磁场的生物学效应
- 格式:docx
- 大小:3.46 KB
- 文档页数:2
电磁场的生物效应1 “非热效应”与“特殊效应”对于弱电磁场生物效应人们常用两个名词来描述,即“非热效应”和“特殊效应”。
“非热效应”的定义不尽一致。
按文献[1]所述,非热效应(athermal effect)定义为:当生物系统吸收电磁能量后,产生的不可归属于温度变化的生物学变化。
有人认为这个定义不够科学,因为判断“不可归属于温度变化的生物学变化”在实验中是非常困难的。
众所周知,生物介质的电磁特性具有高度的不均匀性,在弱电磁波照射下可能出现组织内的热点(局部温度过高),而组织的宏观平均温升却非常小,由这种热点引起的效应能否叫“非热效应”?有人认为,所谓的热“点”其空间尺寸是远大于微观分子尺寸的,在热“点”所包围的空间尺寸中各自由度的能量是满足玻尔兹曼平衡分布的。
那么,在这种情况下热点引起的效应仍然是热效应,而这时的能量分布、温度分布不均匀是由于热传导不及时的缘故。
但是,如果微波传递的能量对分子各自由度的能量具有选择性时,即这时介质各自由度的能量不满足玻尔兹曼平衡分布,这样的情形就应该属于非热效应。
此外,与传统加热方式相比微波对生物组织的致热作用是非常迅速的,有实验证明[2]这种快速加热也可以引起一些特殊的效应,这种效应能否叫非热效应?有鉴于此,不少文献把微波辐射下区别于传统加热引起的效应叫“特殊效应”。
2 近年来弱电磁场(波)生物效应实验研究进展多年来弱电磁场(波)生物效应的实验研究已积累了大量的数据,但许多数据充满着分歧与矛盾(见表1),使我们仍然不能对弱电磁场(波)是否对人体健康造成危害下明确的结论。
目前认为造成上述结果的原因有以下三点:(1)实验设计不够严密和严格;(2)实验结果没有重复性;(3)实验结果虽有可重复性,但辐射强度还不够低,通常可导致局部的温升,而这又不易测量。
第一种情况的确是值得重视和注意的。
在1997年9月14~19日召开的世界医学物理和生物医学工程会议上,F.Schonborn及其合作者发表题为“RF实验条件”的文章专门阐述了微波辐射条件的严格控制问题[7],包括电磁场强度的空间和时间分布,载波频率,调制频率等等参数的控制和测量问题。
《生物磁学的效应及运用》xx年xx月xx日CATALOGUE目录•生物磁学概述•生物磁学的效应•生物磁学的应用•生物磁学的前沿与挑战•结论与展望01生物磁学概述1生物磁学的定义与特性23生物磁学是一门研究生物在磁场中行为、生理和生化的学科,它探讨了生物体系与磁场之间的相互作用。
生物磁学具有多学科交叉的特性,它涉及到物理学、生物学、医学、化学等多个领域。
生物磁学研究包括生物磁场、生物磁性物质、生物磁效应等方向。
03生物磁学为生物学、医学、化学等学科提供了新的研究方法和思路。
生物磁学的重要性01生物磁学在医学上有重要应用,如核磁共振成像等。
02生物磁学对于了解生物体内的生理过程以及磁场对生物体的影响有重要作用。
生物磁学的发展历程01生物磁学的发展经历了多个阶段,从19世纪末期开始,研究者开始研究磁场对生物体的影响,并逐渐发展出生物磁学这一学科。
0220世纪中期以来,随着科技的不断进步,生物磁学得到了广泛的应用和发展,其在医学、生物学、化学等领域的应用越来越广泛。
03近年来,随着纳米技术和生物技术的不断发展,生物磁学在药物输送、基因治疗、靶向治疗等领域展现出了广阔的应用前景。
02生物磁学的效应1磁场对细胞的影响23研究表明适当强度的磁场可以促进细胞的生长和增殖,如骨髓间充质干细胞和神经元细胞等。
磁场对细胞的生长和增殖磁场可能对细胞器如线粒体、溶酶体和内质网等的功能产生影响,改变细胞代谢和信号转导过程。
磁场对细胞器的功能研究发现磁场对细胞骨架的组成和分布有影响,可能改变细胞的形态、大小和运动等生物学特性。
磁场对细胞骨架的影响一些研究显示磁场可以调节多种基因的转录水平,影响相关信号通路的传导,进而影响细胞的功能。
磁场对转录的影响研究证实磁场可以影响mRNA的翻译效率和蛋白质的合成过程,导致特定蛋白质的水平和功能发生变化。
磁场对翻译的影响磁场对基因表达的影响磁场对神经递质的影响研究发现磁场可以调节神经递质的合成、释放和再摄取等过程,影响神经信号的传递。
磁场生物效应的国内进展来源:中国论文下载中心作者:肖红雨周万松编辑:studa9ngns关键词:磁场生物效应磁场作用于生物体后,在生物体内引起一系列的生物学效应,为临床磁疗提供了理论基础。
磁场生物效应的研究,近年来国内又取得新的进展,为了促进磁疗应用的发展与促进磁场生物学效应的研究,对1991~1997年国内关于磁场生物学效应的研究进展,予以综述。
一、磁场对血细胞和血液流变学的影响于玲娜等[1]应用磁感应强度0.08~0.09T的旋磁作用于试管内的离体血液,分别作用于健康人离体血液10,15,20,25,30分钟,然后进行电镜观察,结果发现淋巴细胞、中性粒细胞和单核细胞在磁场作用10,25,30分钟组细胞结构无明显变化,15,20分钟部分标本其细胞结构有一定变化,小淋巴细胞核缩小,位于一侧,并有崩溃,中性粒细胞核缩小,细胞膜不齐,胞浆中出现空泡,单核细胞质内出现核糖聚集现象,呈团状,密度不均,红细胞在磁场作用15分钟组可见体积明显增大,不规则形红细胞较多,而空旋无磁对照组的上述血细胞结构均属正常,作者认为,部分受试者血细胞超微结构的改变,可能与个体差异有关。
白细胞在磁场作用下,产生应激反应,使细胞代谢加强,部分细胞发生超微结构的改变,也可能是引起白细胞减少的原因之一。
磁场使红细胞体积增大,携氧能力增加,有利于改善组织的供血供氧状态,促进代谢。
王信良等[2]报告,将小鼠置于磁感应强度0.3T 的直流电磁场中,每天10分钟,连续2周,结果白细胞数比实验前下降26.5%,停止磁场处理后2周,白细胞数继续下降32.4%,但其变化在正常值范围,作者认为可能是磁场对骨髓造血功能的抑制作用,或是磁场影响白细胞的寿命。
肖畅等[3]报告,应用峰值为15T的脉冲强磁场作用于人T淋巴细胞白血病MT-2细胞及正常人淋巴细胞的体外处理效应,使磁力线垂直通过细胞培养板,经触发按钮发放一个脉冲为处理1次,分别每天处理2,5,10,20次,连续处理4天,结果对正常人淋巴细胞无任何不良影响,但脉冲强磁场对MT-2细胞有明显的影响,细胞增加呈减弱的趋势,尤其经脉冲磁场每天作用20次对MT-2细胞的增加更为延缓。
浅析磁场的生物效应作者:曹泽斌来源:《科技风》2018年第15期摘要:科学实验证明,当磁场作用于人体时,磁场对生物的分子、细胞、神经、器官都有不同程度的影响。
要想全面把握磁场所引起的生物效应,就必须对磁场生物效应机制原理有个全面的认识。
本文对此进行了探讨。
关键词:磁场;生物效应;人体一、绪论很久以前,中国人和希腊人就发现自然界中存在一种具有奇异功能的石头,这种石头可以轻松的吸起铁制的东西,如铁片等。
而且不管人们如何摆动铁片,最终总是指向同一个地方,当时人们把这种石头称作吸铁石。
尽管限于当时的条件,人们无法弄清背后的原理,但这并不影响当时的人们来利用吸铁石的这种功能,早期的航海者将这种磁铁当做指南针来使用,有力的促进了大航海时代的发展,这也就是早期的磁铁。
到了18世纪,人们已经能够制造人造磁铁了,磁铁成为我们日常生活和工作中习以为常的强力材料了。
尽管这个过程十分缓慢,但人们对磁铁的认识越来越深刻,应用也越来越广泛。
20世纪20年代,我们制造出铝镍钴,后来相继制造出铁氧体和稀土磁铁等人造磁铁,磁学科技也得到了飞速发展,元件也更加小型化和实用化。
磁体周围存在磁场,磁铁的吸附作用是通过磁场产生的,磁场是一种看不见、摸不着,但实实在在存在的物质。
磁场具有波粒的辐射特性,两磁体不用接触就能发生作用。
时至今日,我们都知道,其实不仅是磁体,电流、运动电荷、变化电场周围空间都存在磁场,就连人体也会产生一定的磁性,我们的心脏、皮肤、大脑和其他器官都有电流活动,甚至头皮上的毛囊也会产生磁场,那么磁场对人体健康到底有何影响呢,关于这个问题,一直有着广泛的争议。
二、磁场生物效应的观点争鸣关于磁场的生物效应一直是莫衷一是、各抒己见。
(一)磁场生物正效应的观点早在1997年,在世界健康组织大会上,专家们就集中讨论磁场对人体的作用,并没有得出一致的结论,当时在生活、工作环境中静磁场流量密度低于2T时没有发现有害健康的报道。
后来随着研究的深入,关于磁场生物效应的研究不断深入。
磁场治疗技术在医疗领域中的应用随着科技的不断发展,磁场治疗技术日益成为医疗领域中的重要应用之一。
磁场治疗技术是利用磁场的生物学效应,通过调节人体内部磁场,达到治疗疾病、促进健康的目的。
磁场治疗技术的基本原理磁场治疗技术是基于人体内部存在的磁场与外部磁场的相互作用机制。
人类自身就存在着很强的磁场,例如心脏、脑、肌肉和骨骼等都具有磁场。
而在外部,地球也存在磁场。
人体内部的磁场是由离子流动和生物电在体内产生的。
通过利用外部磁场与人体内部磁场的相互作用,可以改变细胞内离子的流动,从而影响细胞活动,达到治疗疾病、促进健康的目的。
实验研究表明,磁场治疗技术对于心血管系统、神经系统、肌肉系统等多种疾病都有良好的治疗效果。
磁场治疗技术的应用1. 心血管系统所谓磁场治疗,最常见的就是用于心血管系统的治疗。
心律失常、高血压、动脉硬化等心血管疾病,都可以通过磁场治疗达到减轻症状、促进康复的效果。
磁场治疗技术可以改善心脏收缩力和血管弹性,增加心血管系统的氧气供给,减少血管内皮细胞的炎症,从而达到治疗和预防心血管疾病的目的。
2. 神经系统磁场治疗技术对于神经系统疾病的治疗也有良好的效果。
例如:帕金森病、脑卒中、神经痛等疾病都可以采用磁场治疗技术来辅助治疗。
磁场刺激可以促进神经元的再生和恢复,提高神经元的活性,加速神经肌肉的再生恢复,从而缓解神经系统疾病的症状。
3. 炎症磁场治疗技术可以应用于各类炎症的治疗。
例如:肌肉炎、关节炎、糖尿病足等炎症性疾病都可以用磁场治疗技术辅助治疗。
磁场可加速微循环的流畅,促进炎症部位的代谢反应,减轻炎症反应和疼痛。
4. 心理健康磁场治疗技术也可以应用于心理健康领域。
例如:抑郁症、焦虑症、睡眠障碍等症状都可以采用磁场刺激来改善。
磁场刺激可以调节神经系统和内分泌系统,从而降低不良情绪的发生率,提高睡眠质量,改善心理健康状况。
总之,磁场治疗技术是一种比较安全、无创的治疗方法,能够减轻疼痛、降低炎症、调节免疫系统、改善神经代谢等生理功能。
磁场的生物效应外加磁场对于生物的影响称为磁场生物效应.这是生物磁学中的重要研究内容之一.由于外加磁场的类型和生物层次的不同,磁场生物效应也有不同的表现.根据磁场的类型和强度,磁场生物效应可以分为强磁场效应、地磁场效应、微弱磁场效应相交变磁场效应.又根据磁场所作用的生物层次,磁场生物效应可以分为生物分子效应、细胞效应、组织器官效应和整体效应.这些效应对于不同生物又是多种多样的.下面介绍关于不同磁场的生物效应:..1. 强磁场生物效应在磁场生物效应一般指强度高于100奥①的磁场为强磁场.实验发现,强度高于14000奥的均匀恒定磁场,会抑制某些细菌的生长.把果蝇词养在均匀巨定磁场中,观察果蝇形态上的变化,发现磁场强度为100—I500奥时,形态并无显著的畸变,而当磁场强度增加到3000—4000奥时,畸变就迅速显著地增大.若把不同蛹龄或虫龄的果蝇放在强度约22000奥、梯度约9000奥/毫米的不均匀恒定磁场中,1小时龄的果蝇蛹经过几分钟便死亡,蛹龄较长的果蝇蛹经过10分钟后约有50%不能变为成虫,变为成虫后也不能活到1小时以上.把移植有肿瘤的小白鼠饲养在强度约2400一4500奥、梯度约1000奥/厘米的不均匀恒定磁场中,经过27天后,肿瘤完全消失,但不加磁场的对照搬到22天后便因肿瘤长大而死亡.磁场可以影响入红血球的凝结速率,实验表明强度为50、400和5000奥的均匀恒定磁场分别使红血球凝结速率增加21%、25%和30%...2. 地磁场生物效应地球表面的地磁场强度为~奥,它是地球上生物和人类生活环境的一种始终起作用的物理因素.生物和人类在长期的演化过程中,已经适应了这一物理环境.如果环境磁场剧烈变化,如地球上发生磁暴、地质时代的地磁场反向或进入宇宙空间的磁场,都可能影响生物和人的活动.还有一些生物利用了地磁场这一环境因素作为生物导航和定向的依据.已经发现一些水生细菌有沿着地磁场方向朝北游动的习性,称为向磁性.冬小麦在场(等效地磁场)中生长时,其根总是平行于地磁场或等效地磁场,也表现向磁性.还发现果蝇的ST基因有序程度的变化与地磁倾角的变化随季节呈现明显的相关性.经过长期试验表明;鸽子的导航与地磁场有密切的联系.最近已经在向磁性细菌(图1)和鸽子头部发现强磁性的Fe2O4微粒可能与它们的向磁性或导航有关...3. 微弱磁场的生物效应在生物磁学中,一般将一般将远低于地磁场强度的磁场(如<10-3奥)称为微弱磁场.例如行星际空间磁场约5×10-5奥,月球表面磁场小于10-5奥,地磁场在反向的过渡时期中估计可能降低到远低于正常值.进行微弱磁场的生物效应实验需要高灵敏度的磁强计和抵消地磁场的装置(图2).将眼虫藻、绿藻和纤毛虫在低于10-3奥的恒定微弱磁场中培养3个星期,发现其生长繁殖加快,但在102奥的强磁场中培养,生长繁殖却受到抑制.把小白鼠饲养在10-3的微弱磁场中,一年以后,其寿命比对照组缩短6个月,并且不能再生育...4. 交变感场的生物效应强度随时间变化的交变磁场与强度不随时间改变的恒定磁场对生物的效应是不完全相同的.后者(恒定磁场)为狭义的生物效应,前者(交变磁场)还具有电磁感应作用.人眼部受到变化的磁场作用时,在无光的情况下也会产生光的感觉,称为磁闪光现象.实验研究表明,磁闪光的强度和特性与交变磁场的频率有关.当频率为20至30赫兹时,磁闪光效应最为显著.实验还发现,强度为1500—1700奥、频率为12赫兹的交变磁场,可以抑制刚移植到小鼠身上的肿溜的长大.关于磁场对不同生物层次的效应:生物磁场一般有两个来源:一种是由于生物体中的电子传递和离子转移等过程的生物电流产生的;另一种是由于生物体内的强磁性物质(如Fe3Q4)磁化后产生的.生物磁场的强度是很微弱的,例如人的心脏活动产生的心磁场约10-7一10-8奥...1. 磁场对生物分子的效应实验观测到,生物胰蛋白酶在1500奥均匀恒定磁场中活性增大,因而在受紫外光辐射时,其光密度成小.在创伤愈合实验中,施加强度3000~4000奥、梯度200奥/厘米的不均匀恒定磁场,使成纤维细胞增殖和纤维化都减小,因而推断是不均匀磁场干扰了生物大分子的产生.把S—37肿瘤细跑放在3700奥均匀磁场中处理1—3小时,会使这肿瘤细胞中的脱氧核糖核酸(DNA)合成减少,表明磁场对这种合成有抑制的作用...2. 磁场对细胞的效应‘在对兔和小鼠的无血浆细胞作体外培养时,若施加强度14600奥,梯度5000奥/厘米的不均匀恒定磁,会显著增加这些细胞的生长速度.但把细胞放在组织培养液中培养时,若施加4000奥的均匀恒定磁场,则会抑制它的生长,把体外培养的S-37肿瘤细胞放在4400~8000奥的均匀恒定磁场中在37摄氏度处理18小时,观察到这些细胞发生退化变性现象,但如果放在1000一2000奥的均匀恒定磁场中作同样的处理,则未观察到任何可察觉的变化.这一实验表明这种退化交性现象需要磁场强度超过一定闻值时才会产生.还发现磁场强度对于s-37肿瘤细胞的呼吸有较大的影响,当磁场从80奥增加到7300奥时,细胞的呼吸由显著的兴奋状态转变到显著的抑制状态...3. 磁场对组织和器官的效应把水芹放在强度约:4000奥、梯度约5000奥/匣米的不均匀恒定磁场中,并消除重力的影响,可观察到水芹根经过几十分钟便向着磁场强度减弱的方向生,表现出“背磁性”(图3).把小鼠饲养在4200奥的均匀恒定磁场中,4天以后发现小鼠的肾上腺皮层的网状带组织受到破坏和变窄,骨髓中的巨核细胞因数减少,脾脏中的巨核细胞数却增加.比较磁场、光和声音对哺乳动物脑器官的影响,实验表明,磁场的影响虽较弱,但却表现出潜伏期长的抑制效应和滞后效应...4. 磁场对生物整体的效应许多实验结果表明,不论在均匀的还是不均匀的强磁场中,若干细菌的生长都会受到抑制.大麦的根和苗在1200奥的恒定磁场中.其生长速度都比不加磁场的对照组高为了观察磁场对生物遗传的影响,把果蛹蛹放在强度约22000奥、梯度约9000奥/厘米的不均匀巨定磁场中处理30分钟,观测到后代的发育时间有显著增加(图4),直到第30代(图中只画出第12代)也末恢复正常.关于磁场生物效率的机理,目前尚不十分清楚,仍在继续研究中.一般说来,磁场会使生物材料受到磁力(在不均匀磁场中)或磁转矩(在均匀磁场中)的作用,会使带电较子受到洛沦兹力的作用,而这些力和力短又会影响到生物体中电子(离子)的传递、自由基的运动、合顺磁离子的蛋白质和菌的活性、生物膜的渗透以及生物半导体(如叶绿裁口一些激素)和生物中水的性质.但其具体的过程和机制,既包括物理的作用,又涉及生物的结构和功能,是一个十分复杂而没有完全解决的问题.构成生物体的生物材料都具有一定的磁性.例如,大多数生物材料具有抗磁性,少数含过渡族金属离子(如此,Fe,Co,Ni,Mn离子)的生物材料在一定条件下只有顺磁性,最近在一些生物(如某些细菌、蜜蜂和鸽子)体中还发现了微量的亚铁磁性的Fe3O4颗粒.抗磁性和顺磁性属于强磁性.亚铁磁性属于强磁性.两者强弱相差可达几百万倍以上.在环境保护中的应用利用高梯度磁分离法,可以大量除去煤中污染性强的硫化物。
磁场生物效应的国内进展关键字:磁场生物磁场作用于生物体后,在生物体内引发一系列的生物学效应,为临床磁疗提供了理论基础。
磁场生物效应的研究,最近几年来国内又取得新的进展,为了增进磁疗应用的进展与增进磁场生物学效应的研究,对1991~1997年国内关于磁场生物学效应的研究进展,予以综述。
一、磁场对血细胞和血液流变学的阻碍于玲娜等[1]应用磁感应强度0.08~0.09T的旋磁作用于试管内的离体血液,别离作用于健康人离体血液10,15,20,25,30分钟,然后进行电镜观看,结果发觉淋巴细胞、中性粒细胞和单核细胞在磁场作用10,25,30分钟组细胞结构无明显转变,15,20分钟部份标本其细胞结构有必然转变,小淋巴细胞核缩小,位于一侧,并有崩溃,中性粒细胞核缩小,细胞膜不齐,胞浆中显现空泡,单核细胞质内显现核糖聚集现象,呈团状,密度不均,红细胞在磁场作用15分钟组可见体积明显增大,不规那么形红细胞较多,而空旋无磁对照组的上述血细胞结构均属正常,作者以为,部份受试者血细胞超微结构的改变,可能与个体不同有关。
白细胞在磁场作用下,产生应激反映,使细胞代谢增强,部份细胞发生超微结构的改变,也可能是引发白细胞减少的缘故之一。
磁场使红细胞体积增大,携氧能力增加,有利于改善组织的供血供氧状态,增进代谢。
王信良等[2]报告,将小鼠置于磁感应强度0.3T的直流电磁场中,天天10分钟,持续2周,结果白细胞数比实验前下降26.5%,停止磁场处置后2周,白细胞数继续下降32.4%,但其转变在正常值范围,作者以为可能是磁场对骨髓造血功能的抑制作用,或是磁场阻碍白细胞的寿命。
肖畅等[3]报告,应用峰值为15T的脉冲强磁场作用于人T 淋巴细胞白血病MT-2细胞及正常人淋巴细胞的体外处置效应,使磁力线垂直通过细胞培育板,经触发按钮发放一个脉冲为处置1次,别离天天处置2,5,10,20次,持续处置4天,结果对正常人淋巴细胞无任何不良阻碍,但脉冲强磁场对MT-2细胞有明显的阻碍,细胞增加呈减弱的趋势,尤其经脉冲磁场天天作用20次对MT-2细胞的增加更为延缓。
电磁场的生物效应对于磁场,物理学用磁场强度H和磁感应强度B来描述,物理学一开始用磁场强度H来描述磁场,后来才发现了和电场强度相对应的磁感应强度B。
严格地说,H和B不是同一术语,H是磁场,B是磁通密度(详细的分析可以参见《电动力学》),B是H所感应的磁场,所以B又叫磁感应强度。
二者的关系为:B = u H其中u是导磁率。
磁场可以产生于变化的电场(如电流就是变化的电场),也可以产生于永磁铁,地球就是一个巨大的磁铁,所以在地球表面的生物都会受到地磁场的作用,另外,人们还利用电、磁相互作用的原理制作了一些用来研究生物在各种不同强度下各种反映的仪器。
对作用和效应有影响的磁场参数有类型、磁强、均匀性、方向、作用时间等几个方面;就机体方面,对作用和效应有影响的机体因子有磁性、组成、种类、敏感性、部位和血流速度等几个方面。
生物效应:磁场从开始作用到看见机体的生物效应,一般有一段延迟时间。
其主要原因可能是产生效应的磁场必须同时同方向地作用一段时间(叫物理作用时间),机体才发生明显的生物效应,累积的物理量中的大多数,可看作是产生生物效应的阈前量,并且是可逆的。
所谓可逆是指磁场方向和坐标(器官、细胞、分子)方向发生变化时,其发生生物效应的可能性也变,甚至变得反相,因此应设法使磁场方向和机体方向的夹角不变,这样累积的物理量就可能达到阈值,产生可见的生物效应。
下面分别讨论地磁的生物效应以及磁效应在生物学中的一些具体的应用:(一)、地磁的生物效应很多的星体周围都具有磁场,地球也有,我们称之为地磁场。
地球近似一均匀磁化球,但有区变和日变,区变指因为区域的不同而不同,有的磁强差别很大。
每天变化约0.0001——0.0004G/day。
磁南(S)极在地球北极附近,磁北极在地球南极附近,平均的磁强为0.5G。
法国细菌学家巴斯德(Pasteur)1862年发现,地磁场能促进所有植物的生长,在S极下,青土豆比附近的成熟快些。
人体也同样是个磁体,也有两极。
生物磁学的效应及运用生物磁学(Biomagnetism)是研究生物体在活动时产生的磁场及其效应的科学,也是生物磁场的分支学科。
生物磁学研究了人体、动物和植物产生的生物磁场及其与生物体的功能和疾病之间的关系。
下面将详细介绍生物磁学的效应和运用。
1.生物磁场生物体如人体、动物和植物可以在生理活动期间产生微弱的磁场,通常以纳特(1nT=10-9T)计量。
这些磁场可以由细胞、组织和器官的活动产生,包括心脏、大脑、肌肉等。
研究生物磁场可以揭示生物体的生理功能和疾病状况。
2.磁感应人工耳蜗人工耳蜗是一种通过电磁感应原理实现的助听设备,用于通过电信号刺激听觉神经,帮助失聪人恢复听力。
它通过将外部声音转化为数字信号,然后在耳蜗植入体内,通过磁场感应刺激听觉神经传递声音信号。
3.生物磁测量技术生物磁学测量技术可以用来测量和分析人体或动物产生的生物磁场。
目前主要的生物磁测量技术有磁敏感计(Magnetometer)、超导量子干涉仪(SQUID)等。
这些技术可以帮助我们研究人体、动物和植物的生理活动和疾病状态,如脑电图(EEG)测量、心电图(ECG)测量等。
4.磁性纳米颗粒的疗法磁性纳米颗粒是一种具有磁性的微小颗粒,可以在外加磁场的作用下定位和控制其运动。
磁性纳米颗粒可以通过靶向药物输送、磁性热疗等方式应用于生物医学领域。
通过将药物绑定到磁性纳米颗粒上,可以实现针对性的药物输送,提高药物疗效,减少副作用。
另外,磁性纳米颗粒还可以通过局部加热治疗,如磁性高温疗法,用于癌症的治疗。
5.生物地磁导航许多动物在迁徙过程中能够利用地球磁场进行方向感知和导航,这被称为生物地磁导航。
例如,候鸟可以利用地球磁场来确定迁徙的方向和位置。
对生物地磁导航现象的研究可以帮助我们深入了解动物的迁徙行为,并为人类的导航技术提供灵感。
1.研究人类和动物的生理功能通过测量和分析生物磁场,可以研究人类和动物的生理功能,如脑电图和心电图的测量。
这有助于帮助我们了解脑机制和心脏功能,并对相关疾病进行诊断和治疗。
磁场的生物学效应研究
贾建治;李翔
【期刊名称】《天津师范大学学报(自然科学版)》
【年(卷),期】2000(020)002
【摘要】用均匀交变磁场对小白鼠的自主活动及戊巴比妥钠阈下催眠影响进行了实验研究.结果表明, 所用磁场具有一定的镇静、催眠作用.
【总页数】3页(P63-65)
【作者】贾建治;李翔
【作者单位】天津市医药科学研究所,天津,300070;天津市医药科学研究所,天津,300070
【正文语种】中文
【中图分类】Q64
【相关文献】
1.低强交变磁场促进灰树花液体发酵及其生物学窗效应研究 [J], 李心怡;叶晓非;马海乐;刘伟民;孙玲;孔娜
2.骨组织生物磁性及磁场生物学效应研究 [J], 丁冲;陈晓虎;李迪杰;宁旦旦;商澎
3.骨组织生物磁性及磁场生物学效应研究 [J], 丁冲;陈晓虎;李迪杰;宁旦旦;商澎;
4.极低频电磁场生物学效应的细胞和分子生物学研究进展 [J], 刘赟;翁恩琪
5.脉冲电磁场成骨生物学效应的研究进展 [J], 卓祥龙(综述);胡建中(审校)
因版权原因,仅展示原文概要,查看原文内容请购买。
磁场对人体血液的作用磁场作用于生物体后,在生物体内引起一系列的生物学效应,为临床磁疗提供了理论基础。
磁场生物效应的研究,近年来国内又取得新的进展,为了促进磁疗应用的发展与促进磁场生物学效应的研究,对1991~1997年国内关于磁场生物学效应的研究进展,予以综述。
一、磁场对血细胞和血液流变学的影响于玲娜等[1]应用磁感应强度0.08~0.09T的旋磁作用于试管内的离体血液,分别作用于健康人离体血液10,15,20,25,30分钟,然后进行电镜观察,结果发现淋巴细胞、中性粒细胞和单核细胞在磁场作用10,25,30分钟组细胞结构无明显变化,15,20分钟部分标本其细胞结构有一定变化,小淋巴细胞核缩小,位于一侧,并有崩溃,中性粒细胞核缩小,细胞膜不齐,胞浆中出现空泡,单核细胞质内出现核糖聚集现象,呈团状,密度不均,红细胞在磁场作用15分钟组可见体积明显增大,不规则形红细胞较多,而空旋无磁对照组的上述血细胞结构均属正常,作者认为,部分受试者血细胞超微结构的改变,可能与个体差异有关。
白细胞在磁场作用下,产生应激反应,使细胞代谢加强,部分细胞发生超微结构的改变,也可能是引起白细胞减少的原因之一。
磁场使红细胞体积增大,携氧能力增加,有利于改善组织的供血供氧状态,促进代谢。
王信良等[2]报告,将小鼠置于磁感应强度0.3T的直流电磁场中,每天10分钟,连续2周,结果白细胞数比实验前下降26.5%,停止磁场处理后2周,白细胞数继续下降32.4%,但其变化在正常值范围,作者认为可能是磁场对骨髓造血功能的抑制作用,或是磁场影响白细胞的寿命。
肖畅等[3]报告,应用峰值为15T的脉冲强磁场作用于人T淋巴细胞白血病MT-2细胞及正常人淋巴细胞的体外处理效应,使磁力线垂直通过细胞培养板,经触发按钮发放一个脉冲为处理1次,分别每天处理2,5,10,20次,连续处理4天,结果对正常人淋巴细胞无任何不良影响,但脉冲强磁场对MT-2细胞有明显的影响,细胞增加呈减弱的趋势,尤其经脉冲磁场每天作用20次对MT-2细胞的增加更为延缓。
第16卷2期四川省卫生管理干部学院学报1997年6月 V o l.16JOU RNAL O F S I CHUAN CON T I NU I N G EDU CA T I ON COLL EGE O F M S June.1997 磁场的生物效应李 新 李巧云 物理学教研室 药理学教研室 磁场生物效应是生物磁学研究的一个重要内容。
地球上的生物是在地球磁场(很弱,约015G)的作用下生存和发展的,且已适应地磁并把它作为正常生活条件的一部份,如同地球上的温度、气压等。
当人为地改变生物体周围的磁场时,破坏了生物体原来的磁平衡状态,由此产生的一系列生物体生理或心理变化,称为磁场的生物效应。
1 发展概况磁场的生物效应是近二、三十年才逐渐受到人们的重视,并且首先是从研究电磁场对人体造成的危害开始。
象X射线、Χ射线具有电离作用的辐射对人体的伤害作用及在医学上的诊断治疗作用均被广泛认识和接受。
长期以来,由于低频率的电磁场(50H z~60H z)对组织不产生热效应和可感知的物理或化学反应,因此人们一直认为这种电磁场对生物体没有任何生物学效应。
直到1967年苏联人V yalov[1]调查了1068名接触磁场强度为01001T~011T(1T=104G)的职业人员,发现有的人产生不明原因的植物神经系统失调,如疲乏、头痛、失眠、消化不良等。
这些效应大多是暂时性功能性变化,但经过3年~5年也有产生不可逆的器质变化。
1979年, W etheri m er和Jeeper[2]首次报道儿童白血病发病率明显升高与居住的地方过于靠近高压线有关。
尽管这一重要的流行病学研究在当时被认为缺乏精确的电磁场强度计和病例收集,但仍然引起了强烈反响。
进一步研究发现,凡是接近强磁场的均增加患白血病和脑瘤的机会。
这些情况使有关学者开始关注磁场的生物效应。
随着核磁共振和磁疗器械的应用,人们接触强磁场的机会越来越多,更加重视磁场生物效应的研究,并从动物实验和临床观察应用两方面取得了相当的成果。
磁场的生物学效应
磁场是我们日常生活中常见的物理现象,它不仅对物质产生影响,也对生物体产生一定的生物学效应。
磁场对生物体的影响主要表现在生物体的生长发育、生物体的行为和生物体的生理功能等方面。
磁场对生物体的生长发育具有一定的影响。
许多研究表明,磁场可以促进植物的生长和发育。
例如,磁场可以提高植物的光合效率,促进光合作用的进行,从而增加植物的生物量和产量。
此外,磁场还可以改变植物的根系结构,使根系更加发达,增加植物对养分和水分的吸收能力。
同时,磁场还可以改变植物的生物节律,促进植物的生长进程。
磁场对生物体的行为也有一定的影响。
许多动物对磁场具有感应能力,可以利用磁场进行导航和定位。
例如,候鸟可以利用地球的磁场进行迁徙,鲨鱼可以利用磁场定位,找到迷路的归途。
此外,一些昆虫和鱼类也具有对磁场的感应能力,可以利用磁场进行方向感知和行为调节。
磁场还对生物体的生理功能产生一定的影响。
磁场可以影响生物体的代谢过程和免疫功能。
许多研究表明,磁场可以改变生物体的酶活性,促进代谢物的合成和降解。
此外,磁场还可以增强生物体的免疫功能,提高生物体对疾病的抵抗力。
磁场对生物体的影响还涉及到细胞的增殖和分化、DNA的复制和修复等生理过程。
虽然磁场对生物体产生的生物学效应已经被广泛研究,但其具体机制仍然不清楚。
有学者认为,磁场对生物体的影响可能与生物体内的磁性物质有关。
例如,生物体内的铁、镍等金属元素可能对磁场具有感应作用,从而改变生物体的生物学功能。
此外,磁场还可能通过改变生物体内的离子浓度和电位差等方式影响生物体的生物学功能。
总的来说,磁场对生物体具有一定的生物学效应,包括对生物体的生长发育、行为和生理功能的影响。
磁场可以促进植物的生长和发育,影响动物的行为和导航能力,改变生物体的代谢和免疫功能。
然而,磁场对生物体的影响机制尚不清楚,需要进一步的研究来揭示其内在机理。
希望通过对磁场的生物学效应的研究,能够更好地了解和应用磁场对生物体的影响,为农业生产和医学治疗等领域提供科学依据。