初中:平面解析几何必备公式
- 格式:doc
- 大小:16.18 KB
- 文档页数:10
初中数学几何公式大全几何是数学的一个分支,主要研究点、线、面以及它们之间的关系和性质。
在初中数学中,几何是一个重要的学习内容,涉及到很多基本概念和公式。
下面将详细介绍初中数学几何公式的大全。
一、平面几何公式1. 直角三角形的勾股定理:在一个直角三角形中,直角边的平方等于其他两边平方的和。
即a² + b² = c²,其中a和b为直角边,c为斜边。
2. 任意三角形的海伦公式:在任意三角形ABC中,设a、b、c为边长,p为半周长,则三角形的面积S可以通过海伦公式计算:S = √[p(p-a)(p-b)(p-c)]。
3. 任意三角形的正弦定理:在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的角度,则正弦定理可以表达为a/sinA = b/sinB = c/sinC。
4. 任意三角形的余弦定理:在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的角度,则余弦定理可以表达为c² = a² + b² - 2ab*cosC。
5. 任意三角形的面积公式:在任意三角形ABC中,设a、b、c为边长,h为对应高,则三角形的面积S可以通过公式S = 1/2 * b * h计算。
6. 等腰三角形的性质:在等腰三角形ABC中,两底边相等,顶角相等,底角相等。
7. 相似三角形的性质:如果三角形ABC和三角形DEF相似,那么它们的对应边长之比相等,即AB/DE = BC/EF = AC/DF。
8. 平行线的性质:平行线具有以下性质:互不相交;位于同一平面中;在同一平面内,与同一直线相交的两条平行线,与第三条直线所成的对应角相等;两个平行线被一条截线切割后,对应角相等。
二、立体几何公式1. 立方体的体积公式:立方体的体积V等于边长的立方,即V = a³,其中a为边长。
2. 正方体的面积公式:正方体的表面积S等于6倍边长的平方,即S = 6a²,其中a为边长。
初中几何全部定理、公式1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)高中立体几何长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2 =π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)。
平面解析几何知识点总结直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2;(3) 当D2+E2-4F<0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。
平面解析几何的基本公式平面解析几何是数学中的一个重要分支,它研究平面上点、线、圆等几何图形的性质和关系。
在平面解析几何中,有一些基本公式被广泛应用于求解几何问题。
本文将介绍平面解析几何的基本公式,并给出相应的示例和应用。
1. 点到直线的距离公式平面解析几何中,求点到直线的距离是一个常见的问题。
设直线的方程为Ax + By + C = 0,点的坐标为(x0, y0),则点到直线的距离公式如下:d = |Ax0 + By0 + C| / √(A^2 + B^2)示例:求点P(1, 2)到直线2x + 3y - 6 = 0的距离。
解:代入公式,得到d = |2*1 + 3*2 - 6| / √(2^2 + 3^2) = |7| / √13 ≈ 7 / 3.61 ≈ 1.942. 直线的斜率公式及两直线的夹角公式直线的斜率描述了它的方向性质,在平面解析几何中,直线的斜率可以表示为k = tanθ,其中θ为直线与x轴的夹角。
直线斜率和两直线夹角的公式如下:k = (y2 - y1) / (x2 - x1)θ = arctan(k)示例:已知两点A(1, 2)和B(3, 4),求直线AB的斜率和与x轴的夹角。
解:代入公式,得到k = (4 - 2) / (3 - 1) = 2 / 2 = 1,θ = arctan(1) ≈ 45°3. 两直线的垂直和平行判定公式在平面解析几何中,判断两条直线是否垂直可以通过斜率来判断。
若两直线斜率分别为k1和k2,则它们垂直的条件是k1 * k2 = -1。
判断两条直线是否平行可以通过比较斜率来判断。
若两直线斜率分别为k1和k2,则它们平行的条件是k1 = k2。
示例:已知直线L1过点A(1, 2)且斜率为2,直线L2垂直于L1,求直线L2的方程。
解:由L1斜率为2,得到L2斜率为-1/2。
过点A(1, 2)且斜率为-1/2的直线方程为y - 2 = (-1/2)(x - 1),整理得到直线L2的方程为2x + y - 4 = 0。
解析几何的基础知识解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和关系。
通过引入坐标系,解析几何将几何问题转化为代数问题,从而使得几何问题的研究更加简洁和精确。
本文将介绍解析几何的基础知识,包括平面直角坐标系、点的坐标、直线的方程和距离公式等内容。
一、平面直角坐标系平面直角坐标系是解析几何的基础,它由两条相互垂直的坐标轴组成。
通常我们用x轴和y轴表示,x轴水平向右延伸,y轴垂直向上延伸。
坐标轴的交点称为原点,用O表示。
平面直角坐标系将平面划分为四个象限,分别记作第一象限、第二象限、第三象限和第四象限。
二、点的坐标在平面直角坐标系中,每个点都可以用一个有序数对表示,称为点的坐标。
设点P的坐标为(x, y),其中x表示点P在x轴上的投影长度,y表示点P在y轴上的投影长度。
例如,点A的坐标为(2, 3),表示点A在x轴上的投影长度为2,在y轴上的投影长度为3。
三、直线的方程在解析几何中,直线可以用方程表示。
一般来说,直线的方程有两种形式:一般式和斜截式。
1. 一般式方程一般式方程的形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
例如,直线L的一般式方程为2x + 3y - 6 = 0。
2. 斜截式方程斜截式方程的形式为y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。
斜率表示直线的倾斜程度,斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜。
例如,直线L的斜截式方程为y = 2x + 3。
四、距离公式在解析几何中,我们经常需要计算两点之间的距离。
设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离可以用以下公式表示:d = √((x2 - x1)^2 + (y2 - y1)^2)其中d表示点A和点B之间的距离。
例如,点A的坐标为(2, 3),点B的坐标为(5, 7),则点A和点B之间的距离为d = √((5 - 2)^2 + (7 - 3)^2) = √(3^2 +4^2) = √(9 + 16) = √25 = 5。
1、直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y )2、一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:BCx B A y --=,即,直线的斜率:BAk -=. 3、两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .4、平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 5.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA C By Ax d +++=.6.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.7.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=. (2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=. (3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数. ② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.8.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . 注)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. 1、圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)2.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d3.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- . (3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =. 4.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 三、求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(,)x y 表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{}()P M p M =; (3)用坐标表示条件()p M ,列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.简言之:①建系、取点 ②列式 ③代换 ④化简 ⑤证明.四、椭圆1、椭圆的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =+=>注意:当122a F F =时,表示线段12F F ;当122a F F <时,轨迹不存在. 2(e 可以刻画椭圆的扁平程度,e 越大,椭圆越扁,e 越小,椭圆越圆.)222a b c =+ 2.点P 是椭圆上任一点,F 是椭圆的一个焦点,则max PF a c =+,min PF a c =-. 3.点P 是椭圆上任一点,当点P 在短轴端点位置时,12F PF ∠取最大值.4.椭圆的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(01)ce e a=<< 时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的 离心率.5直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法(2)弦长公式:设直线y kx b =+交椭圆于111222(,),(,)P x y P x y则1212||PP x =-,或1212||PP y =-(0)k ≠. .椭圆方程22221(0)x y a b a b+=>> 常用三角换元为cos ,sin x a y b θθ==五、双曲线1.双曲线的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =-=<.注意:当122a F F =时,表示分别以1F 、2F 为端点的两条射线;当122a F F <时,轨迹不存在. 2.双曲线的标准方程与几何性质:(注:222c a b =+; e 越大,双曲线的张口就越大.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =3.双曲线的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(1)ce e a=> 时,这个点的轨迹是双曲线,定点是双曲线的焦点,定直线叫做双曲线的准线,常数e 是 双曲线的离心率.4.直线与双曲线位置关系同椭圆. 特别地,直线与双曲线有一个公共点,除相切外还有当直线与渐进线平行时,也是一个公共点.5.共渐近线的双曲线可写成2222(0)x y a b λλ-=≠ ;共焦点的双曲线可写成2222221()x y b a a b λλλ-=-<<-+. 六、抛物线抛物线的标准方程与简单几何性质:注意:1. p 的几何意义:p 表示焦点到准线的距离. 2p 表示抛物线的通径(过焦点且垂直于轴的弦).2. 若点00(,)M x y 是抛物线22(0)y px p =>上任意一点,则02p MF x =+. 3.若过焦点的直线交抛物线22(0)y px p =>于11(,)A x y 、22(,)B x y 两点,则弦长12AB x x p =++.。
初中数学:常见的平面图形常用公式大全发布时间:2012-03-28 11:41 来源:武汉巨人学校作者:巨人小郭导读:武汉巨人教育网小编为大家整理的初中平面图形公式大全,希望对大家有所帮助。
如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆也都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。
常见平面图形常用公式:长方形S=ab C=(a+b)×2正方形S=aa 或对角线×对角线÷2 C=4a平行四边形S=ah三角形S=ah÷2梯形S=(a+b)×h÷2圆形S=πrr C=πd椭圆S=πrr平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2 =mh圆r-半径d-直径C=πd=2πrS=πr2扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
解析几何公式大全几何学是研究图形和空间的性质、变换和计量的一门学科。
在几何学中,有许多重要的公式用于解决各种几何问题。
这些公式涵盖了面积、体积、周长等几何属性的计算方法。
接下来,我们将解析一些几何公式,介绍它们的推导、应用和实际意义。
一、平面图形的公式:1.面积公式:-矩形(正方形)的面积公式:面积=长×宽(面积=边长×边长)-三角形的面积公式:面积=1/2×底×高-梯形的面积公式:面积=1/2×(上底+下底)×高-平行四边形的面积公式:面积=底×高2.周长公式:-矩形(正方形)的周长公式:周长=2×(长+宽)(周长=4×边长)-三角形的周长公式:周长=边1+边2+边3-梯形的周长公式:周长=上底+下底+边1+边2-平行四边形的周长公式:周长=2×(边1+边2)3.直角三角形的公式:-勾股定理:c²=a²+b²(其中c表示斜边的长度,a和b表示两条直角边的长度)- 正弦定理:a/sinA = b/sinB = c/sinC(其中 a、b、c 分别表示三角形的边长,A、B、C 分别表示对应角的度数)- 余弦定理:c² = a² + b² - 2abcosC(其中 a、b、c 分别表示三角形的边长,C 表示夹在 a 和 b 之间的角度)二、立体图形的公式:1.体积公式:-立方体的体积公式:体积=长×宽×高(体积=边长³)-圆柱体的体积公式:体积=圆的面积×高(体积=πr²h)-锥体的体积公式:体积=1/3×圆的面积×高(体积=1/3×πr²h)-球体的体积公式:体积=4/3×πr³2.表面积公式:-立方体的表面积公式:表面积=6×面的面积(表面积=6×边长²)- 圆柱体的表面积公式:表面积= 2 × 圆的面积 + 侧面积(表面积= 2πr² + 2πrh)- 锥体的表面积公式:表面积 = 圆的面积 + 侧面积(表面积 =πr² + πrl)-球体的表面积公式:表面积=4×πr²以上公式是几何学中常用的一些公式,它们在解决各种几何问题时非常有用。
平面解析几何公式 1、 直线的斜率坐标公式:2121y y x x -- 2、直线方程点斜式:00(x x )y y k -=- 斜截式:y kx b =+ 两点式:112121y y x x y y x x --=-- (1212,x x y y ≠≠) 截距式:1x y ab+=一般式:0ax by c ++= (,a b 不同时为0) 3、两点之间的距离公式:A (11,x y )B (22,x y )两点的距离公式:4点到直线的距离公式:点P (00,x y )到直线0ax by c ++=的距离为:d =5、两平行直线的距离公式:直线1L :10Ax By C ++= 直线2L :20Ax By C ++=的距离公式为:d =6、圆的标准方程:222(x a)(y b)r -+-=圆心是:(a,b)o ,半径是:r 7圆的一般方程:220x y Dx Ey C ++++=圆心是:(,)22D E o --,半径是:r =8、椭圆的标准方程焦点在x 轴上的标准方程:22221x y a b+= (a b 0)>> 焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b+= (a b 0)>> 焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222a b c =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=9、双曲线的标准方程:焦点在x 轴上的标准方程:22221x y a b-= (a 0,b 0)>>焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b-= (a 0,b 0)>>焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222c a b =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=10、抛物线的标准方程:(1)焦点在x 轴的正半轴时:22y px = (0p >)焦点坐标:(,0)2p F 准线方程:x 2p=-(2)焦点在x 轴的负半轴时:22y px =- (0p >)焦点坐标:(,0)2p F -准线方程:x 2p=(3)焦点在y 轴的正半轴时:22x py = (0p >)焦点坐标:(0,)2p F 准线方程:2py =-(4)焦点在y 轴的负半轴时:22x py =- (0p >)焦点坐标:(0,)2p F -准线方程:2p y =。
初中:平面解析几何必备公式
(文/李文龙)
初三的同学们现在应该学习二次函数了吧。
再此之前你必须把平面解析几何的一些常识和公式弄清楚。
本文将从我们熟知的定理出发,通过一系列证明,最后得出好用的结论。
记住这些结论,从初三到高三你就可以自由的畅游在坐标系中,游刃有余。
以下内容有的很基础,有的则需借助高中知识,对于学生学习水平的要求也不一样,我以精英班★★★,目标班★★和提高班★为要求,每一部分后面会有能力等级的标注。
学习★是考试必备的技能,学习★★能让你做题更快,学习★★★可以让你做题方法增多。
文章较长,因此建议先收藏再慢慢学
目录
(一)两点之间
1、求距离★
2、取中点★
3、算斜率★★
4、速求解析式★★
5、构造圆★★★
(二)点线之间
1、距离公式
① 利用圆方程★★★
② 利用斜率关系★★
③ 利用相似★★
(三)两线之间
1、平行★★★
2、垂直★★
(一)两点之间
在坐标系下给出两个已知的定点可以算出那些东西呢?以下结论不要错过!
1,求距离★
如下图坐标系中有两点A(x1,y1)和B(x2,y2),
求线段AB的长度
我们分别作水平和竖直线如下图所示,
可以得到Rt△ABC,其中C(x2,y1),
这样AC的长为丨x2-x1丨
由于不知道x2和x1谁大,线段长度为正,因此需要加绝对值。
同理BC长为丨y2-y1丨。
根据勾股定理可知
举例:A(2,1),B(-2,4)则
这样就免去画图了,一步出答案。
因此必须记住这个公式。
2,取中点★
坐标系中有两点A(x1,y1)和B(x2,y2),求AB 中点C的坐标
若A和B在x轴同侧,如下图,则y1和y2都大于零
我们向横轴作垂线,AD=y1,BF=y2,
四边形ADFB是直角梯形,
CE是中位线,y=CE=(y1+y2)/2,
同理都向纵轴作做垂线,可得x=(x1+x2)/2
若A和B在x轴两侧,如图,y1<0,y2>0
我们作水平和竖直辅助线如下图:BN=y2-y1,
CM为△ABN中位线,CM=(y2-y1)/2。
而EM=-y1
则y=CE=(y2-y1)/2-(-y1)=(y1+y2)/2。
同理x=(x1+x2)/2
因此,给定平面的两点我们就可以求出其中点坐标
x=(x1+x2)/2
y=(y1+y2)/2
就是算术平均数!这在二次函数利用对称轴求对称点很实用,反过来,让你求点A关于点B的对称点也可以利用这个公式。
3,算斜率★★
如下图,已知A(x1,y1)B(x2,y2),求AB直线解析式的k
利用待定系数法设AB:y=kx+b,将A(x1,y1)B(x2,y2)带入得
两式相减并化简得
这样我们就可以快速求出直线斜率了:纵坐标之差除以横坐标之差注意要对应,若2纵坐标的在前面,则对应的2的横坐标也应该在前面。
举例,若A(-2,5),B(1,-4),则
4,速求解析式★★
如下图,已知A(x1,y1)B(x2,y2),求AB直线解析式。
我相信小伙伴们用待定系数法求这个一定很666,但每
次都重复同样的步骤烦不烦?如何快速写出来解析式呢?
首先根据上面的推导你已经知道这个直线的斜率k了我假设AB上有任意一点C(x,y)则AC的斜率也是k,那么
由于x1,y1和k是已知数,C(x,y)代表AB上的任意点,故AB的解析式为
如果用BC算,也可以写成
举例,若A(-2,5),B(1,-4),则口算可知k=-3
若利用点A,可得AB解析式为:y-5=-3(x+2)
若利用点B,可得AB解析式为:y+4=-3(x-1)
化简完是一样的。
这样求解析式可以为我们省去解二元一次方程组,我们知道一个点和一个斜率就可以写出解析式,这种表示解析式的方法我们又称为“点斜式”
把解析式写成点斜式有什么好处?
比如过点A(2,5)的直线与抛物线y=-x²-2x-3只有一个交点,求直线解析式
我们就可以直接设直线为y-5=k(x-2),然后和抛物线
联立,令△=0即可
5,构造圆★★★
如下图,已知A(x1,y1)B(x2,y2),以A为圆心,AB 为半径做圆,求这个圆的表达式
设C(x,y)是圆上任意一点,我们只需要找到x与y的等式关系即可
因为AB=AC,而AB的长我们可求,也就是圆的半径r 整理得
这就是圆的标准方程
举例:若A(2,1),B(-2,4),可求AB=5,则以A为圆心,AB为半径的圆的表达式为
(x-2)²+(y-1)²=5
同问:掌握圆的表达式有什么用?
这时候假如让你求某条直线和这个圆相交的问题,就可以转化为直线与圆的表达式联立解一元二次方程求交点的
问题了,避免了作几何辅助线,可以把几何问题通过建立直角坐标系转变为代数问题。
(二)点线之间
1,距离公式
给定一个点,和一条直线,比较常见的是求点到直线的距离
如图所示,已知直线y=kx+b(以下简称直线)和点P (x0,y0)。
其中,k,b,x0,y0 都是常数。
求P到直线的距离PQ
下面我将跟大家分享三种求法
① 利用圆方程★★★
假设PQ=r,那么以P为圆心r为半径的圆为
和直线y=kx+b联立,因为直线与圆相切,故只有一个
交点,因此这个方程组只有一个解,利用△=0,可以解出r 但这毕竟用了圆的方程以前没学过,不好理解,那我们换一个。
② 利用斜率关系★★
相信很多同学知道两直线垂直,斜率乘积得-1这个事吧!
因为PQ和直线垂直,则PQ的斜率为-1/k,因此PQ
的解析式为
再与直线y=kx+b联立,可得交点Q的坐标,再根据两点之间的距离公式得出PQ的长。
以上两种思路都涉及到了一点点以前没涉及到的知识(其实也不难理解)。
大家可以想想,点是定的,直线是定的,说明距离也是定的,那么有没有现成的点到直线距离公式?我以后直接套公式不就得了?
当然有!接下来我用初中方法给大家推导
③ 利用相似★★
如下图,过P作x轴的垂线,交直线于A,交x轴与B,设直线与x轴交于C,
易证△APQ∽△ACB,我们只需要利用四个已知参数k,b,
x0,y0表示出线段AP,AC,BC。
再通过相似的比例关系可以求出PQ
我们先求AP
这里需要注意,直线和点P是任意的,因此A和P的纵坐标不一定谁大,所以线段AP的长度需要加绝对值接下来求BC
最后求AC
准备工作都做完啦,因为△APQ∽△ACB
上面这个红色的式子就是点到直线的距离公式,其实很好记
先把直线y=kx+b变成kx+b-y=0的形式,然后把x和y 换成给定点的坐标,
再除以根号下1+k²,就可以了注意加绝对值。
举例,求点P(2,3)到直线y=2x+3的距离
先把y=2x+3变成2x+3-y=0,然后把P(2,3)带入得2×2+3-3=4,再除以根号5即可
(三)两线之间
两条线的关系,常考的是平行和垂直
1、平行★★★
两条平行线的斜率k相等,截距b不等。
这是常识,不多讲了,使我们感兴趣的是两条平行线间的距离怎么求?
如下图我们想求两平行线之间的距离PQ,因为我们知道点到直线的距离,所以在b2的直线上任取一点P(x0,kx0+b2)。
再利用点到直线距离求出PQ即可
红色的就是两条平行线的距离公式,更好记,用截距的距离除以根号下1+k²
举例:求y=3x-1与y=3x-7的距离
2,垂直★★
两直线垂直只需要知道斜率互为负倒数即可,这个推导方法我之前写过
戳↓↓↓
两直线垂直,为什么斜率互为负倒数
好了,从早上到现在整整敲了8个小时,手也酸了。
今天就先说这些,大家有问题欢迎留言指正。
如果你觉得对你有用,一定认真整理笔记把这些内容变
成自己肚子里的干货!
公众号ID:enjoymath
李文龙数学:学习数学的不二之选
从心得,到方法;从科普,到笔记
满满的干货,你值得拥有!。