中国移动大数据应用与服务模式研究(PPT 27张)
- 格式:ppt
- 大小:2.77 MB
- 文档页数:28
运营商网络运营大数据应用实践研究摘要:以电信运营商的大数据资源为基础,对网络运营大数据平台所要汇聚的数据范围、系统定位及功能架构进行了分析,并与4 G网络的建设和推广相联系,说明了怎样才能更好地运用网络运营大数据平台的大量数据资源,来对移动互联网的业务进行全面的评估,同时还可以对网络运营大数据平台在网络精细化运营中所具有的价值进行挖掘,为运营数据资源的内部应用提供借鉴。
关键词:运营商;网络运营;大数据平台;数据资源1.网络运营大数据概述1.1客户信息由顾客的实际注册信息、业务定单、消费、付款、投诉等信息构成,该信息以顾客关系管理(CRM)和客服系统为主,以“客户/人”为“主KEY”进行相关聚合,并体现出该用户所使用的电信服务的基础信息。
1.2用户实时业务信息具体包含了用户的实时位置信息、正在使用的业务类型、业务内容、 APP名称、终端型号版本、业务使用感知(时延、成功率、速率)等内容,它的主要作用是对用户的行为进行描述,能够反映出用户使用业务时实时体验的动态信息。
通常情况下,运营商会使用部署探针、镜像抓包等方式来对其进行捕捉和存储,之后再对其进行分析。
1.3网络/设备运行信息:具体内容有:反映各设备/各端口/各链路的速率、带宽、抖动、延时等硬件运行情况的信息,还有能够反映网络情况的业务统计信息(例如,无线信号强度/覆盖/干扰等一系列指标、各端口消息收发成功率及处理时延、各协议定义的计数器情况、性能指标等)等,这类信息通常是由网管系统进行监控和采集的。
在这些数据中,无论是用户实时业务信息还是网络/设备运行信息,都是从现网实时产生并实时采集到的动态信息。
这一类型的信息,不仅包括了用户使用电信业务及互联网业务的行为特点,而且还能反映出用户使用业务时的网络实时状况,这对运营商提升网络质量以及提升用户使用业务时的感知有着十分重要的作用。
2.网络运营大数据平台架构2.1实时性通信网络每时每刻都在对各种业务进行处理,因此,网络的运行情况也是实时变化的。
细化、智能化管理,挖掘大数据价值,提高优质应用快速共享能力,本文通过对应用共享模式的探究,搭建了省间大数据应用共享基础平台,汇聚省间各域数据,实现了共性应用的快速移植共享,并逐步形成了一套数据标准接口规范、应用选型标准和共享流程、异地跨部门分工协作运营机制,为发挥中国移动大数据应用的规模效应,更好地推动中国移动大数据发展省间应用共享的现状与问题数据系统各个省份以集团规范为指导进行自主分散建设。
对于应用来讲,各省份业务流程、应用人群类似度高,省份间在各个应用方向关注度、投入资源不一,生产的应用质量情况不同,各省应用局限于本省使用,未能将应用发挥至最大价值。
省间应用共享的现状与问题主要归纳如下:用的投入与使用。
各省份关注点与发展应用的建设是完全隔离的,共性应,无法集中建设,浪费资源且建设(2)应用的业务市场思路。
仅按照省份的需求单独进行迭代,各省无法快速集思广益,将业务推向新高度。
(3)缺失平台整体数据传输通道。
中国移动拥有最广阔的用户群,然而各省数据独立、分散,存在信 3 省间大数据应用共享模式探究与实践3.1 打造异地虚拟工作团队在集团公司指导下,中国移动南方基地(以下简称南方基地)协同五个兄弟省公司共同参与了省间大数据应用共享模式探究。
日常运营管理确定为小组分工制,各省公司组成若干小组全程负责具体模块,南方基地负责总体协调,协同完成本次探究工作。
团队分工和职责具体如图1所示。
3.2 搭建应用共享移植平台打通兄弟省公司的数据传输通道,南方基地通过一级私有云IP承载网FTP(File Transfer Protocol,文件传输协议)的方式采集兄弟省公司数据,对分散各省和各个平台的数据进行统一整合,聚合多方数据,建立数据开放平台,促进应用的快速移动共享,并形成对省份公司大数据能力的补充,形成合力优势,向兄弟省份公司提供通用性应用服务,打造一个围绕数据共创、共享、共生的多业务协同平台。
应用共享平台架构如图2所示。
中国移动案例分析中国移动作为中国最大的移动通信运营商,其成功的商业模式、市场竞争策略以及技术创新等方面的成功经验对中国通信行业的发展产生了深远的影响。
本文将以中国移动为例,对其商业模式、市场竞争策略以及技术创新等方面进行深入分析。
一、商业模式中国移动的商业模式主要以移动通信服务为主,包括语音、短信、数据流量等业务。
其收入来源主要包括四个方面:语音通话、短信、数据流量和增值服务。
其中,数据流量和增值服务是近年来增长最快的部分。
在商业模式创新方面,中国移动推出了多种创新的业务模式,如“和包支付”、“和彩云”、“和多号”等,这些业务模式不仅增加了公司的收入来源,也提高了用户黏性。
二、市场竞争策略在市场竞争方面,中国移动主要采取了以下策略:1、扩大市场份额:通过大规模的营销活动,提高品牌知名度和用户黏性,从而扩大市场份额。
2、提升服务质量:通过提高服务质量,提高用户满意度,从而留住老用户并吸引新用户。
3、推出优惠活动:通过推出各种优惠活动,如打折、赠品等,吸引用户使用中国移动的服务。
4、加强与合作伙伴的合作:通过与各大厂商、银行等合作伙伴的合作,推出联合优惠活动,扩大市场份额。
三、技术创新中国移动在技术创新方面也做出了很多努力。
例如,在5G技术方面,中国移动不仅在国内率先开展了5G试点工作,还在全球范围内积极推动5G技术的发展和应用。
中国移动还积极探索云计算、大数据等新兴技术的发展和应用,并将其应用到自身的业务创新中。
四、总结通过对中国移动案例的分析,我们可以看到其成功的商业模式、市场竞争策略和技术创新等方面的成功经验对中国通信行业的发展产生了深远的影响。
未来,随着技术的不断发展和市场的不断变化,中国移动需要继续加强技术创新和市场研究,不断推出符合用户需求的创新业务模式和产品,以保持其领先地位并继续推动中国通信行业的发展。
移动电子商务案例分析:Zara移动电商随着移动互联网的快速发展,移动电子商务已成为新的商业发展趋势。
大数据技术在移动电商中的应用研究随着移动互联网的发展,电子商务已经从PC端向移动端迅速转型,成为了移动互联网的重要组成部分。
与此同时,大数据技术也在不断发展和应用,为电子商务的高效运营提供强有力的支持。
本文将对大数据技术在移动电商中的应用研究进行探究。
一、大数据技术简介1. 定义大数据技术,简称大数据,是一种数据管理、处理和分析的方法,它涉及到的数据量非常大,以至于传统的数据处理方式难以胜任。
因此,大数据技术往往需要借助于高速网络、高性能的服务器和强大的算法支持。
它可以使用在各种领域,例如电子商务、社交网络、金融、医疗等。
2. 内容大数据技术主要包括数据存储、处理和分析。
数据存储方面,需要使用分布式数据库、云存储等技术;数据处理方面,需要使用MapReduce、Hadoop等框架;数据分析方面,需要使用机器学习、数据挖掘等技术。
二、移动电商的现状移动电商是指通过移动设备(如手机、平板电脑等)进行的电子商务交易活动。
目前,移动电商已经发展成为了电子商务的重要组成部分,越来越多的用户选择通过移动设备进行购物、支付等活动。
根据数据显示,2019年中国移动电商市场规模已经达到5.8万亿元人民币,其中支付宝、微信等移动支付平台的市场份额超过90%。
三、大数据技术在移动电商中的应用1. 数据分析移动电商平台拥有丰富的用户数据,这些数据可以通过大数据技术进行分析,从而为平台提供更好的服务。
例如,平台可以根据用户的历史购买记录和浏览等行为,推荐相关产品,提高用户的购买率。
同时,平台还可以根据不同用户的喜好和行为模式,进行精确的营销,提高广告的曝光和转化率。
此外,还可以通过大数据技术对商品的需求、市场趋势等进行分析,为平台提供更好的商品推荐和服务。
2. 营销策略大数据技术可以为电商平台提供更精细、个性化的营销策略。
例如,通过分析用户的消费习惯和购买行为,平台可以制定不同用户群体的不同营销策略,提高营销效果和转化率。