近世代数
- 格式:ppt
- 大小:149.50 KB
- 文档页数:14
近世代数课后习题答案近世代数课后习题答案近世代数是数学中的一个重要分支,研究的是抽象代数结构及其性质。
在学习近世代数的过程中,课后习题是巩固知识、加深理解的重要途径。
本文将为大家提供一些近世代数课后习题的答案,希望对大家的学习有所帮助。
一、群论1. 设G是一个群,证明恒等元素是唯一的。
答案:假设G中有两个恒等元素e和e',则有e * e' = e'和e' * e = e。
由于e是恒等元素,所以e * e' = e' = e' * e。
再由于e'是恒等元素,所以e * e' = e =e' * e。
因此,e = e',即恒等元素是唯一的。
2. 设G是一个群,证明每个元素在G中的逆元素是唯一的。
答案:假设G中的元素a有两个逆元素b和c,即a * b = e,a * c = e。
则有a * b = a * c。
两边同时左乘a的逆元素a',得到a' * (a * b) = a' * (a * c)。
根据结合律和逆元素的定义,等式右边可以化简为b = c。
因此,元素a的逆元素是唯一的。
二、环论1. 设R是一个环,证明零元素是唯一的。
答案:假设R中有两个零元素0和0',则有0 + 0' = 0'和0' + 0 = 0。
由于0是零元素,所以0 + 0' = 0' = 0' + 0。
再由于0'是零元素,所以0 + 0' = 0 = 0' + 0。
因此,0 = 0',即零元素是唯一的。
2. 设R是一个环,证明每个非零元素在R中的乘法逆元素是唯一的。
答案:假设R中的非零元素a有两个乘法逆元素b和c,即a * b = 1,a * c = 1。
则有a * b = a * c。
两边同时左乘a的乘法逆元素a',得到(a * b) * a' = (a * c) *a'。
近世代数⽬录基本概念元素。
集合。
空集合。
⼦集 。
真⼦集 。
A =B ⟺A ⊆B ∧B ⊆A 。
幂集:⼀个集合所有⼦集组成的集合, P (A ) 。
交集。
并集。
性质:幂等性;交换律;结合律;⼆者之间有分配律。
关系:M ×M 的⼦集。
即 ∀a ,b ∈M ,法则 R 可以确定 a 和 b 符合/不符合这个法则。
记做 aRb 和 a ¯R b 。
等价关系:满⾜⾃反性(∀a ∈M ,aRa )、对称性( aRb ⇔bRa )和传递性( aRb ,bRc ⇒aRc )的关系,⽤ ∼ 表⽰,即 a ∼b 。
分类:把集合 M 的全体元素分为若⼲互不相交的⼦集。
每个分类与⼀个等价关系⼀⼀对应。
映射:集合 A ,B ,有⼀个 法则 φ 使得所有的 x ∈A 存在唯⼀的 y ∈B 与之对应。
记作 φ:x ⟶y 或 y =φ(x ) 。
y 叫做 x 在映射 φ 下的像,把 x 叫做 y 在映射 φ 下的原像或逆像。
满射:B 中每个元素在 A 中都有原像。
单射:A 中不同的元素在 B 中像不同。
双射:满射+单射。
逆映射:只有双射才有逆映射,记为 φ−1 。
有限集合满⾜ |A |=|B | 且 φ 是 A 到 B 的⼀个映射,则 φ 是满射 ⟺ φ 是单射;推论:得出 φ 是双射。
相等映射 : A 到 B 的映射 σ 和 τ 满⾜ ∀x ∈A ,σ(x )=τ(x ) 。
映射合成/映射乘法: τ:A ⟶B ,σ:B ⟶C ,则 x ⟶σ(τ(x ))(∀x ∈A ) 是 A 到 C 的⼀个映射,记为 στ(x ) 。
代数运算:集合 M 的对应法则 M ×M ⟶M ,即任意两个有次序的元素 a 和 b 有唯⼀确定的元素 d 与它们对应。
代数系统:有代数运算的集合。
(注意代数运算的封闭性。
即 d ∈M )。
⽤“乘法表”法表⽰有限集合的代数运算时,注意每列⾏⾸(第⼀列)是参与运算第⼀个元素,每列列⾸(第⼀⾏)是第⼆个元素。
近世代数及其应用近世代数是一门研究几何形状及其变化的数学分支。
它主要关注形状如何在空间中进行旋转、平移和缩放等变化,以及这些变化如何可以通过线性变换来表示。
近世代数的研究内容包括几何变换、向量空间、矩阵、行列式、特征值和特征向量等。
近世代数在计算机图形学、机器人学、几何建模和计算机视觉等领域有广泛的应用。
在计算机图形学中,近世代数用于表示三维几何图形的旋转、平移和缩放等变换。
在机器人学中,近世代数用于表示机器人的运动轨迹和姿态。
在几何建模中,近世代数用于建立三维几何模型,并进行几何变换。
在计算机视觉中,近世代数用于表示图像的旋转、平移和缩放等变换。
1.计算机图形学在计算机图形学中,近世代数用于表示三维几何图形的旋转、平移和缩放等变换。
例如,在游戏开发中,近世代数可用于控制三维模型的运动和姿态,以生成真实感十足的动画效果。
在三维建模软件中,近世代数也可用于控制三维几何图形的变换,方便用户进行几何建模和设计。
2.3.机器人学在机器人学中,近世代数用于表示机器人的运动轨迹和姿态。
例如,在机器人抓取物体时,近世代数可用于控制机器人的末端机械臂的运动轨迹,使其能够精确地抓取目标物体。
在机器人导航时,近世代数也可用于表示机器人的位置和方向,方便机器人进行自主导航。
3.几何建模在几何建模中,近世代数用于建立三维几何模型,并进行几何变换。
例如,在机械设计中,近世代数可用于建立三维机械零件模型,并对其进行旋转、平移和缩放等变换,以方便设计师进行零件布局和装配规划计算机视觉4.在计算机视觉中,近世代数用于表示图像的旋转、平移和缩放等变换。
例如,在图像识别中,近世代数可用于对图像进行旋转、平移和缩放等变换,以提高图像识别的准确率。
在视频监控中,近世代数也可用于检测图像中的运动目标,并对其进行跟踪。
5.地理信息系统在地理信息系统中,近世代数用于表示地理数据的旋转、平移和缩放等变换。
例如,在地图制作中,近世代数可用于控制地图投影的旋转、平移和缩放,以生成适合不同使用场景的地图。
近世代数发展简史引言概述:近世代数是数学中一个重要的分支,它的发展可以追溯到16世纪。
近世代数的发展不仅对数学本身产生了深远的影响,也在其他科学领域中发挥了重要作用。
本文将介绍近世代数的发展历程,分为五个部份,分别是:1. 代数基础的奠定;2. 方程论的发展;3. 群论的兴起;4. 环论的发展;5. 近世代数的应用。
一、代数基础的奠定:1.1 古希腊代数的起源:古希腊数学家毕达哥拉斯和欧几里得等人奠定了代数的基础,提出了平方数和立方数的概念,并研究了它们的性质。
1.2 文艺复兴时期的代数发展:文艺复兴时期,数学家卡尔丹诺和维埃塔等人开始研究代数方程,并提出了求解一元二次方程的方法。
1.3 笛卡尔的坐标系:17世纪,笛卡尔引入了坐标系的概念,将代数问题转化为几何问题,为代数的发展开辟了新的道路。
二、方程论的发展:2.1 代数方程的分类:18世纪,数学家拉格朗日将代数方程分为代数方程和超越方程,并研究了它们的性质和解法。
2.2 高次方程的解法:19世纪初,数学家阿贝尔和伽罗瓦等人独立地证明了五次及以上的代数方程无法用根式解出,这一结果被称为“阿贝尔-伽罗瓦定理”。
2.3 线性代数的发展:19世纪,数学家凯莱和哈密尔顿等人提出了线性代数的概念,研究了线性方程组和线性变换等内容。
三、群论的兴起:3.1 群的定义与性质:19世纪,数学家狄利克雷和凯莱等人提出了群的定义,并研究了群的性质,如封闭性、结合律和逆元等。
3.2 群论的应用:群论不仅在代数中有广泛应用,还在物理学、化学和密码学等领域中发挥了重要作用。
3.3 群论的扩展:20世纪,数学家冯·诺伊曼和埃米·诺特等人进一步发展了群论,提出了正规子群、商群和群同态等概念。
四、环论的发展:4.1 环的定义与性质:20世纪初,数学家费罗和诺特等人提出了环的定义,并研究了环的性质,如加法和乘法的封闭性、结合律和分配律等。
4.2 环论的应用:环论在代数几何、代数编码和数论等领域中有广泛应用,为解决实际问题提供了有力的工具。
近世代数笔记世代数,也称为代数学,是数学中的一个重要分支,研究代数结构及其上的操作。
在近代数学发展中,代数学作为数学的基础学科,发挥着重要作用。
以下是一些关于近世代数的笔记:一、代数结构代数结构是代数学中的一个重要概念,指具有某种代数运算的数学结构。
常见的代数结构包括群、环、域等。
群是一种具有封闭性、结合律、单位元和逆元的代数结构;环是一种具有加法和乘法运算的代数结构;域是一种具有加法、乘法、单位元和逆元的代数结构。
研究代数结构可以帮助我们更深入地理解数学中的抽象概念和结构。
二、线性代数线性代数是代数学的一个重要分支,研究向量空间及其上的线性变换和矩阵。
线性代数在科学和工程领域有着广泛的应用,如解线性方程组、求特征值和特征向量、研究线性映射等。
掌握线性代数知识可以帮助我们更好地理解和应用代数学中的相关概念。
三、代数方程代数方程是代数学中的一个重要内容,研究方程及其根的性质和解法。
在代数方程中,常见的问题包括一元多项式方程的解法、代数方程组的求解、代数方程的根与系数之间的关系等。
通过学习代数方程,我们可以更好地理解和应用代数学中的代数概念和方法。
四、代数拓扑代数拓扑是代数学和拓扑学的交叉领域,研究代数结构与拓扑结构的关系。
代数拓扑在数学中有着重要的地位,如同调理论、同伦论、拓扑群等都是代数拓扑的经典应用。
通过学习代数拓扑,我们可以更深入地理解代数学和拓扑学的交叉点,为数学研究提供新的视角和方法。
总之,代数学作为数学的基础学科,对于数学的发展和应用具有重要意义。
通过学习代数学,我们可以更好地理解和应用数学中的抽象概念和方法,为数学研究和实际应用提供新的思路和途径。
希望以上的笔记内容可以帮助大家更好地理解近世代数的相关知识。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:${}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ;正整数(自然数)集合{} ,3,2,1=+Z;有理数集合Q ,实数集合R ,复数集合C 等。
—一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。