D/A转换的电路称为D/A转换器,或写为DAC(Digital –Analog Converter)。
随着计算机技术的迅猛发展,人类从事的许多工作,从工业生产的过程控制、生物工程到企业管理、办公自动化、家用电器等等各行各业,几乎都要借助于数字计算机来完成。
但是,计算机是一种数字系统,它只能接收、处理和输出数字信号,而数字系统输出的数字量必须还原成相应的模拟量,才能实现对模拟系统的控制。
数-模转换是数字电子技术中非常重要的组成部分。
D/A转换器及A/D转换器的种类很多,这里主要介绍常用的权电阻网络D/A转换器,倒T型电阻网络D/A转换器。
1)权电阻网络D/A转换器图7.1 权电阻网络D/A转换器①工作原理权电阻网络D/A转换器的基本原理图如图7.1所示。
这是一个四位权电阻网络D/A转换器。
它由权电阻网络电子模拟开关和放大器组成。
该电阻网络的电阻值是按四位二进制数的位权大小来取值的,低位最高(23R),高位最低(20R),从低位到高位依次减半。
S0、S1、S2和S3为四个电子模拟开关,其状态分别受输入代码D0、D1、D2和D3四个数字信号控制。
输入代码D i为1时开关S i连到1端,连接到参考电压V REF 上,此时有一支路电流I i流向放大器的A节点。
D i为0时开关S i连到0端直接接地,节点A 处无电流流入。
运算放大器为一反馈求和放大器,此处我们将它近似看作是理想运放。
权电阻网络D/A转换器的优点是电路简单,电阻使用量少,转换原理容易掌握;缺点是所用电阻依次相差一半,当需要转换的位数越多,电阻差别就越大,在集成制造工艺上就越难以实现。
为了克服这个缺点,通常采用T型或倒T型电阻网络D/A转换器。
② T形电阻网络D/A转换器为了克服权电阻网络D/A转换器中电阻阻值相差过大的缺点,又研制出了如图7-3所示的T形电阻网络D/A转换器,由R和2R两种阻值的电阻组成T形电阻网络(或称梯形电阻网络)为集成电路的设计和制作带来了很大方便。
网络的输出端接到运算放大器的反相输入端。
图8-3 T形电阻网络D/A转换器T形电阻网络D/A转换器的优点是它只需R和2R两种阻值的电阻,这对选用高精度电阻和提高转换器的精度都是有利的;该电路的缺点是使用的电阻数量较大。
此外在动态过程U加到各级电阻上开始到运算放大器的输入稳定中T形电阻网络相当于一根传输线,从REF地建立起来为止,需要一定的传输时间,因而在位数较多时将影响D/A转换器的工作速度。
而且,由于各级电压信号到运算放大器输入端的时间有先有后,还可能在输出端产生相当大的尖峰脉冲。
如果各个开关的动作时间再有差异,那时输出端的尖峰脉冲可能会持续更长的时间。
提高转换速度和减小尖峰脉冲的有效方法是将图8-4电路改成倒T形电阻网络D/A转换电路,如图8-6所示图8-6 倒T 形电阻网络D/A 转换器由图可见,当输入数字信号的任何一位是1时,对应的开关便将电阻接到运算放大器的输入端,而当它是0时,将电阻接地。
因此,不管输入信号是1还是0,流过每个支路电阻的电流始终不变。
当然,从参考电压输入端流进的总电流始终不变,它的大小为:RU I REF=因此输出电压可表示为)2222(2001122334⋅+⋅+⋅+⋅-=d d d d U U REF O 由于倒T 形电阻网络D/A 转换器中各支路的电流直接流入了运算放大器的输入端,它们之间不存在传输时间差,因而提高了转换速度并减小了动态过程中输出端可能出现的尖峰脉冲。
同时,只要所有的模拟开关在状态转换时满足“先通后断”的条件(一般的模拟开关在工作时都是符合这个条件的),那么即使在状态转换过程流过各支路的电流也不改变,因而不需要电流的建立时间,这也有助于提高电路的工作速度。
鉴于以上原因,倒T 形电阻网络D/A 转换器是目前使用的D/A 转换器中速度较快的一种,也是用得较多的一种。
2)D/A 转换器的主要技术指标 1.分辨率这是D/A 转换器对微小输入量变化敏感程度的描述,通常用数字量的位数来表示,如8位、12位等。
对一个分辨率为n 位的转换器,能够分辨满量程的2-n 输入信号。
例如,分辨率为8位的D/A 转换器能给出满量程电压的1/256(即1/28)的分辨能力。
2.精度转换器的精度是指输出模拟电压的实际值与理想值之差。