第八章地下洞室围岩稳定性分析
- 格式:docx
- 大小:36.63 KB
- 文档页数:1
洞室围岩稳定性研究及支护方案建议一、引言洞室围岩稳定性一直是地下工程中极为重要的问题,它关系到工程的安全与可靠性。
在本文中,我们将针对洞室围岩的稳定性问题进行研究,并提出相应的支护方案建议。
二、背景地下洞室工程是人类利用地下空间资源的重要手段,广泛应用于地铁、隧道以及水利、矿山等领域。
然而,由于地质条件的复杂性,洞室围岩稳定性问题一直困扰着工程师们。
处理好围岩的稳定性问题,将为地下工程的安全运行提供保障。
三、研究现状目前,对于洞室围岩稳定性的研究已取得一定成果。
研究者们通过实地观测、数值模拟以及室内试验等手段,深入探究了围岩的力学性质、变形特征以及破坏机理。
这些研究成果为我们提供了宝贵的基础数据。
四、围岩力学性质分析围岩的力学性质是洞室稳定性研究的基础,通过对岩石的抗压强度、弹性模量、滑移特性等进行测试和分析,可以对围岩的稳定性进行评估。
此外,还需考虑岩石的节理、岩石的裂缝和破碎程度等因素。
五、围岩变形特征研究围岩在受到应力作用下会发生变形,这种变形特征对于洞室稳定性的影响至关重要。
当前的研究主要集中在围岩的压缩变形、剪切变形以及破裂变形等方面。
了解围岩的变形特征可以为后续的支护方案制定提供重要参考。
六、围岩破坏机理探究围岩破坏是围岩稳定性问题中的核心内容,它关系到洞室的整体稳定性。
目前的研究主要集中在岩体的破裂方式、破裂类型、破裂力学以及围岩的支护措施等方面。
通过对围岩破坏机理的深入探究,我们可以更好地预测围岩的破坏情况,并制定相应的支护方案。
七、支护方案建议针对洞室围岩的稳定性问题,我们可以采取多种支护方案来增强围岩的稳定性。
具体的支护措施包括加固围岩、注浆加固、锚杆加固等。
在选择支护方案时,需要综合考虑洞室的大小、围岩的性质、地质条件以及经济成本等因素,并进行合理的设计和施工。
八、总结通过对洞室围岩稳定性的研究,我们可以更好地了解围岩的力学性质、变形特征以及破坏机理,为地下工程的安全运行提供保障。
洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
地下洞室围岩稳定性分析在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。
第一章绪论岩体复杂性表现在以下几个方面:(1)不连续性(2)非均质性(3)各向异性(4)岩体中存在不同于自重应力场的天然应力场(5)岩体赋存于一定地质环境之中,岩体中的水、温度、应力场,对岩体性质有较大的影响。
第二章:岩石和岩体的地质特征岩石:矿物,岩屑的集合体。
是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。
结构面:是指地质发展过程中,在岩体内形成的具有一定的延伸方向和长度厚度相对较小的地质界面或带。
岩体:指地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体。
岩石风化指标:定性指标:颜色,矿物蚀变程度,破碎程度及开挖锤击技术特征等。
定量指标:风化孔隙率指标和波速指标等。
风化系数;结构面规模:(1)Ⅰ级指大断层或区域性断层,一般延伸约数公里至数十公里以上,破碎带宽约数米至数十米乃至几百米以上。
(2)Ⅱ级指延伸长而宽度不大的区域性地质界面,百米至千米单位。
(3)Ⅲ级指长度数十米至数百米的断层、区域性节理、延伸较好的层面及层间错动等。
(4)Ⅳ级指延伸较差的节理、层面、次生裂隙、小断层及较发育的片理、劈理面等。
是构成岩块的边界面,破坏岩体的完整性,影响岩体的物理力学性质及应力分布状态。
(数十厘米-米)(5)Ⅴ级又称微结构面。
常包含在岩块内,主要影响岩块的物理力学性质,控制岩块的力学性质。
结构面线密度和间距: 1、线密度(Kd)是指结构面法线方向单位测线长度上交切结构面的条数(条/m)。
2、间距(d)则是指同一组结构面法线方向上两相邻结构面的平均距离。
RQD:岩体质量指标RQD:是长度大于10cm的岩心累计长度与回次进尺的比值。
RQD与方向有关,按地质分层计算RQD值大于20厘米为长柱状;10—20厘米为短柱状;小于1厘米为扁柱状;大于5厘米为块状;2---5厘米为碎块状;小于2厘米为碎屑状、粉末状。
岩体5种结构类型:1.整体状结构 2.块状结构 3.层状结构 4.碎裂状结构 5.散体状结构岩体工程分类的目的:通过分类,概括地反映各类工程岩体的质量好坏,预测可能出现的岩体力学问题,为工程设计,支护衬砌,建筑物选型和施工方法选择提供参数和依据。
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
第八章地下洞室围岩稳定性分析
一、地下洞室围岩稳定性
地下洞室围岩稳定性是指开挖地下洞室时,所受水、渗、力、温度变
化作用下,围岩在洞室形成过程中,确保其稳定性,防止发生失稳破坏的
能力。
地下采掘洞室围岩稳定性受到岩性、受力形式、受力程度、渗透性、温度变化、洞室形状及支护形式等多种因素的影响,是复杂的工程力学问题。
二、稳定性分析指标
1、岩体的稳定性
假设在洞室围岩失稳前,围岩的状态是完全稳定的,所以在洞室围岩
的稳定性分析中,首先要对围岩的物理力学性质进行研究,确定洞室围岩
的初始稳定性或不稳定性,对洞室围岩的加载稳定性进行评价,并确定必
要的加固措施。
2、洞室围岩作用的潜在施工影响
稳定性分析还要考虑洞室的施工对围岩的影响,如渗漏的影响,支撑
结构的影响,排水管的影响,洞室入口封闭的影响等。
这些因素会对洞室
围岩的稳定性造成一定影响。
三、稳定性分析方法
1、岩层垂直受力平衡分析法
岩层垂直受力平衡分析法是指将洞室每一层的垂直受力状况按照垂直
受力平衡原理,进行层层分析,以确定每一层的受力及稳定情况。