频率分布直方图高考真题教师版
- 格式:docx
- 大小:1.83 MB
- 文档页数:31
第2课时 频数分布直方图与频率分布直方图1.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .602.(多选)某企业为了了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是( )A .样本中位数是200元B .样本容量是20C .该企业员工捐款金额的极差是450元D .该企业员工最大捐款金额是500元3.在样本的频率分布直方图中,共有8个小长方形,若最后一个小长方形的面积等于其他7个小长方形的面积之和的14,且样本容量为200,则第8组的频数为( )A .40B .0.2C .50D .0.254.某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则这100个新生婴儿中,体重(单位:kg)在[3.2,4.0)内的人数是( )A.30 B.40 C.50 D.555.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为()A.62,62.5 B.65,62C.65,62.5 D.62.5,62.56.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54 C.48 D.277.某路段属于限速路段,规定通过该路段的汽车时速不得超过70 km/h,否则视为违规扣分.某天有1 000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图(如图所示),则违规扣分的汽车大约为________辆.8.为了了解今年某校高三毕业班准备报考飞行员的学生的体重(单位:kg)情况,将所得的数据整理后,画出了频率分布直方图,如图所示,已知图中从左到右的前三个小组的频率之比为1∶2∶3,其中第2小组的频数为12.则该校报考飞行员的总人数为________.9.如图所示是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.(1)求样本数据在[15,18)内的频率;(2)求样本容量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33]内的频数.10.某市4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良(特别说明:在80以上的认为接近轻微污染);在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市4月份的空气质量给出一个简短评价.11.某教育机构随机抽查某校20个班级,调查各班关注“汉字听写大赛”的学生人数,根据所得数据的茎叶图,以5为组距将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始的茎叶图可能是()12.(多选)供电部门对某社区1 000位居民12月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[30,40),[40,50]五组,整理得到频率分布直方图(如图所示),则有关这1 000位居民,下列说法正确的是()A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量在[20,30)内的有300人C.12月份人均用电量不低于20度的有500人D.12月份人均用电量为25度13.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数为________,分数在[90,100]内的人数为________.14.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图所示).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.15.某养猪场定购了一批仔猪,从中随机抽查了100头仔猪的体重(单位:斤),经数据处理得到如图①的频率分布直方图,其中体重最轻的14头仔猪的体重的茎叶图如图②所示,为了将这批仔猪分栏喂养,需计算频率分布直方图中的一些数据,其中a+b的值为()图①图②A.0.144 B.0.152 C.0.76 D.0.07616.某高中有高一新生500名,分成水平相同的A,B两类进行教学实验,为对比教学效果,现用分层抽样的方法从A,B两类学生中分别抽取了40人,60人进行测试.(1)求该学校高一新生中A,B两类学生各多少人?(2)经过测试,得到以下三个数据图表:图1:75分及以上A,B两类学生参加测试的成绩的茎叶图图2:100名学生测试成绩的频率分布直方图图3:100名学生成绩的频率分布表组号分组频数频率1[55,60)50.052[60,65)200.203[65,70)4[70,75)350.355[75,80)6[80,85]合计100 1.00先填写频率分布表中的六个空格,然后将频率分布直方图补充完整.。
6.6 分布列基础(精练)(基础版)1.(2022·云南·昆明市第一中学西山学校)国家“双减”政策落实之后,某市教育部门为了配合“双减”工作,做好校园课后延时服务,特向本市小学生家长发放调查问卷了解本市课后延时服务情况,现从中抽取100份问卷,统计了其中学生一周课后延时服务总时间(单位:分钟),并将数据分成以下五组:[)[)[)[)[]100,120,120,140,140,160,160,180,180,200,得到如图所示的频率分布直方图.(1)根据如图估计该市小学生一周课后延时服务时间的众数、平均数、中位数(保留小数点后一位);(2)通过调查分析发现,若服务总时间超过160分钟,则学生有不满情绪,现利用分层随机抽样的方法从样本问卷中随机抽取8份,再从抽取的8份问卷中抽取3份,记其中有不满情绪的问卷份数为X ,求X 的分布列及均值.【答案】(1)150,151,150.9;(2)分布列见解析,34.【解析】(1)众数:150;第1到5组频率分别为:0.05,0.15,0.55,0.2,0.05,平均数:1100.051300.151500.551700.21900.05151x =⨯+⨯+⨯+⨯+⨯=, 设中位数为x ,则中位数在第3组,则()0.21400.02750.5x +-⨯=,150.9x ≈; (2)用分层随机抽样抽取8份问卷,其中学生有不满情绪的有8×(0.2+0.05)=2份,∴X 的可能取值为0,1,2,∴()306238C C 5C 140P X ===,()216238C C 15C 281P X ===,()126238C C 3C 282P X ===,∴X 的分布列为:题组一 超几何分布∴()515330121428284E X =⨯+⨯+⨯=. 2.(2022·北京·高三专题练习)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X >为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;(2)从图中考核成绩满足[]70,79X ∈的学生中任取3人,设Y 表示这3人中成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(3)根据以往培训数据,规定当8510.510X P ⎛-⎫≤≥⎪⎝⎭时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.【答案】(1)15(2)分布列见解析,()158E Y = (3)有效,理由见解析 【解析】(1)解:设该名学生的考核成绩优秀为事件A ,由茎叶图中的数据可知,30名同学中,有6名同学的考核成绩为优秀,故()15P A =. (2)解:由8510X -≤可得7595X ≤≤,所以,考核成绩满足[]70,79X ∈的学生中满足8510X -≤的人数为5,故随机变量Y 的可能取值有0、1、2、3,()3338C 10C 56P Y ===,()213538C C 151C 56P Y ===,()123538C C 152C 28P Y ===,()3538C 53C 28P Y ===,所以,随机变量Y 的分布列如下表所示:因此,()115155150123565628288E Y =⨯+⨯+⨯+⨯=. (3)解:由85110X -≤可得7595X ≤≤,由茎叶图可知,满足7595X ≤≤的成绩有16个, 所以851610.51030X P ⎛-⎫≤=≥⎪⎝⎭,因此,可认为此次冰雪培训活动有效. 3.(2022·宁夏中卫·三模(理))共享电动车(sharedev )是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为0.4P =,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X 的分布列与数学期望. 【答案】(1)12;(2)分布列见解析,数学期望为65.【解析】(1)因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A 为“从中任取3辆共享单车中恰好有一辆是橙色”,则()2164310C C 1C 2P A ⨯==. (2)随机变量X 的所有可能取值为0,1,2,3.所以()3064310C C 10C 6P X ⨯===,()2164310C C 11C 2P X ⨯===, ()()1264310C C 32C 10P X P A ⨯====,()0364310C C 13C 30P X ⨯===.所以分布列为数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.4.(2022·广东·华南师大附中三模)“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:(1)估计这600名学生周末体育锻炼时间的平均数t ;(同一组中的数据用该组区间的中点值作代表) (2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在[)40,60内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在[)50,60内的人数为X ,求X 的分布列以及数学期望()E X . 【答案】(1)58.5;(2)分布列答案见解析,数学期望:95.【解析】(1)估计这600名学生周末体育锻炼时间的平均数 350.1450.2550.3650.15750.15850.158.5t =⨯+⨯+⨯+⨯+⨯+⨯=.(2)依题意,周末体育锻炼时间在[)40,50内的学生抽6人,在[)50,60内的学生抽9人,则()363154091C P X C ===,()216931527191C C P X C ===,()12693152162455C C P X C ===,()3931512365C P X C ===,故X 的分布列为: 则()42721612901239191455655E X =⨯+⨯+⨯+⨯=. 5.(2022·云南保山·模拟预测(理))某高中学校为了解学生的课外体育锻炼时间情况,在全校学生中随机抽取了200名学生进行调查,并将数据分成六组,得到如图所示的频率分布直方图.将平均每天课外体育锻炼时间在[40,60)上的学生评价为锻炼达标,将平均每天课外体育锻炼时间在[0,40)上的学生评价为锻炼不达标(1)根据频率分布直方图估计这200名学生每天课外体育锻炼时间的众数、中位数;(2)为了了解学生课外体育锻炼时间不达标的原因,从上述锻炼不达标的学生中按分层抽样的方法抽取10人,再从这10人中随机抽取3人,记这三人中每天课外体育锻炼时间在[0,20)的人数为ξ,求ξ的分布列和数学期望.【答案】(1)中位数为28.125,众数等于25(2)分布列见解析,0.9【解析】(1)众数就是直方图中最高矩形底边中点的横坐标,则样本众数等于25.由频率分布直方图可得,在[0,10)上的频率为0.08,在[10,20)上的频率为0.16,在[20,30)上的频率为0.32,0.080.160.50.080.160.32<<+++,则中位数在区间[20,30)上.设中位数为0x ,则()00.24200.0320.5+-⨯=x ,028.125x =,即样本中位数为28.125.(2)根据题意,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4,3,其中在[0,20)上抽取的人数为3,则0ξ=,1,2,3.3127373310103576321(0),(1),1202412040ξξ⨯========C C C P P C C , 2133733310102171(2),(3)12040120C C C P P C C ξξ=====⨯==. 从而得到随机变量ξ的分布列如下表:随机变量ξ的期望72171()01230.9244040120E ξ=⨯+⨯+⨯+⨯=6.(2022·北京市朝阳区人大附中朝阳分校模拟预测)自“新型冠状肺炎”疫情爆发以来,科研团队一直在积极地研发“新冠疫苗”.在科研人员不懈努力下,我国公民率先在2020年年末开始使用安全的新冠疫苗,使我国的“防疫”工作获得更大的主动权.研发疫苗之初,为了测试疫苗的效果,科研人员以白兔为实验对象,进行了一些实验:(1)实验一:选取10只健康白兔,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中,实验结果发现:除2号、3号、7号和10号四只白兔仍然感染了新冠病毒,其他白兔未被感染.现从这10只白兔中随机抽取3只进行研究,将仍被感染的白兔只数记作X ,求X 的分布列和数学期望.(2)实验二:疫苗可以再次注射第二针、加强针,但两次疫苗注射时间间隔需大于三个月.科研人员对白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响.试问:若将实验一中未被感染新冠病毒的白兔的频率当做疫苗的有效率,那么一只白兔注射两次疫苗后的有效率能否保证达到90%?如若可以,请说明理由;若不可以,请你参考上述实验给出注射疫苗后有效率在90%以上的建议. 【答案】(1)分布列见解析;数学期望()65E X =; (2)无法保证;建议:需要将注射一次疫苗的有效率提高到90%以上. 【解析】(1)由题意得:X 所有可能的取值为0,1,2,3,()3631020101206C P X C ∴====;216431060111202C C P XC ; 1264310363212010C C P X C ;3431041312030C P XC ; X ∴的分布列为:∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=; (2)由已知数据知:实验一中未被感染新冠病毒的白兔的频率为0.6,则注射一次疫苗的有效率为0.6, ∴一只白兔注射两次疫苗的有效率为:()2110.60.8484%90%--==<, ∴无法保证一只白兔注射两次疫苗后的有效率达到90%;设每支疫苗有效率至少达到x 才能满足要求,()21190%x ∴--≥,解得:0.990%x ≥=,∴需要将注射一次疫苗的有效率提高到90%以上才能保证一只白兔注射两次疫苗后的有效率达到90%.7.(2022·全国·高三专题练习(理))高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(1)求选出的4 人均选《数学解题思想与方法》的概率;(2)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. 【答案】(1)415(2)分布列见解析,期望为1 【解析】(1)解:设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B ,由于事 件A 、B 相互独立,且22542266C C 22(),()C 3C 5P A P B ====, 所以选出的4人均选《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯=.(2)解:由题意,随机变量ξ可能的取值为0,1,2,3,可得4(0)15P ξ==,211125524422226666C C C C C 22(1)C C C C 45P ξ==⋅+⋅=,152266C 11(3)C C 45P ξ==⋅=,2(2)1(0)(1)(3)9P P P P ξξξξ==-=-=-==, 所以随机变量ξ的分布列为:ξ0 1 23 P415224529145所以随机变量ξ的数学期望 42221012311545945E ξ=⨯+⨯+⨯+⨯=. 1.(2022·北京·人大附中三模)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数1[)0,262 [)2,48题组二 二项分布每周课外阅读时间小于6小时的学生我们称之为“阅读小白”,大于等于6小时且小于12小时的学生称之为“阅读新手”,阅读时间大于等于12小时的学生称之为“阅读达人”.(1)从样本中随机选取一名学生,已知这名学生的阅读时间大于等于6小时,问这名学生是“阅读达人”概率; (2)从该校学生中选取3人,用样本的频率估计概率,记这3人中“阅读新手和阅读小白”的人数和为X ,求X 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 【答案】(1)1069(2)分布列答案见解析,()2710E X =(3)第4组【解析】(1)解:从样本中随机选取一名学生,其中阅读时间大于等于6小时的学生人数为1003169-=, “阅读达人”的学生人数为10,故所求概率为1069. (2)解:从该校学生中任选一人,该学生是“阅读小白”或“阅读新人”的概率为90910010=, 所以,9~3,10X B ⎛⎫ ⎪⎝⎭,则()3110101000P X ⎛⎫=== ⎪⎝⎭,()397293101000P X ⎛⎫=== ⎪⎝⎭,()21391271C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭,()223912432C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()927310100E X =⨯=. (3)解:样本中的100名学生该周课外阅读时间的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.68.因此,样本中的100名学生该周课外阅读时间的平均数在第4组.2.(2022·安徽·合肥一六八中学模拟预测(理))《关于加快推进生态文明建设的意见》,正式把“坚持绿水青山就是金山银山”的理念写进中央文件,成为指导中国加快推进生态文明建设的重要指导思想.为响应国家号召,某市2020年植树节期间种植了一批树苗,2022年市园林部门从这批树苗中随机抽取100棵进行跟踪检测,得到树高的频率分布直方图如图所示:(1)求树高在225-235cm 之间树苗的棵数,并求这100棵树苗树高的平均值;(2)若将树高以等级呈现,规定:树高在185-205cm 为合格,在205-235为良好,在235-265cm 为优秀.视该样本的频率分布为总体的频率分布,若从这批树苗中机抽取3棵,求树高等级为优秀的棵数ξ的分布列和数学期望.【答案】(1)15;220.5(2)分布列见解析;期望为0.6【解析】(1)树高在225-235cm 之间的棵数为:()10010.00530.0150.02000250.011015⎡⎤⨯-⨯++++⨯=⎣⎦..树高的平均值为:0.051900.152000.22100.252200.152300.12400.052500.05260220.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)可知,树高为优秀的概率为:0.10.050.050.2++=, 由题意可知()~3,0.2B ξ,则ξ的所有可能取值为0,1,2,3,()0330C 0.80.512P ξ===, ()1231C 0.80.20.384P ξ==⨯=, ()2232C 0.80.20.096P ξ==⨯=,()3333C 0.20.008P ξ===,故ξ的分布列为:因为()~3,0.2B ξ,所以()30.20.6E ξ=⨯=3.(2022·新疆克拉玛依·三模(理))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中的a 值,并根据直方图估计该市全体中学生的测试分数的中位数和平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)将频率作为概率,若从该市全体中学生中抽取4人,记这4人中测试分数不低于90分的人数为X ,求X 的分布列及数学期望.【答案】(1)0.02a =,中位数为74.3,平均数为74.5;(2)分布列见解析,25.【解析】(1)由频率分布直方图和茎叶图知,测试分数在[50,60),[60,70),[70,80),[90,100]的频率依次为:0.1,0.25,0.35,0.1,因此,测试分数位于[)80,90的频率为10.10.250.350.10.2----=,则0.20.0210a ==, 显然测试分数的中位数t 在区间[70,80)内,则有:()700.0350.50.10.25t -⨯=--,解得:74.3t ≈, 测试分数的平均数为:550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=. (2)测试分数不低于90分的频率为110,X 的所有可能值是:0,1,2,3,4, 显然1(4,)10XB ,()4419C ()(),N,41010k k k P X k k k -==∈≤, 所以X 的分布列为:数学期望()124105E X =⨯=. 4.(2022·全国·模拟预测)为了中国经济的持续发展制定了从2021年2025年发展纲要,简称“十四五”规划,为了普及“十四五”的知识,某党政机关举行“十四五”的知识问答考试,从参加考试的机关人员中,随机抽取100名人员的考试成绩的部分频率分布直方图,其中考试成绩在[)70,80上的人数没有统计出来.(1)估算这次考试成绩的平均分数;(2)把上述的频率看作概率,把考试成绩的分数在[]80,100的学员选为“十四五”优秀宣传员,若从党政机关所有工作人员中,任选3名工作人员,其中可以作为优秀宣传员的人数为ξ,求ξ的分布列与数学期望.【答案】(1)70.5(2)分布列见解析,数学期望为0.9【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图得,()0.010.0150.020.0250.005101x ++++⨯+=,解得0.25x =,可知分数在[)70,80内的频率为0.25,则考试成绩的平均分数为450.10550.15650.2750.25850.25950.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图可知考试成绩在[]80,100的频率为()0.0250.005100.3+⨯=,则0,1,2,3ξ=.()003334300.30.71000P C ξ==⨯=,()12344110.30.71000P C ξ==⨯=()22318920.30.71000P C ξ==⨯=,()3332730.31000P C ξ===,故随机变量ξ的分布列为因为该分布为二项分布,所以该随机变量的数学期望为()30.30.9E ξ=⨯=.5.(2022·江苏苏州·模拟预测)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X .(1)若该质点共移动2次,位于原点O 的概率;(2)若该质点共移动6次,求该质点到达数字X 的分布列和数学期望. 【答案】(1)12;(2)分布列见解析,0.【解析】(1)质点移动2次,可能结果共有224⨯=种,若质点位于原点O ,则质点需要向左、右各移动一次,共有12C 2=种,故质点位于原点O 的概率2142P ==. (2)质点每次移动向左或向右,设事件A 为“向右”,则A 为“向左”,故1()()2P A P A ==, 设Y 表示6次移动中向左移动的次数,则1(6,)2Y B ,质点到达的数字62X Y =-,所以06611(6)(0)C ()264P X P Y =====,16613(4)(1)C ()232P X P Y =====,266115(2)(2)C ()264P X P Y =====, 36615(0)(3)C ()216P X P Y =====,466115(2)(4)C ()264P X P Y =-====, 56613(4)(5)C ()232P X P Y =-====,66611(6)(6)C ()264P X P Y =-====, 所以X 的分布列为:1()(62)2()626602E X E Y E Y =-=-+=-⨯⨯+=.6.(2022·北京通州·模拟预测)第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明) (2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,求X 的分布列(频率当作概率使用).【答案】(1)乙比甲的单板滑雪成绩更稳定 (2)众数为3分,平均数为2.9分 (3)分布列答案见解析【解析】(1)解:由图可知,乙比甲的单板滑雪成绩更稳定.(2)解:因为甲单板滑雪项目测试中4分和5分成绩的频率之和为0.325, 3分成绩的频率为0.375,所以,甲单板滑雪项目各次测试分数的众数为3分,测试成绩2分的频率为10.20.3750.250.0750.1----=,所以,甲单板滑雪项目各次测试分数的平均数为10.220.130.37540.2550.075 2.9⨯+⨯+⨯+⨯+⨯=. (3)解:由题意可知,在每次测试中,甲的成绩为4分,并且乙的成绩为3分或4分的概率为30.250.375216⨯⨯=, 依题意,3~2,16X B ⎛⎫ ⎪⎝⎭,所以,()2131********P X ⎛⎫=== ⎪⎝⎭,()12313391C 1616128P X ==⋅⋅=,()239216256P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:X0 1 2 P1692563912892561.(2022·全国·高三专题练习(理))冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN 的左侧)有一个发球区,运动员在发球区边沿的投掷线MN 将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O 的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O 中,得3分,冰壶的重心落在圆环A 中,得2分,冰壶的重心落在圆环B 中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为X ,求X 的分布列和期望.题组三 独立重复实验【答案】(1)1130(2)分布列见解析,期望为:169180【解析】(1)由题意知甲得0分的概率为1211135515---=,乙得0分的概率为1111142612---=,甲所得分数大于乙所得分数分为:甲得3分乙得2或1或0分,甲得2分乙得1或0分,甲得1分乙得0分所以所求概率为1121111(1)()3456125123011⨯-+⨯++⨯=.(2)X 可能取值为0,1,2,3,()11211111290345256151290P X ==⨯+⨯+⨯+⨯=()112111111111++35565251283246121805P X ==⨯+⨯+⨯+⨯⨯⨯=()11111121231215180P X ==⨯+⨯+⨯+⨯=()11211121545334P X ==⨯+⨯=所以,随机变量X 的分布列为:所以()298331216918001239018018405E X =⨯+⨯+⨯+⨯= 2.(2022·全国·高三专题练习(理))为弘扬奥运精神,某校开展了“冬奥”相关知识趣味竞赛活动.现有甲、乙两名同学进行比赛,共有两道题目,一次回答一道题目.规则如下:∴抛一次质地均匀的硬币,若正面向上,则由甲回答一个问题,若反面向上,则由乙回答一个问题.∴回答正确者得10分,另一人得0分;回答错误者得0分,另一人得5分.∴若两道题目全部回答完,则比赛结束,计算两人的最终得分.已知甲答对每道题目的概率为45,乙答对每道题目的概率为35,且两人每道题目是否回答正确相互独立.(1)求乙同学最终得10分的概率;(2)记X 为甲同学的最终得分,求X 的分布列和数学期望. 【答案】(1)37100(2)分布列见解析,X 的数学期望为10【解析】(1)记“乙同学最终得10分”为事件A ,则可能情况为甲回答两题且错两题;甲、乙各答一题且各对一题;乙回答两题且对一题错一题, 则()1111141313123722252525252525100P A =⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=,所以乙同学得10分的概率是37100. (2)甲同学的最终得分X 的所有可能取值是0,5,10,15,20. ()1111111313131640225252525252510025P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()111213121645222525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯==,()141114*********102225252525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()1412164152252510025P X ==⨯⨯⨯⨯==,()141416420252510025P X ==⨯⨯⨯==.X 的分布列为()4191105101520102525252525E X =⨯+⨯+⨯+⨯+⨯=,所以X 的数学期望为10. 3.(2022·青海·海东市第一中学模拟预测(理))“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【答案】(1)9923125(2)分布列见解析,2541625【解析】(1)设“选手甲被淘汰”为事件A ,因为甲答对每个题的概率均为35,所以甲答错每个题的概率均为25.则甲答了3题都错,被淘汰的概率为33328C 5125⎛⎫= ⎪⎝⎭;甲答了4个题,前3个1对2错,被淘汰的概率为22323272C 555625⎛⎫⨯⨯= ⎪⎝⎭;甲答了5个题,前4个2对2错,被淘汰的概率为2224322432C 5553125⎛⎫⎛⎫⋅⨯= ⎪⎪⎝⎭⎝⎭. 所以选手甲被海的概率()87243299212562531253125P A =++=. (2)易知X 的可能取值为3,4,5,对应甲被淘汰或进入复赛的答题个数,则()3333333273C C 5525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭, ()2224322165C 55625P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为则()7234216256225413456255625E X =⨯+⨯+⨯=. 4.(2022·湖南·长沙一中模拟预测)某靶场有A ,B 两种型号的步枪可供选用,其中甲使用A B ,两种型号的步枪的命中率分别为14,13;,(1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A B ,两把步枪中各装填3发子弹,甲打算轮流使用A B ,两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 【答案】(1)1381(2)分布列见解析;X 的数学期望为3512.【解析】(1)甲击中5次的概率为513⎛⎫ ⎪⎝⎭1243=,甲击中4次的概率为14511C (1)()33-⋅10243=,甲击中3次的概率为()322511C 3133⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭28243=, 所以甲获得精美礼品的概率为11028391324324324324381++==. (2)X 的所有可能取值为2,3,4,5,(2)P X =11(1)(1)43=--321432=⨯=,(3)P X ==111113(1)(1)14434416⨯--+⨯⨯=,(4)P X ==1111111(1)1(1)(1)(1)4334334-⨯⨯⨯+-⨯⨯-⨯-524=,11111111(5)(1)(1)1(1)(1)144334334P X ==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯1111(1)14433+⨯-⨯⨯⨯548=,所以X 的分布列为:所以1355()23452162448E X =⨯+⨯+⨯+⨯3512=. 5.(2022·全国·二模(理))“百年征程波澜壮阔,百年初心历久弥坚”.为庆祝中国建党一百周年,哈市某高中举办了“学党史、知党情、跟党走”的党史知识竞赛.比赛分为初赛和决赛两个环节,通过初赛选出两名同学进行最终决赛.若该高中A ,B 两名学生通过激烈的竞争,取得了初赛的前两名,现进行决赛.规则如下:设置5轮抢答,每轮抢到答题权并答对则该学生得1分,答错则对方得1分.当分差达到2分或答满5轮时,比赛结束,得分高者获胜.已知A ,B 每轮均抢答且抢到答题权的概率分别为23,13,A ,B 每一轮答对的概率都为12,且两人每轮是否回答正确均相互独立. (1)求经过2轮抢答A 赢得比赛的概率;:(2)设经过抢答了X 轮后决赛结束,求随机变量X 的分布列和数学期望.【答案】(1)14(2)分布列见解析;期望为134【解析】(1)记事件C 为“经过2轮抢答A 赢得比赛” A 学生每轮得一分的概率()2111132322P A =⨯+⨯=,B 学生每轮得一分的概率()1121132322P B =⨯+⨯=,()21124P C ⎛⎫== ⎪⎝⎭,所以经过2轮抢答A 赢得比赛的概率为14.(2)X 的可能取值为2,4,5.2轮比赛甲赢或乙赢的概率为()2221122C 22P X ⎛⎫=== ⎪⎝⎭,4轮比赛甲赢或乙赢的概率为()121111142C 22224P X ==⨯⨯⨯=, 5轮比赛甲赢或乙赢的概率为()11151424P X ==--=.X 的分布列为:()111132452444E X =⨯+⨯+⨯=,数学期望为134.6.(2022·湖南·长沙市明德中学二模)沙滩排球是一项每队由两人组成的两队在由球网分开的沙地上进行比赛的运动.它有多种不同的比赛形式以适应不同人、不同环境下的比赛需求.国家沙滩排球队为备战每年一次的世界沙滩排球巡回赛,在文昌高隆沙湾国家沙滩排球训练基地进行封闭式训练.在某次训练中,甲、乙两队进行对抗赛,每局依次轮流发球(每队不能连续发球),连续赢得2个球的队获胜并结束该局比赛,并且每局不得超过5个球.通过对甲、乙两队过去对抗赛记录的数据分析,甲队发球甲队赢的概率为23,乙队发球甲队赢的概率为12,每一个球的输赢结果互不影响,已知某局甲先发球. (1)求该局第二个球结束比赛的概率;(2)若每赢1个球记2分,每输一个球记0分,记该局甲队累计得分为ξ,求ξ的分布列及数学期望. 【答案】(1)12(2)分布列见解析,18754【解析】(1)记:“甲队发球甲队赢”为事件A ,“乙队发球甲队赢”为事件B ,“第二个球结束比赛”为事件C ,则()23P A =,()12P B =,()()1132P A P B ==,,C AB AB =,因为事件AB 与AB 互斥,所以()()()()P C P ABAB P AB P AB ==+()()()()P A P B P A P B =+2111132322=⨯+⨯=,所以该局第二个球结束比赛的概率为12.(2)依题意知随机变量ξ的所有可能取值为0246,,, ()()()()1110326P P AB P A P B ξ====⨯=;()()()()2P P ABA ABAB P ABA P ABAB ξ===+21111115323323236=⨯⨯+⨯⨯⨯=; ()()4P P AB ABAABABAABABA ξ==()()()()P AB P ABA P ABABA P ABABA=+++21112111112121153++=323233232332323108=⨯+⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ()()()()()6P P ABAB ABABA ABABA P ABAB P ABABA P ABABAξ===++21212121211112113232323233232354=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=. 所以ξ的分布列为ξ0 2 46 P16536531081154故数学期望()15531118702466361085454E ξ=⨯+⨯+⨯+⨯=. 1.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量2100(,)0N ξσ~,若()(1200,80)01200P a P b ξξ>=<<=,则当82ab b a ≥+时下列说法正确的是( )A .12a =B .14b =C .34a b +=D .12a b -=【答案】C【解析】因2100(,)0N ξσ~,且()(1200,80)01200P a P b ξξ>=<<=,则有122b a +=,即21a b =-,不等式82ab b a ≥+为:24(1)1(21)0b b b -≥⇔-≤,则12b =,14a =, 所以34a b +=,14a b -=-,A ,B ,D 均不正确,C 正确.故选:C2.(2022·江苏·高三专题练习)随机变量()2,XN μσ,已知其概率分布密度函数22()21()e2x f x μσσπ-=在2x =处取得最大值为12π,则(0)P X >=( )附:()0.6827,(22)0.9545P X P X μσμσμσμσ-≤≤+=-≤≤+=. A .0.6827 B .0.84135C .0.97725D .0.9545【答案】B【解析】由题意2μ=,1122σππ=,2σ=,所以2(2)41()e2x f x π-=, (022)0.6827P X ≤≤=,所以1(0)(10.6827)0.158652P X <=-=, (0)10.158650.84135P X ≥=-=.故选:B .3.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量题组四 正态分布(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人);故选:B4.(2022·广东·大埔县虎山中学高三阶段练习)(多选)已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为(]60,300,若使标准分X 服从正态分布N()180,900,()0.6826P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=,则( )A .这次考试标准分超过180分的约有450人B .这次考试标准分在(]90,270内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .()2402700.0428P X <≤= 【答案】BC【解析】依题意得180μ=,2900σ=,30σ=,因为()()11802P X P X μ>=>=, 所以这次考试标准分超过180分的约有110005002⨯=人,故A 不正确;()()90270180330180330P X P X <≤=-⨯<≤+⨯(33)P X μσμσ=-<≤+=0.9973,所以这次考试标准分在(]90,270内的人数约为10000.9973997⨯≈人,故B 正确; 依题意可知,每个人的标准分超过180分的概率为12,所以甲、乙、丙三人恰有2人的标准分超过180分的概率为223113C 1228⎛⎫⎛⎫⋅⋅-= ⎪⎪⎝⎭⎝⎭,故C 正确; ()240270P X <≤()180230180330P X =+⨯<≤+⨯()23P X μσμσ=+<≤+。
频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
频率分布直方图(北京习题集)(教师版)一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.152.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.453.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.254.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A.30B.25C.22D.20二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量人数学生类别[0,10)[10,20)[20,30)[30,40)[40,)性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为,从中抽取的高中生近视人数为.小学初中高中人数9000700040008.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)频率分布直方图(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.15【分析】由频率分布直方图可知第一组的频率,再根据第一组的人数求出总人数,从而由第二组的频率求出a的值,由频率分布直方图中各小长方体的面积之和为1,即可求出x的值.【解答】解:由频率分布直方图可知,第一组的频率为:0.010100.1⨯=,又第一组的人数为10,∴总人数为:10100 0,1=,第二组的频率为:0.020100.2⨯=,∴第二组的人数0.210020a=⨯=,由频率分布直方图可知,1[1(0.010.020.030.025)10]0.015 10x=⨯-+++⨯=,故选:C.【点评】本题主要考查了频率分布直方图的应用,是基础题.2.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.45【分析】由频率分布直方图求出时速在区间[60,70)内的频率,由此能求出时速在区间[60,70)内的汽车辆数.【解答】解:由频率分布直方图得:时速在区间[60,70)内的频率为:0.04100.4⨯=,∴时速在区间[60,70)内的汽车辆数大约为:⨯=.0.410040故选:C.【点评】本题考查时速在区间[60,70)内的汽车辆数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.3.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.25【分析】根据频率分布直方图求出用气量在区间[300,350)的频率,用样本容量与频率相乘即可得到用气量在区间[300,350)的户数.【解答】解:依题意,由频率分布直方图可知,用气量在[300,350)的频率为:0.005500.25⨯=,所以100户居民中用气量在区间[300,350)的户数为:1000.2525⨯=.故选:D.【点评】本题考查了频率分布直方图的应用,考查了考查数据分析处理、运算求解能力,属于基础题.4.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组【分析】由频率分布表和频率分布直方图得第四组的频率为0.5,从而求得旅客购票用时的平均数,由此得到旅客购票用时的平均数落第四小组.【解答】解:由频率分布表和频率分布直方图得第四组的频率为:---=,10.10.10.30.5由频率分布表和频率分布直方图得旅客购票用时的平均数为:7.50.1012.50.1017.50.5022.50.317.5⨯+⨯+⨯+⨯=,∴旅客购票用时的平均数落第四小组.故选:C.【点评】本题考查平均数、频率的求法及应用,考查频率分布表和频率分布直方图等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A .30B .25C .22D .20【分析】根据频率分布直方图中频率和为1,求出a 的值,计算模块测试成绩落在[50,70)中的频率以及频数即可. 【解答】解:根据频率分布直方图中频率和为1,得: 10(23762)1a a a a a ++++=,解得1200a =; ∴模块测试成绩落在[50,70)中的频率是1110(23)50502004a a a +==⨯=, ∴对应的学生人数是1100254⨯=. 故选:B .【点评】本题考查了频率分布直方图的应用问题,也考查了频率的计算问题,是基础题目. 二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量 人数 学生类别 [0,10) [10,20) [20,30) [30,40) [40,)+∞性别男 7 31 25 30 4 女8 29 26 32 8 学段初中 25 36 44 11 高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是①②③.【分析】利用频率分布直方图、平均数、75%分位数、中位数、25%分位数直接求解.【解答】解:在①中,这200名学生阅读量的平均数为:1x>⨯+⨯+⨯+⨯+⨯=.(5151560255235624512)24.93200∴这200名学生阅读量的平均数可能是26本,故①正确;在②中,20075%150⨯=,阅读量在[0,30)中有:156052117++=名学生,阅读量在[30,40)中有62名学生,∴这200名学生阅读量的75%分位数在区间[30,40)内,故②正确;在③中,阅读量在[0,20)中有:156065+=名学生,阅读量在[20,30)中有51名学生,∴这200名学生中的初中生阅读量的中位数一定在区间[20,30)内,故③正确;在④中,20025%50⨯=,阅读量在[0,10)中有15名学生,阅读量在[10,20)中有60名学生,∴这200名学生中的初中生阅读量的25%分位数可能在区间[10,20)内.故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查频率分布直方图、平均数、75%分位数、中位数、25%分位数等基础知识,考查运算求解能力,是基础题.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为4000,从中抽取的高中生近视人数为.小学初中高中人数900070004000【分析】用分层抽样的方法抽取20%的近视学生进行调查,利用分层抽样、频数分布表、条形图的性质求出样本容量和从中抽取的高中生近视人数.【解答】解:由题意得:用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为:(900070004000)20%4000++⨯=.从中抽取的高中生近视人数为:⨯⨯=.400020%50%400故答案为:4000,400.【点评】本题考查样本容量、频率的求法,考查分层抽样、频数分布表、条形图的性质等基础知识,考查运算求解能力,是基础题.8.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=0.005,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)【分析】由频率分布直方图列方程能求出a;评分在[50,70)的频率为0.45,评分为[70,80)的频率为0.3,由此能求出中位数.【解答】解:由频率分布直方图得:a a++++⨯=,(0.040.030.02)101解得0.005a=.评分在[50,70)的频率为:(0.0050.04)100.45+⨯=,评分为[70,80)的频率为:0.03100.3⨯=,∴中位数0.50.452157010650.33b-=+⨯=>.故答案为:0.005,>.【点评】本题考查频率的求法、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是0.25.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.【分析】(1)由频率分布直方图能求出[79.5,89.5)这一组的频率.(2)由频率分布直方图能估计这次环保知识竞赛的及格率(60分以上为及格).【解答】解:(1)由频率分布直方图得[79.5,89.5)这一组的频率是0.025100.25⨯=.故答案为:0.25.(2)由频率分布直方图估计这次环保知识竞赛的及格率(60分以上为及格)为:(0.0150.030.0250.005)10100%75%+++⨯⨯=.故答案为:75%.【点评】本题考查频率、及格率的求法,考查频率分布直方图的性质等基础知识,考查运算求出能力,考查函数与方程思想,是基础题.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18-岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是40.【分析】由频率分布直方图求出体重在(56.5,64.5)的频率为0.4,由此能求出这100名学生中体重在(56.5,64.5)的学生人数.【解答】解:由频率分布直方图得:体重在(56.5,64.5)的频率为:(0.030.050.050.07)20.4+++⨯=,∴这100名学生中体重在(56.5,64.5)的学生人数是:0.410040⨯=.故答案为:40.【点评】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.【分析】(Ⅰ)利用分层抽样和频率分布直方图能求出在[40,45),[45,50),[50,55]三组中分别抽取的人数.(Ⅱ)从抽取的5人中随机选出2人,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数112 3227m C C C=+=,由此能求出这2人不在同一组的概率.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,利用频率分布直方图的性质能求出估计该地区中学生暑期研学旅行支出的平均值.【解答】解:(Ⅰ)分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从[40,45)中抽取:0.06530.060.020.02⨯=++人,从[45,50)中抽取:0.02510.060.020.02⨯=++人,从[50,55)中抽取:0.02510.060.020.02⨯=++人.(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数1123227m C C C=+=,∴这2人不在同一组的概率710mpn==.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值为:32.50.04537.50.06542.50.06547.50.02552.50.02540.5x=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.【点评】本题考查频数、概率、平均数的求法,考查频率分布直方图的性质、分层抽样、古典概型等基础知识,考查运算求解能力,是基础题.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).【分析】(Ⅰ)由频率分布直方图的性质能求出a .(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”.被抽取的智能手机内安装“APP ”的数量在[50,60)的有4人,分别记为1a ,2a ,3a ,4a ,被抽取的智能手机内安装“APP ”的数量在[60,70]的有1人,记为1b ,从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,利用列举法能求出这2人安装APP 的个数都低于60的概率. (Ⅲ)第4组 (或者写成[30,40)). 【解答】(共13分)解:(Ⅰ)由(0.0110.0160.0180.0040.001)101a a ++++++⨯=,⋯⋯(2分) 得0.025a =.⋯⋯(3分)(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”. ⋯⋯(1分) 被抽取的智能手机内安装“APP ”的数量在[50,60)的有0.004101004⨯⨯=人, 分别记为1a ,2a ,3a ,4a ,⋯⋯(2分)被抽取的智能手机内安装“APP ”的数量在[60,70]的有0.001101001⨯⨯=人, 记为1b ,⋯⋯(3分)从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,共包含10个基本事件, 分别为12a a ,13a a ,14a a ,11a b ,23a a ,24a a ,21a b ,34a a ,31a b ,41a b ,⋯⋯(5分) 事件A 包含6个基本事件,分别为12a a ,13a a ,14a a ,23a a ,24a a ,34a a ,⋯⋯(6分) 则这2人安装APP 的个数都低于60的概率63()105P A ==.⋯⋯(7分) (Ⅲ)第4组 (或者写成[30,40)).⋯⋯(3分)【点评】本题考查频率、概率的求法,考查频率分布直方图的应用,考查用数学知识解决实际生活问题的能力,考查运算求解能力,是基础题.15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)【分析】(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单”依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05,由此能估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率.(Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,利用列举法能求出至少有1名骑手选择方案(1)的概率.(Ⅲ)方法1:求出快餐店人均日快递量的平均数,从而方案(1)日工资约为50623236+⨯=,方案2日工资约为100(6244)5190236+-⨯=<,由此得到骑手应选择方案(1). 方法2:设骑手每日完成快递业务量为n 件,分别求出方案(1)的日工资和方案(2)的日工资,从而建议骑手应选择方案(1).方法3:设骑手每日完成快递业务量为n 单,方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩求出结果,建议骑手选择方案(1). 【解答】解:(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单” 依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05因为0.20.150.050.4++=所以估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率P (A )0.4=. (Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)” 从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}, 其中至少有1名骑手选择方案(1)的情况为:{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁} 所以至少有1名骑手选择方案(1)的概率5()6P B = (Ⅲ)方法1:快餐店人均日快递量的平均数是:300.05400.05500.2600.3700.2800.15900.0562⨯+⨯+⨯+⨯+⨯+⨯+⨯=因此,方案(1)日工资约为50623236+⨯= 方案2日工资约为100(6244)5190236+-⨯=< 故骑手应选择方案(1)方法2:设骑手每日完成快递业务量为n 件 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩当17n <时,12y y <依题意,可以知道25n ,所以这种情况不予考虑 当25n 时,令5031005(44)n n +>+-,则85n <,即若骑手每日完成快递业务量在85件以下,则方案(1)日工资大于方案(2)日工资, 而依题中数据,每日完成快递业务量超过85件的频率是0.05,较低, 故建议骑手应选择方案(1)方法3:设骑手每日完成快递业务量为n 单, 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩所以方案(1)日工资约为1400.051700.052000.22300.32600.22900.153200.05236⨯+⨯+⨯+⨯+⨯+⨯+⨯= 方案(2)日工资约为1000.051000.051300.21800.32300.22800.153300.05194.5⨯+⨯+⨯+⨯+⨯+⨯+⨯= 因为236194.5>,所以建议骑手选择方案(1).。
14.4.3 用频率直方图估计总体分布14.4.4 百分位数必备知识基础练1.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91.这15人成绩的80百分位数是( )A.90B.90.5C.91D.91.5=12,56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为80×15100=90.5.所以这15人成绩的80百分位数是90+9122.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率直方图.估计这批产品的平均数与中位数分别为( )A.22.5,20B.22.5,22.75C.22.75,22.5D.22.75,25,这批产品的平均数为x=5×(0.02×12.5+0.04×17.5+0.08×22.5+0.03×27.5+0.03×32.5)=22.75,其中位数为x0=20+0.5-(0.02+0.04)×5=22.5.故选C.0.083.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,50百分位数为b,则有( )A.a=13.7,b=15.5B.a=14,b=15C.a=12,b=15.5D.a=14.7,b=1510,12,14,14,15,15,16,17,17,17,其平均数a=110×(10+12+14+14+15+15+16+17+17+17)=14.7,因为50×10100=5,所以这10名工人一小时内生产零件的50百分位数为b=15+152=15.4.已知甲、乙两组数据(已按从小到大的顺序排列):甲组:27,28,39,40,m ,50;乙组:24,n ,34,43,48,52.若这两组数据的30百分位数,80百分位数分别相等,则mn 等于( )A.127 B.107C.43 D.74因为30100×6=1.8,80100×6=4.8,所以30百分位数为n=28,80百分位数为m=48,所以mn =4828=127.5.1,2,3,4,5,6,7,8,9,10这组数据的25百分位数为 ,75百分位数为 ,90百分位数为 . 8 9.510,而且10×25%=2.5,10×75%=7.5,10×90%=9,所以该组数据的25百分位数为3,75百分位数为8,90百分位数为9+102=9.5.6.某学校组织学生参加数学测试,成绩的频率直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的 百分位数.[20,40),[40,60)的频率之和为(0.005+0.01)×20=0.3,所以60分为成绩的30百分位数.7.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率直方图如图所示,利用这个残缺的频率直方图估计该市出租车司机年龄的中位数大约是 (保留一位小数)..6,所有矩形面积之和为1,所以,数据位于[25,30)的频率为1-(0.01+0.07+0.06+0.02)×5=0.2,前两个矩形的面积之和为0.01×5+0.2=0.25,前三个矩形的面积之和为0.25+0.07×5=0.6,所以,中位数位于区间[30,35),设中位数为a ,则有0.25+(a-30)×0.07=0.5,解得a ≈33.6(岁).8.求下列数据的四分位数.13,15,12,27,22,24,28,30,31,18,19,20.12个数据按从小到大的顺序排列为12,13,15,18,19,20,22,24,27,28,30,31,计算25×12100=3,50×12100=6,75×12100=9,所以数据的25百分位数为15+182=16.5,50百分位数为20+222=21,75百分位数为27+282=27.5.9.某网络营销部门随机抽查了某市200名网友在2019年11月11日的网购金额,所得数据如下表:网购金额(单位:千元)人数频率[0,1)160.08[1,2)240.12[2,3)x p [3,4)y q [4,5)160.08[5,6]140.07合计2001.00已知网购金额低于3千元与不低于3千元的人数比恰为3∶2.(1)试确定x ,y ,p ,q 的值,并补全频率直方图;(2)估计网购金额的25百分位数(结果保留三位有效数字).x+y+16+14=200,=32,解得x=80,y=50.所以p=0.4,q=0.25.补全频率直方图如图所示.(2)由(1)可知,网购金额低于2千元的频率为0.08+0.12=0.2,网购金额低于3千元的频率为0.2+0.4=0.6,所以网购金额的25百分位数在[2,3)内,则网购金额的25百分位数估计为2+0.25-0.20.6-0.2×1=2.125≈2.13.关键能力提升练10.数据3.2,3.4,3.8,4.2,4.3,4.5,x,6.6的65百分位数是4.5,则实数x的取值范围是( )A.[4.5,+∞)B.[4.5,6.6)C.(4.5,+∞)D.(4.5,6.6]65×8100=5.2,所以这组数据的65百分位数是第6个数据4.5,则x≥4.5,故选A.11.港珠澳大桥于2018年10月24日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程.桥隧全长55千米,桥面为双向六车道高速公路,大桥通行限速100 km/h.现对大桥某路段上汽车行驶速度进行抽样调查,画出频率直方图(如图).根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过90 km/h的频率分别为( )A.85,0.25B.90,0.35C.87.5,0.25D.87.5,0.35=87.5,由频率直方图估计在此路段由频率直方图估计在此路段上汽车行驶速度的众数为85+902上汽车行驶速度超过90 km/h的频率为(0.05+0.02)×5=0.35,所以由频率直方图估计在此路段上汽车行驶速度超过90 km/h的频率为0.35.12.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示.估计棉花纤维的长度的样本数据的80百分位数是( )A.29 mmB.29.5 mmC.30 mmD.30.5 mm30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以=29,可以估计棉下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,由25+5×0.80-0.600.85-0.60花纤维的长度的样本数据的80百分位数是29 mm.13.(多选)已知100个数据的75百分位数是9.3,则下列说法不正确的是( )A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第75个数据C.把这100个数据从小到大排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据从小到大排列后,9.3是第75个数据和第74个数据的平均数=75为整数,所以第75个数据和76个数据的平均数为75百分位数,是9.3,则C正75×100100确,其他选项均不对,故选ABD.14.(多选)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的平均数等于乙的成绩的平均数C.甲的成绩的80百分位数等于乙的成绩的80百分位数D.甲的成绩的极差等于乙的成绩的极差,x 甲=4+5+6+7+85=6,x 乙=3×5+6+95=6,A 项错误,B 项正确;甲的成绩的80百分位数为7+82=7.5,乙的成绩的80百分位数为6+92=7.5,所以二者相等,所以C 项正确;甲的成绩的极差为4,乙的成绩的极差也为4,D 项正确.15.已知30个数据的60百分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是 ..660×30100=18,设第19个数据为x ,则7.8+x2=8.2,解得x=8.6,即第19个数据是8.6.16.如图是某市2020年4月1日至4月7日每天最高、最低气温的折线统计图,这7天的日最高气温的10百分位数为 ,日最低气温的80百分位数为 .℃ 16 ℃,把日最高气温按照从小到大排序,得24,24.5,24.5,25,26,26,27,因为共有7个数据,所以7×10100=0.7,不是整数,所以这7天日最高气温的10百分位数是第1个数据,为24 ℃.把日最低气温按照从小到大排序,得12,12,13,14,15,16,17,因为共有7个数据,所以7×80100=5.6,不是整数,所以这7天日最低气温的80百分位数是第6个数据,为16 ℃.17.某年级120名学生在一次百米跑测试中,成绩全部介于13秒与18秒之间,将测试结果分成5组,即[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率直方图,如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩的70百分位数约为 秒..570百分位数为x ,因为1+3+71+3+7+6+3=0.55,1+3+7+61+3+7+6+3=0.85,所以x ∈[16,17),所以0.55+(x-16)×61+3+7+6+3=0.70,解得x=16.5.18.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为 ;(2)由频率直方图估计志愿者年龄的85百分位数为 岁(结果保留整数)..04 (2)39设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.(2)由图可知,年龄小于35岁的频率为(0.01+0.04+0.07)×5=0.6,年龄小于40岁的频率为(0.01+0.04+0.07+0.06)×5=0.9,所以志愿者年龄的85百分位数在[35,40)内,因此志愿者年龄的85百分位数为35+0.85-0.60.9-0.6×5≈39(岁).19.(2021浙江宁波期末)首次实施新高考的八省(市)于2021年1月23日统一举行了新高考适应性考试,在联考结束后,根据联考成绩,考生可了解自己的学习情况,作出升学规划,决定是否参加强基计划.在本次适应性考试中,某学校为了解高三学生的联考情况,随机抽取了100名学生的联考数学成绩作为样本,并按照分数段[50,70),[70,90),[90,110),[110,130),[130,150]分组,绘制了如图所示的频率直方图.(1)求出图中a的值并估计本次考试及格率(“及格率”指得分为90分及以上的学生所占比例);(2)估计该校学生联考数学成绩的80百分位数;(3)估计该校学生联考数学成绩的众数、平均数.由(0.004+a+0.013+0.014+0.016)×20=1,解得a=0.003,则及格率为(0.016+0.014+0.003)×20=0.66=66%.(2)得分在110以下的学生所占比例为(0.004+0.013+0.016)×20=0.66,得分在130以下的学生所=120(分),估计占比例为0.66+0.014×20=0.94,所以80百分位数位于[110,130)内,由110+20×0.8-0.660.94-0.6680百分位数为120.(3)由图可得,众数估计值为100.平均数估计值为0.08×60+0.26×80+0.32×100+0.28×120+0.06×140=99.6(分).学科素养创新练20.2020年某地苹果出现滞销现象,为了帮助当地果农打开销路,当地政府与全国一些企业采用团购的方式带动销售链,使得当地果农积压的许多苹果有了销路.为了解果农们苹果的销售量情况,当地农业局随机对100名果农的苹果销售量进行统计,将数据按照[90,110),[110,130),[130,150),[150,170]分成4组,得到如图所示的频率直方图.(1)试估计这100名果农苹果销售量的平均数;(2)根据题中的频率直方图,估计销售量样本数据的80百分位数(结果精确到0.1);(3)假设这100名果农在未打开销路之前都积压了2万千克的苹果,通过团购的方式果农每千克苹果的纯利润为1.3元,而积压仍未售出的苹果每千克将损失2元的成本费,试估计这100名果农积压的苹果通过此次团购活动获得的总利润.设这100名果农苹果销售量的平均数为x百千克,则x=(100×0.002 5+120×0.01+140×0.0225+160×0.015)×20=140(百千克),故这100名果农苹果销售量的平均数为1.4万千克.(2)因为(0.002 5+0.010 0)×20=0.25<0.8,0.25+0.225×20=0.7<0.8,×20≈156.7.所以80百分位数在第4组内,且80百分位数为150+0.8-0.71-0.7(3)销售量在[90,110)的每位果农的利润为100×100×1.3-(2×104-100×100)×2=-0.7(万元);销售量在[110,130)的每位果农的利润为120×100×1.3-(2×104-120×100)×2=-0.04(万元);销售量在[130,150)的每位果农的利润为100×140×1.3-(2×104-140×100)×2=0.62(万元);销售量在[150,170]的每位果农的利润为100×160×1.3-(2×104-160×100)×2=1.28(万元).因为[90,110),[110,130),[130,150),[150,170)这4组的人数分别为5,20,45,30,所以这100名果农积压的苹果通过此次团购活动获得的总利润约为-0.7×5-0.04×20+0.62×45+1.28×30=62(万元).。
2018年高考数学试卷(文科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1.已知集合,0,1,,则A. B.C. D. 0,1,【答案】A【解析】解:集合,0,1,,则.故选:A.直接利用集合的交集的运算法则求解即可.本题考查集合的基本运算,交集的求法,是基本知识的考查.2.设,则A. 0B.C. 1D.【答案】C【解析】解:,则.故选:C.利用复数的代数形式的混合运算化简后,然后求解复数的模.本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】设建设前经济收入为a,建设后经济收入为通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为,建设前,其他收入为,故,故B项正确.C项,建设后,养殖收入为,建设前,养殖收入为,故,故C项正确.D项,建设后,养殖收入与第三产业收入总和为,经济收入为2a,故,故D项正确.因为是选择不正确的一项,故选A.4.已知椭圆C:的一个焦点为,则C的离心率为A. B. C. D.【答案】C【解析】解:椭圆C:的一个焦点为,可得,解得,,.故选:C.利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.本题考查椭圆的简单性质的应用,考查计算能力.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.6.设函数,若为奇函数,则曲线在点处的切线方程为.A. B. C. D.【答案】D【解析】【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.【解答】解:函数,若为奇函数,可得,所以函数,可得,曲线在点处的切线的斜率为:1,则曲线在点处的切线方程为:.故选D.7.在中,AD为BC边上的中线,E为AD的中点,则A. B. C. D.【答案】A【解析】解:在中,AD为BC边上的中线,E为AD的中点,,故选:A.运用向量的加减运算和向量中点的表示,计算可得所求向量.本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题.8.已知函数,则A. 的最小正周期为,最大值为3B. 的最小正周期为,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】解:函数,,,,,,故函数的最小正周期为,函数的最大值为,故选:B.首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的性质的应用.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.11.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,则A. B. C. D. 1【答案】B【解析】解:角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,,解得,,,.故选:B.推导出,从而,进而由此能求出结果.本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.12.设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】解:函数,的图象如图:满足,可得:或,解得.故选:D.画出函数的图象,利用函数的单调性列出不等式转化求解即可.本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.二、填空题(本大题共4小题,共20.0分)13.已知函数,若,则______.【答案】【解析】解:函数,若,可得:,可得.故答案为:.直接利用函数的解析式,求解函数值即可.本题考查函数的解析式的应用,函数的零点与方程根的关系,是基本知识的考查.14.若x,y满足约束条件,则的最大值为______.【答案】6【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合是解决本题的关键.【解答】解:作出不等式组对应的平面区域如图:由得,平移直线,由图象知当直线经过点时,直线的截距最大,此时z最大,最大值为,故答案为:615.直线与圆交于A,B两点,则__________.【答案】【解析】解:圆的圆心,半径为:2,圆心到直线的距离为:,所以.故答案为:.求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.本题考查直线与圆的位置关系的应用,弦长的求法,考查计算能力.16.的内角A,B,C的对边分别为a,b,已知,,则的面积为______.【答案】【解析】解:的内角A,B,C的对边分别为a,b,c.,利用正弦定理可得,由于,,所以,所以,则或由于,则:,当时,,解得,所以.当时,,解得不合题意,舍去.故:.故答案为:.直接利用正弦定理求出A的值,进一步利用余弦定理求出bc的值,最后求出三角形的面积.本体考察的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用及三角形面积公式的应用.三、解答题(本大题共7小题,共82.0分)17.已知数列满足,,设.求,,;判断数列是否为等比数列,并说明理由;求的通项公式.【答案】解:数列满足,,则:常数,由于,故:,数列是以为首项,2为公比的等比数列.整理得:,所以:,,.数列是为等比数列,由于常数;由得:,根据,所以:.【解析】直接利用已知条件求出数列的各项.利用定义说明数列为等比数列.利用的结论,直接求出数列的通项公式.本题考查的知识要点:数列的通项公式的求法及应用.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,又面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.19.某家庭记录了未使用节水龙头50天的日用水量数据单位:和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头天的日用水量频数分布表作出使用了节水龙头50天的日用水量数据的频率分布直方图;估计该家庭使用节水龙头后,日用水量小于的概率;估计该家庭使用节水龙头后,一年能节省多少水?一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表【答案】解:根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于的概率为:.由题意得未使用水龙头50天的日均水量为:,使用节水龙头50天的日均用水量为:,估计该家庭使用节水龙头后,一年能节省:.【解析】根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于的概率.由题意得未使用水龙头50天的日均水量为,使用节水龙头50天的日均用水量为,能此能估计该家庭使用节水龙头后,一年能节省多少水.本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.设抛物线C:,点,,过点A的直线l与C交于M,N两点.当l与x轴垂直时,求直线BM的方程;证明:.【答案】解:当l与x轴垂直时,,代入抛物线解得,所以或,直线BM的方程:,或:.证明:设直线l的方程为l:,,,联立直线l与抛物线方程得,消x得,即,,则有,所以直线BN与BM的倾斜角互补,.【解析】当时,代入求得M点坐标,即可求得直线BM的方程;设直线l的方程,联立,利用韦达定理及直线的斜率公式即可求得,即可证明.本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题.21.已知函数.设是的极值点,求a,并求的单调区间;证明:当时,.【答案】解:函数.,,是的极值点,,解得,,,当时,,当时,,在单调递减,在单调递增.证明:当时,,设,则,当时,,当时,,是的最小值点,故当时,,当时,.【解析】推导出,,由是的极值点,解得,从而,进而,由此能求出的单调区间.当时,,设,则,由此利用导数性质能证明当时,.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.22.在直角坐标系xOy中,曲线的方程为以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.求的直角坐标方程;若与有且仅有三个公共点,求的方程.【答案】解:曲线的极坐标方程为,转换为直角坐标方程为:,转换为标准式为:.由于曲线的方程为,则:该直线关于y轴对称,且恒过定点,由于该直线与曲线的极坐标有且仅有三个公共点,所以:必有一直线相切,一直线相交,则:圆心到直线的距离等于半径2,故:,解得:或舍去故C的方程为:.【解析】直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.本题考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,点到直线的距离公式的应用.23.已知.当时,求不等式的解集;若时不等式成立,求a的取值范围.【答案】解:当时,,因为,或,解得,故不等式的解集为;当时不等式成立,,即,即,,,,,,,,,故a的取值范围为.【解析】去绝对值,化为分段函数,即可求出不等式的解集;当时不等式成立,转化为,即,转化为,且,即可求出a的范围.本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力和转化能力,属于中档题.。
6.3.2频率分布直方图一、选择题1.某地一种植物一年生长的高度如下表:高度(cm)[10,20)[20,30)[30,40)[40,50)[50,60]棵数2030804030则该植物一年生长在[30,40)内的频率是()A.0.80B.0.65C.0.40D.0.252.某商场在今年端午节的促销活动中,对6月9日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为3万元,则11时至12时的销售额为()A.8万元B.10万元C.12万元D.15万元3.为了了解某地区10000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]的学生人数是()A.40B.400C.4000D.44004.某校100名学生的数学测试成绩频率分布直方图如图所示,分数不低于a即为优秀,如果优秀的人数为20人,则a的估计值是()A.130B.140C.133D.1375.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10000位居民,并根据所得数据画出样本的频率分布直方图(如图).为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000位居民中再用分层随机抽样抽出100位居民做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是()A.25B.30C.50D.75二、填空题6.为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出样本的频率分布直方图(如图),那么这100株树木中,底部周长小于110cm的树有________株.数据填空:(1)样本数据落在[5,9)内的频率是________;(2)样本数据落在[9,13)内的频数是________.8.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为________.三、解答题9.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为100+1102=105.)作为这组数据的平均分,据此估计本次考试的平均分.10.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)若这100名学生的语文成绩在某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5在抽测的60株树木中,树木的底部周长小于100cm的株数为()A.24B.30C.34D.4012.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸13.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为________.14.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.15.某制造商3月生产了一批乒乓球,随机抽取100个进行检查,并测得每个球的直径(单位:mm),将数据进行分组,得到如下频率分布表:分组频数频率[39.95,39.97)10[39.97,39.99)20[39.99,40.01)50[40.01,40.03]20合计100(1)补充完频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00mm,试求这批乒乓球的直径误差不超过0.03mm的概率;(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).参考答案1.C[由频率含义可计算其结果.由频率的定义得80÷(20+30+80+40+30)=0.40.]2.C[由频率分布直方图知,9时至10时的销售额的频率为0.1,故销售总额为30.1=30(万元),又11时至12时的销售额的频率为0.4,故销售额为0.4×30=12万元.]3.C[依题意得,该地区高三男生中体重在[56.5,64.5]的学生人数是10 000×(0.03+2×0.05+0.07)×2=4000.]4.C[由题意可知优秀的频率为0.2,由频率分布直方图可知第6组的频率为0.1,第5组的频率为0.15,所以a∈(130,140),则0.1+0.015(140-a)=0.2,解得a≈133.]5.A[由频率分布直方图可知,在[2.5,3)的频率为0.25,所以在此范围内应抽出的人数为100×0.25=25.]6.70[(0.01×10+0.02×10+0.04×10)×100=70.]7.(1)0.32(2)72[频率=频率组距×组距=0.08×4=0.32,频数=频率×样本容量=0.09×4×200=72.]8.48[前3个小组的频率和为1-0.0375×5-0.0125×5=0.75.又因为前3个小组的频率之比为1∶2∶3,所以第2小组的频率为26×0.75=0.25.又知第2小组的频数为12,则120.25=48,即为所抽取的学生人数.]9.[解](1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为x=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.10.[解](1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.11.A[底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100cm的株数为(0.15+0.25)×60=24.]12.A[根据频率分布直方图可列下表:阅读时间(分)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]抽样人数(名)10182225205抽样100名学生中有50名为阅读霸,占一半,据此可判断该校有一半学生为阅读霸.故选A.]13.1009[由频率分布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,则中位数在第三组内,估计样本数据的中位数为10+0.10.36×4=1009.]14.(1)0.0044(2)70[(1)由频率分布直方图总面积为1,得(0.0012+0.0024×2+0.0036+x+0.0060)×50=1,解得x=0.0044.(2)用电量在[100,250)内的频率为(0.0036+0.0044+0.0060)×50=0.7,故所求户数为100×0.7=70.]15.[解](1)频率分布表如下:分组频数频率[39.95,39.97)100.10[39.97,39.99)200.20[39.99,40.01)500.50[40.01,40.03]200.20合计1001频率分布直方图如图:(2)误差不超过0.03mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).。
高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。
频率分布直方图一.选择题(共10小题)1.(2020•天津)从一批零件中抽取80个,测量其直径(单位:)mm,将所得数据分为9组:[5.31,5.33),[5.33,5.35), ,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.362.(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1403.(2014•广东)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,104.(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第)一组,第二组,⋯,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.185.(2013•四川)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),⋯,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.6.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.607.(2013•陕西)对一批产品的长度(单位:)mm进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09B.0.20C.0.25D.0.458.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.1209.(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差10.(2011•湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.72二.填空题(共8小题)11.(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.12.(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:)cm,所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.13.(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.︒数据得到的样本频率分布直方图,其中14.(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:C)平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C︒的城市个数为11,则样本中平均气温不︒的城市个数为.低于25.5C15.(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是.16.(2010•福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.17.(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.18.(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有根棉花纤维的长度小于20mm.三.解答题(共12小题)19.(2017•北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),[80⋯,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.(2016•四川)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),⋯,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.21.(2016•北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w=时,估计该市居民该月的人均水费.22.(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?23.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60], ,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.24.(2014•北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)25.(2014•广东)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.26.(2010•湖北)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)(Ⅰ)在表格中填写相应的频率;(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.27.(2010•广东)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500], ,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.28.(2010•陕西)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.29.(2010•湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(Ⅰ)求直方图中x的值.(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.30.(2010•安徽)某市2010年4月1日4 月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(Ⅰ)完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.频率分布直方图参考答案与试题解析一.选择题(共10小题)1.(2020•天津)从一批零件中抽取80个,测量其直径(单位:)mm,将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36【解答】解:直径径落在区间[5.43,5.47)的频率为(6.255)0.020.225+⨯=,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.2258018⨯=个,故选:B.2.(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【解答】解:自习时间不少于22.5小时的频率为:(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频数为:0.7200140⨯=,故选:D.3.(2014•广东)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【解答】解:由图1知:总体个数为35002000450010000++=,∴样本容量100002%200=⨯=,分层抽样抽取的比例为150,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为4050%20⨯=.故选:A.4.(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:)kPa的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋯,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.5.(2013•四川)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),⋯,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.【解答】解:根据题意,频率分布表可得:故选:A.6.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【解答】解:成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率(0.0050.010)200.3P=+⨯=,又低于60分的人数是15人,则该班的学生人数是1550 0.3=.故选:B.7.(2013•陕西)对一批产品的长度(单位:)mm进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09B.0.20C.0.25D.0.45【解答】解:由频率分布直方图知识可知:在区间[15,20)和[25,30)上的概率为0.045[1(0.020.04⨯+-++0.060.03)5]0.45+⨯=.故选:D .8.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120【解答】解:根据频率分布直方图,成绩不低于60(分)的频率为110(0.0050.015)0.8-⨯+=.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为6000.8480⨯=人.故选:B .9.(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解答】解:()14567865x =⨯++++=甲, ()15556965x =⨯++++=乙, 甲的成绩的方差为221(2212)25⨯⨯+⨯=, 以的成绩的方差为221(1331) 2.45⨯⨯+⨯=. 故选:C .10.(2011•湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.72【解答】解:观察直方图易得数据落在[10,12)的频率(0.020.050.150.19)20.82=+++⨯=;数据落在[10,12)外的频率10.820.18=-=;⨯=,∴样本数落在[10,12)内的频数为2000.1836故选:B.二.填空题(共8小题)11.(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.【解答】解:(1)由题意,根据直方图的性质得(1.5 2.5 2.00.80.2)0.11+++++⨯=,解得3aa=(2)由直方图得(3 2.00.80.2)0.1100006000+++⨯⨯=故答案为:(1)3 (2)600012.(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:)cm,所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.0150.025)100.4+⨯=,⨯=(株).∴底部周长小于100cm的频数为600.424故答案为:24.13.(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为0.0044;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.【解答】解:(Ⅰ)依题意及频率分布直方图知,⨯+⨯+⨯+⨯+⨯+⨯=,x0.0024500.0036500.006050500.0024500.0012501解得0.0044x=.()II样本数据落在[100,150)内的频率为0.0036500.18⨯=,样本数据落在[150,200)内的频率为0.006500.3⨯=.样本数据落在[200,250)内的频率为0.0044500.22⨯=,故在这些用户中,用电量落在区间[100,250)内的户数为(0.180.300.22)10070++⨯=.故答案为:0.0044;70.︒数据得到的样本频率分布直方图,其中14.(2012•山东)如图是根据部分城市某年6月份的平均气温(单位:C)平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C︒的城市个数为11,则样本中平均气温不︒的城市个数为9.低于25.5C【解答】解:平均气温低于22.5C ︒的频率,即最左边两个矩形面积之和为0.1010.1210.22⨯+⨯=,所以总城市数为110.2250÷=,平均气温不低于25.5C ︒的频率即为最右面矩形面积为0.1810.18⨯=,所以平均气温不低于25.5C ︒的城市个数为500.189⨯=.故答案为:9.15.(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是 600 .【解答】解:由频率分布直方图成绩小于60 的学生的频率为10(0.0020.0060.012)0.2++=,所以成绩小于60分的学生数是30000⨯,2600=故答案为:60016.(2010•福建)将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于 60 .【解答】解:设第一组至第六组数据的频率分别为2x ,3x ,4x ,6x ,4x ,x ,则234641x x x x x x +++++=, 解得120x =, 所以前三组数据的频率分别是234,,202020, 故前三组数据的频数之和等于23427202020n n n ++=, 解得60n =.故答案为60.17.(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = 0.03 .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.【解答】解:直方图中各个矩形的面积之和为1,10(0.0050.0350.020.01)1a∴⨯++++=,解得0.03a=.由直方图可知三个区域内的学生总数为10010(0.030.020.01)60⨯⨯++=人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为1810360⨯=人.故答案为:0.03,3.18.(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有30根棉花纤维的长度小于20mm.【解答】解:由图可知,棉花纤维的长度小于20mm段的频率为0.010.010.04++,则频数为100(0.010.010.04)530⨯++⨯=.故答案为:30.三.解答题(共12小题)19.(2017•北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),[80⋯,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯=故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=,估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.20.(2016•四川)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),⋯,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.【解答】解:()1(0.080.160.420.500.120.080.04)0.5=++++++++⨯,I a a整理可得:2 1.42a=+,a=.∴解得:0.3II估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:()由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.120.080.04)0.50.12++⨯=,又样本容量为30万,则样本中月均用水量不低于3吨的户数为300.12 3.6⨯=万.(Ⅲ)根据频率分布直方图,得;⨯+⨯+⨯+⨯=<,0.080.50.160.50.300.50.420.50.480.5+⨯=>,0.480.50.50.730.5∴中位数应在[2,2.5)组内,设出未知数x,令0.080.50.160.50.300.50.420.50.50.5⨯+⨯+⨯+⨯+⨯=,x解得0.04x=;+=.∴中位数是20.04 2.0421.(2016•北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当3w=时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,w∴至少定为3立方米.(2)当3w=时,该市居民的人均水费为:(0.110.15 1.50.220.25 2.50.153)40.05340.050.5100.05340.051100.05340.05 1.51010.5⨯+⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,∴当3w=时,估计该市居民该月的人均水费为10.5元.22.(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解答】解:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x++++++⨯=,解方程可得0.0075x=,∴直方图中x的值为0.0075;(2)月平均用电量的众数是2202402302+=,(0.0020.00950.011)200.450.5++⨯=<,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.0020.00950.011)200.0125(220)0.5a++⨯+⨯-=可得224a=,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.01252010025⨯⨯=,月平均用电量为[240,260)的用户有0.00752010015⨯⨯=, 月平均用电量为[260,280)的用户有0.0052010010⨯⨯=, 月平均用电量为[280,300)的用户有0.0025201005⨯⨯=, ∴抽取比例为11125151055=+++,∴月平均用电量在[220,240)的用户中应抽取12555⨯=户. 23.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],⋯,[80,90],[90,100](1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.0040.0180.02220.028)101a +++⨯+⨯=,解得0.006a =;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.0220.018)100.4+⨯=,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:500.006103⨯⨯=(人),记为1A ,2A ,3A ;受访职工评分在[40,50)的有:500.004102⨯⨯=(人),记为1B ,2B . 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是1{A ,2}A ,1{A ,3}A ,1{A ,1}B ,1{A ,2}B ,2{A ,3}A ,2{A ,1}B ,2{A ,2}B ,3{A ,1}B ,3{A ,2}B ,1{B ,2}B ,又因为所抽取2人的评分都在[40,50)的结果有1种,即1{B ,2}B , 故所求的概率为110P =. 24.(2014•北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为681722251290+++++=,1∴周课外阅读时间少于12小时的频率为900.9 100=;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,0.085a∴=;数据在[8,10)的频数为25,∴频率为0.25,0.125b∴=;(Ⅲ)数据的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.25.(2014•广东)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率. 【解答】解:(1)(40,45]的频数17n =,频率10.28f =;(45,50]的频数22n =,频率20.08f =; (2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A ,则至少有一人的日加工零件数落在区间(30,35]为事件A ,已知该厂每人日加工零件数落在区间(30,35]的概率为15,P ∴(A )0441256(1)5625C =-=, ()1P A P ∴=-(A )369625=, ∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为369625.26.(2010•湖北)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示) (Ⅰ)在表格中填写相应的频率;。