不等式组中蕴含的数学思想
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
§50课题:一元二次不等式及其解法⑴【考点及要求】会从实际情境中抽象出一元二次不等式的模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程的联系;会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 【基础知识】【基本训练】1.不等式(x+2)(1-x)>0的解集是 .2.若关于x 的不等式01>+-x ax 的解集为),4()1,(+∞--∞ ,则实数a = . 3.已知不等式022>++c x ax 的解集为2131<<-x ,则=+c a .4.若关于x 的方程09222=--k x kx 两实根有一个大于2,而另一个根小于2,则实数k 的取值范围是 .【典型例题讲练】例1 . 解下列不等式:⑴ 01832<++-x x (2) 18342<-≤x x (3) 1212<+-x x (4) 0)4()1)(2)(3(2≥--+-x x x x例2.已知不等式02>++c bx ax 的解集为()βα,,且βα<<0,求不等式02<++a bx cx 的解集.练习:已知不等式02>++q px x 的解集为{}2131|<<-x x ,求不等式012>++px qx 的解集.【课堂小结】1.解一元二次不等式的一般步骤 ;2.一元二次不等式的解集与二次函数的图象、一元二次方程的解之间的关系; 3.蕴含的数学思想有: . 【课堂检测】: 1.不等式01312>+-x x 的解集是______________________. 2.不等式组⎪⎩⎪⎨⎧>-<-1)1(log 2222x x 的解集是______________.3.22)5(6)5(->-x x x 解集是______________________.4.函数a ax x f 213)(-+=在)1,1(-上存在,0x 使,0)(0=x f 则a 的取值范围是_______________________.5.解下列不等式:⑴ 01442>++x x (2) 0532>+-x x(3) 0)4()1)(2)(3(2<--++x x x x (4) 12315222>+---x x x x §51课题:一元二次不等式及其解法⑵【典型例题讲练】例1.当a 为何值时,不等式01)1()1(22<----x a x a 的解是全体实数.练习:已知常数R a ∈,解关于x 的不等式022<+-a x ax .例2已知函数))(2lg(2)(),1lg()(R t t x x g x x f ∈+=+= ⑴.当1-=t 时,解不等式)()(x g x f ≤;⑵.如果当]1,0[∈x 时,)()(x g x f ≤恒成立,求实数t 的取值范围.例3.某种牌号的汽车在水泥路面上的刹车距离sm 和汽车车速h xkm /有如下关系:21801201x x s +=,在一次交通事故中,测得这种车的刹车距离大于m 5.39,那么这辆汽车刹车前的车速至少为多少?(精确到h km /01.0)【课堂小结】1.解含参数的不等式时,一般需 ;2.主要运用的数学思想是 ;3.一元二次不等式的实际运用.【课堂检测】1. 已知不等式x x ax ax 424222+<-+对任意实数x 不等式恒成立,求实数a 的取值范围是 ;2.已知关于x 的不等式4632>+-x ax 的解集为),()1,(+∞-∞b , 求⑴求b a ,的值;⑵解关于x 的不等式0)(2<++-bc x b ac ax 的解集. 【课后作业】1.解不等式: (1) 03222>-+-x x (2) 01692≤+-x x ⑶ 0)273)(132(22>+-+-x x x x ⑷23253≤--x x 2.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(, ⑴若方程06)(=+a x f 有两个相等的实数根,求)(x f 的解析式; ⑵若)(x f 的最大值为正数,求实数a 的取值范围.3.某种商品现在定价每件p 元,每月卖出n 件,因而现在每月售货总金额是np 元,设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍, ⑴.用x 和y 表示z ;⑵.设)10(<<=k kx y ,利用k 表示当售货总金额最大时x 的值; ⑶.如果x y 32=,求使售货金额有所增加的x 值的范围; 4.已知不等式组⎪⎩⎪⎨⎧<+-<+-08603422x x x x 的解集是不等式0922<+-a x x 的解集的子集,则实数a 的取值范围是 .5.已知不等式03)1(4)54(22>+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围§52课题:基本不等式(1)【考点及要求】1. 探索并了解基本不等式的证明过程;2. 会用基本不等式解决简单的最大(小)值问题。
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
解决不等式问题中的数学思想方法把握数学思想有利于学生对数学概念和性质的深刻理解和掌握,从而更加灵活地运用所学知识解答相关问题,培养创新能力应用能力。
下面是对解决不等式问题中举例说明几种数学思想方法的运用。
一、类比思想问题1:解方程: + =1问题2:类比方程的解法,尝试着解一元一次不等式+ ≥1,并归纳解题步骤?思路:根据学生非常熟悉的解方程的步骤,去分母、去括号、移项、合并同类项、系数化为1,来完成一元一次不等式的解法,但最后一步一定结合不等式的性质来确定解集。
类比思想在中学数学中的概念、公式、性质及解题中无处不在,通过类比可以探索出很多新的知识、方法,寻求出与众不同的解题思路,探索数学规律。
二、数形结合思想例x克x克1.图中表示的不等式的解集是()-2 -1 0 1 2 3A、x>2B、x≥2C、x<2D、x≤2例2.如图,天平向左倾斜,当天平中x取()时,天平会向右倾斜。
8A、x>4B、x≥4C、x<4D、x≤4例3.不等式组的解集在数轴上表示正确的是( )例4.已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )数轴是学习、研究实数的重要工具,借助数轴可以把数与数之间的关系转化为点和点之间的位置关系,不等式组求解集时通过建立数轴的数形结合思想,可以更直观的看出两个解集的公共部分,深刻理解不等式公共解的概念,可以迅速解决相关问题。
三、分类思想分类讨论思想是在解决问题出现不确定性时的有效方法。
利用不等式组解决方案类问题,都需要我们正确地运用分类讨论的思想进行解决再结合数形思想形象直观。
分类讨论及数形结合思想不仅可以使我们有效地解决一些问题,同时还可以培养我们的观察能力和全面思考问题的能力还有形象直观简化解决能力。
例5.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解(1)设租36座的车辆.据题意得:解得:由题意应取8则春游人数为:36 8=288(人).(2) 方案①:租36座车8辆的费用:8 400=3200元,方案②:租42座车7辆的费用:元方案③:因为,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040元。
全方位教学辅导教案1、一元一次不等式组把只含有一个相同未知数的几个一次不等式组成的不等式组,叫做一元一次不等组.2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.注意:如何利用数轴确定不等式组的解集呢?由两个一元一次不等式组成的不等式组其解集有四种情况. 如下表所示3、现实生活中,许多问题变化多端,仅利用方程的思想去解决现实生活中许多问题是远远不够的,往往经常需要考虑问题中的不等关系,运用不等式的思想来分析解决问题。
如经济建设中最佳决策,生产方案的设计、营销决策以及比赛结果的分析等等这些无不与不等式有着密切的关系.解决这类应用题有的需要列不等式或不等式组解决,有的则是列方程和列不等式的混合组解决。
经常使用逐一尝试的方法,去假存真,筛选需要的结果. 二、重难点知识概述不等式组的解法及实际应用问题 三、典型例题剖析例题1.(福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( )A .B .C .D .变式练习.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( )A . ﹣6<t <211-B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211-例题2.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .变式练习.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .例题3.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.变式练习:某商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台? .例题4.已知,关于x,y的方程组的解满足.(1)求a的取值范围;(2)化简.变式练习.已知方程组,当m为何值时,x>y.例题5:市为了更好地治理南湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A,B 两种型号的设备,其中每台的价格,同处理污水量如下表:A型B型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.(1)求a ,b的值.(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理南湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.变式练习.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x个,则当两种方案费用一样时,4x=2.4x+16 000,解得x=10 000;当方案一费用低时,4x<2.4x+16 000,解得x<10 000;当方案二费用低时,4x>2.4x+16 000,解得x>10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.课堂检测1.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.52.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块3.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关4.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元5.(2014·威海)已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )6.如果不等式组()2131,x xx m->-<⎧⎨⎩的解集是x<2,那么m的取值范围是( )A.m=2B.m>2C.m<2D.m≥27.不等式组324313x xxx<++-≤-⎧⎪⎨⎪⎩的解集在数轴上表示为( )8.(2014·株洲)一元一次不等式组21050xx+>-≤⎧⎨⎩的解集中,整数解的个数是( )A.4B.5C.6D.79.若不等式组210210x ax a+->--<⎧⎨⎩的解集为0<x<1,则a的值为( )A.1B.2C.3D.410.(2013·荆门)若关于x的一元一次不等式组20,2x mx m-<+>⎧⎨⎩有解,则m的取值范围为( )A.m>-23B.m≤23C.m>23D.m≤-2311.(2013·烟台)不等式组10,420xx-≥-<⎧⎨⎩的最小整数解是__________.12.(菏泽)若不等式组3xx m>>⎧⎨⎩,的解集是x>3,则m的取值范围是__________.13.(2013·曲靖)同时满足不等式123x+>x-1与x+3(x-1)<1的x的取值范围是__________.14.(2013·鄂州)若不等式组20,x bx a-≥+≤⎧⎨⎩的解集为3≤x≤4,则不等式ax+b<0的解集为__________.15.(2013·遂宁)解下列不等式组,并把它的解集在数轴上表示出来.(1)()328,143x x x x +>+-≥⎧⎪⎨⎪⎩①;② (2)233,311.362x x x x ++--⎪⎪⎩≥⎧⎨>①②16.若不等式组1,21x m x m <+>-⎧⎨⎩无解,求m 的取值范围.17(毕节)解不等式组()2532,1321,2x x xx +≤+⎧⎩+-⎪<⎪⎨①②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.挑战自我18.(南通)若关于x 的不等式组()10,23354413x x x a x a ++>++⎧>+⎪⎩+⎪⎨①②恰有三个整数解,求实数a 的取值范围.(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.20.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?21.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?课后作业1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69.在平面直角坐标系内,点P(x-2,x+1)在第二象限,则x的取值范围是__________10.解不等式组2≤3x﹣4<8的解集为.11.已知x>﹣4,则x可取的负整数的和是.12.的整数解为13.如果关于x的不等式组无解,则a的取值范围是__________14.若不等式组的解集为-1<x<1,那么(a-3)(b+3)的值等于.三解答题:15.解不等式或不等式组:(1)(2)16、若不等式组的解集为,求的值.17、当实数为何取范围值时?不等式组恰有两个整数解。
不等式及其性质(提高)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】知识点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等于”即“不小于”,表示左边的量不小于右边的量(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;二是确定方向,对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.【高清课堂:一元一次不等式370042不等式的基本性质】知识点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形.判断下列正确的情形是()【思路点拨】根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.【答案】D【解析】解:由图(1)知,每一个糖果的重量大于5克,由图(2)知:3个糖果的重量小于16克,即每一个糖果的重量小于163克.故A选项错;两个糖果的重量小于3221033=克故B选项错;三个糖果的重量大于15克小于16克故C选项错,四个糖果的重量小于16641421 333⨯==克故D选项对.【总结升华】观察图示,确定大小.本题涉及的知识点是不等式,涉及的数学思想是数形结合思想,解决问题的基本思路是根据图示信息列出不等式.举一反三:【变式】【答案】类型二、不等式的解及解集2.若关于x的不等式x≤a只有三个正整数解,求a的取值范围.【思路点拨】首先根据题意确定三个正整数解,然后再确定a的范围.【答案】3≤a<4【解析】解:∵不等式x≤a只有三个正整数解,∴三个正整数解为:1,2,3,∴3≤a<4,【总结升华】此题主要考查了一元一次不等式的整数解,做此题的关键是确定好三个正整数解.3.(2015春•安县期末)如图所示,图中阴影部分表示x的取值范围,则下列表示中正确的是( )A.-3≤x<2 B.-3<x≤2 C.-3≤x≤2 D.-3<x<2【思路点拨】x表示-3右边的数,即大于-3,并且是2以及2左边的数,即小于或等于2的数.【答案】B【解析】解: A、因为-3≤x<2,在数轴上-3的点应该是实心的圆点;C、因为-3≤x≤2,在数轴上-3和2的点应该都是实心的圆点;D、因为-3<x<2,在数轴上-3和2的点应该都是空心的圆点;故选B.【总结升华】在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,“>”,“≥”向右画;“<”,“≤”向左画.举一反三:【变式】根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.【答案】4提示:由程序图可知,计算求值时所使用的数学表达式为224y x =-.把x =1输入求值,若求得的结果大于0,则直接得到输出值y ;若求得的结果小于0,则需要把得到的结果作为输入值再代入计算,循环往复,直到使最终的结果大于0为止. 类型三、不等式的基本性质4.若关于x 、y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x+y <2,则a 的取值范围是________.【思路点拨】观察方程组不难发现只要把两个方程相加即能求出x+y 的值.因为x+y <2,故可以构建关于a 的不等式.然后利用不等式的性质就能求出a 的取值范围. 【答案】a <4 【解析】解:将两方程相加得:4x+4y =4+a . 将方程的两边同除以4得 44ax y ++=. 依题意:424a+<. 将不等式的两边同乘以4得4+a <8. 将不等式的两边同时减去4得a <4. 故a 的取值范围是a <4.【总结升华】解关于x 的一元一次不等式,就是要将不等式逐步化为x >a 或x <a 的形式,化简的依据是不等式的性质. 举一反三:【变式1】(2015春•沙河市期末)若关于x 的不等式(1﹣a )x >3可化为,则a的取值范围是 . 【答案】a >1.解:关于x 的不等式(1﹣a )x >3可化为,1﹣a <0,a >1.【高清课堂:一元一次不等式370042 练习3】【变式2】a 、b 是有理数,下列各式中成立的是( ).A .若a >b ,则a 2>b 2;B .若a 2>b 2,则a >bC .若a ≠b ,则|a |≠|b|D .若|a |≠|b|,则a ≠b【答案】D附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系. 【答案与解析】 解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
2.1 等式性质与不等式性质教材分析:本单元主要学习用不等式表示现实问题、数学问题,为了解不等式,要探究不等式性质,而不等式性质的探究要先学习证明不等关系的“根本大法”,即“两个实数大小关系的基本事实”还要梳理等式基本性质及蕴含的思想方法,然后通过类比的方法猜想并证明不等式的性质,最后要会运用不等式的性质证明其它的一些不等关系.现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、高与矮、远与近、快与慢、涨与跌、轻与重、不超过或不少于等.类似于这样的问题,反映在数量关系上,就是相等与不等.相等用等式表示,不等用不等式表示.实际问题中所蕴含的不等关系可抽象出不等式的关键是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.两个实数大小关系的基本事实既是实数的基本性质,又是研究式的大小关系的基础,为不等式的研究奠定了逻辑基础.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而把实数的大小关系转化为使实数的运算问题,使实数大小关系的比较有了抓手.重要不等式222≥是基本不等式基础,该不等式从赵爽弦图中获得猜想,运用由一般a b ab性与特殊性获得“=”成立的条件.证明中,运用了完全平方差公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解決不等式问题中的应用价值.等式性质可从自身特性看,包括“对称性”和“传递性”.“对称性”即两个相等的实数放在等号两边的两种不同的表现形式;“传递性”是实数相等的内在关系,两者均是实数序的特征.从运算角度看,“加法”、“乘法”运算中的不变性,即等式两边同加或同乘同一个实数,等式保持不変;也有其派生出来的在“乘方”、“开方”等运算中的不变性.不等式与等式的性质蕴含了同样的数学思想方法,也包含不等关系自身的特性和运算中的不变性两类.不等关系自身的特性有“自反性”和“传递性”两种.“自反性”是不相等的两个实数大小关系的两种不同表达形式,是实数序特性的体现.“传递性”是三个不相等的实数之间大小关系的内在联系,也是实数序特性的体现.运算中的不变性、规律性是指对不等号两边的实数同时进行“加法”、“乘法”等运算,得出新的不等关系.由于“正数乘正数大于0”,“负数乘正数小于0”,所以不等式对于乘法运算失去了“保号性”,这也是不等式性质与等式的性质的差异.实际上,在代数问题中,运算中的不变性、规律性就是性质,它是发现代数性质的“引路人”,在代数领域中具有基础地位.利用不等式的基本性质可推导出不等式的一些其他性质,即以基本性质为理论依据,以运算中的不变性和规律性为研究方向,通过“猜想—证明—修正—再证明—得出性质”的方法探究出其他的性质.结合以上分析,确定本节课的教学重点:两个实数大小关系的基本事实及其简单应用;梳理出等式基本性质中蕴含的思想方法;类比等式基本性质,探究不等式的基本性质.学情分析:学生在用不等式表示实际问题时,对没有符号化的问题不知从何入手,学生能够抽象不等关系,但不能用符号语言表达.教学中教师应引导学生将问题符号化,体会符号语言在数学中的作用.两个实数大小关系的基本事实及其应用对学生来说较为容易,但理解这个基本事实使运算参与比较之中存在困难.教学中要让学生动起来,在比较大小的过程中体会运算的作用.不等式性质的探究是以两个实数大小关系的基本事实为依据,以梳理等式性质中所蕴含的思想方法为前提,以类比等式的基本性质为方法展开的.学生虽然在初中阶段接触过一些内容,然而是运用由特殊到一般的归纳方法得到的,没能从根源上探索其成立的道理.高中阶段的等式与不等式的学习强调逻辑推理,因此学生会有一定的的困难.对于等式的基本性质学生是熟知的,但对性质中所蕴含的思想方法缺乏思考,尤其是体会相等关系自身的特性较为困难.教学中采用让学生对性质的特点进行归类的方法,总结每类性质的特点,引导学生从实数序关系的特性角度体会相等关系自身的特性.学生类比等式基本性质及其蕴含的思想方法,猜想并证明不等式的基本性质存在困难,由于初中时学生学习过不等式的基本性质3和性质4,而性质1和性质2学生认为是显然成立的,学生思维达不到从逻辑推理角度证明性质.因此,教学中在强调逻辑推理的重要性的同时,还要强调两个实数比较大小的基本事实和实数的一些其他事实是证明的依据.学生缺少从代数角度证明不等式的经验,运用两个实数大小关系的基本事实和不等式的性质证明一些简单命题存在一定的困难.教学中,要帮助学生进行分析,适当采用问题串的形式引导学生生成证明思路.本节课的教学难点是从实际问题所蕴含的不等关系中抽象出不等式;梳理出等式基本性质中蕴含的思想方法;类比等式的基本性质及其蕴含的思想方法,猜想证明不等式的基本性质.教学目标:1.会从实际问题所蕴含的不等关系中抽象出不等式.2.理解两个实数大小关系的基本事实,能运用这个基本事实比较式的大小关系.3.运用等式基本性质中蕴含的思想方法,类比等式的基本性质研究不等式的基本性质,掌握不等式的基本性质.4.运用不等式的基本性质发现并证明一些常用的不等式性质;运用不等式的性质证明一些简单的命题.教学过程:(一)从不等关系中抽象不等式问题1:在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.你能举例说明生活中的相等关系和不等关系?师生活动:教师根据学生列举的例子,从严谨性的角度帮助学生梳理语言的表述.追问:你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40km h;(2)某品牌酸奶的质量检査规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p 应不少于2.3%;(3)三角形两边之和大于第三边、两边之差小于第边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.师生活动:学生独立思考追问中的问题、讨论交流.教师引导学生梳理讨论交流的结果,用不等式表示不等关系的关键是确定问题在涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.有时用自然语言表达的不等关系不够明确,例如“不少于”、“不低于”、“至多”、“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.设计意图:创设运用不等式表示问题的情景,使学生意识到不等式在生活及数学中的应用,为后面的学习奠定基础,引导学生将抽象出不等关系用符号语言表达.(二)探究两个实数大小关系的基本事实问题2:你能用不等式表示并解決下面的问题吗?某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万?师生活动:学生分析数量关系,并用不等式表达.设提价后每本杂志的定价为x元,则销售总收入为2.580.20.1xx--⨯()万元.于是,不等关系“销售总收入不低于20万元”可以用不等式表示为2.580.2200.1xx--⨯()≥,但不会解不等式.与解方程要用等式性质一样,解不等式要用到不等式的性质.为此,我们需要先研究不等式的性质.实际上,在初中阶段学生已经通过具体实例归纳出了一些不等式的性质.追问:那么,这些性质为什么是正确的?还有其他不等式的性质吗?师生活动:学生独立思考追问中的问题、讨论交流.教师指出回答这些问题要用到关于两个实数大小关系的基本事实.若要研究不等式的性质,即由已知不等式得出新的不等式,这样必然需要比较两个式子或两个实数的大小关系.追问:大家来思考如何比较两个式子或实数的大小关系呢?师生活动:学生独立思考追问中的问题、讨论交流.思路一:利用实数的几何意义,由于数轴上的点与实数一一对应,所以可以利用数轴上点的位置关系来规定实数的大小关系,如图2.1-2,思路二:利用两个式子或实数作差,比较差值与0的大小关系,从而得出结论.这个基本事实可以表示为:0a b a b ⇔->>;==0a b a b ⇔-;0a b a b ⇔-<<.设计意图:两个实数大小关系的基本事实对学生来说并不陌生,只不过以往没有提炼出来,此环节以问题为载体,由学生自主探究基本事实,这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.(三)两个实数大小关系的基本事实的简单应用例1:比较23x x ++()()和14x x ++()()的大小.师生活动:学生能够比较顺利利用两个实数大小关系的基本事实比较出两数大小.因为2314x x x x ++-++()()()()22=5654x x x x ++-++()()=20>,所以2314x x x x ++++>)()()()(.设计意图:此题是两个实数大小关系的基本事实的简单应用,借助多项式减法运算,得出了一个明显大于0的数(式).这是解决不等式问题的常用方法,让学生再次体会此方法在比较大小中的应用.问题3:阅读教科书第39页“探究”,你能在图中找出一些相等关系和不等关系吗?师生活动:学生独立思考、讨论交流.教师指出这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是个小正方形.由于大正方形的面积大于4个直角三角形的面积和,即222a b ab +>(设直角三角形的两条直角边的长为a ,b a b (≠)).而当直角三角形変为等腰直角三角形,即=a b 时,中空部分缩为一个点,这时有相等关系22=2a b ab +.这样,就引出了基本不等式的一种变形形式222a b ab +≥.追问:你能总结一下22a b +与2ab 的大小关系吗?此不等关系中a b ,的取值范围如何?如果a b ∈R ,,此结论是否仍成立?师生活动:学生总结出222a b ab +≥,其中a b ,是边长,所以+a b ∈R ,.当a b ∈R ,时,上述结论是否成立的可題,只需比较22a b +与2ab 的大小关系,即2222=0a b ab a b +--()≥,由两个实数大小关系的基本事实,得222a b ab +≥,当且仅当=a b时等号成立.教师强调此结论是由两个实数大小关系的基本事实得到一类重要的不等式.设计意图:此探究问题的设计,作为相等关系和不等关系的总结,也为引出基本不等式做了铺垫.在推导过程中通过教师引导,学生从独立想象,并能够由“形”到“数”的逐步提炼出不等关系,通过再次追问,让学生经历猜想并证明不等式的一般过程,为不等式性质和基本不等式的学习奠定基础.(四)复习等式性质,梳理思想方法关于两个实数大小关系的基本事实为研究不等式的性质奠定了基础.那么不等式到底有哪些性质呢?要研究不等式的性质,我们可以从等式的性质及其蕴含的思想方法中获得启发.问题4:请你先梳理等式的基本性质,再观察它们的共性.你能归纳一些发现等式基本性质的方法吗?师生活动:学生独立思考、讨论交流并给出答案.教师进行总结、归纳、补充并板书出等式的性质.这其中性质3,4,5是学生比较熟悉的,但对于性质1,2只有很少学生能回答出来,教师指出性质1,2反映了相等关系自身的特性,由于它们太明显了,是相等关系本身蕴含的性质,反而容易被忽略.学生在教师引导下可以归纳出性质3,4,5是从运算角度提出的,即等式两边加、减,乘,除同一个数,等式仍然成立.教师指出,这三条性质反映了相等关系在运算中保持不変性的特点.设计意图:通过以上问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.(五)通过类比,探究不等式的性质问题5:类比等式的基本性质,你能猜想不等式的基本性质,并加以证明吗?师生活动:学生独立思考、讨论交流后得出:不等式的基本性质可从不等式的自身特性和运算两个角度来研究,教师进行总结、归纳、补充并板书出不等式的基本性质1,2,3,4.学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即a b b a ⇒><,b a a b ⇒<>;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即0a b c ac bc ⇒><<,.不等式的这种特殊性是由实数的基本性质决定的.在对不等式进行论证时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.(2)正数的相反数是负数,负数的相反数是正数.(3)两个正数的和仍是正数,两个负数的和仍是负数.(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.例如,性质2的证明可由0a b a b ⇒->>,0b c b c ⇒->>,继而得到+0a b b c --())>(. 性质3的证明中学生能够分析出要证明a c b c ++>,只需证明a c b c +-+()()与0的大小关系,也就是a b -与0的大小关系,得出如下证明:由a b >,得0a b ->,所以0a c b c +-+())>(,即a c b c ++>.追问:用文字语言怎样表达此性质?两个实数大小关系还可以形象地在数轴上表达出来,你能从几何意义的角度对这个性质进行解释吗?师生活动:学生用文字语言表达,即不等式的两边都加同一个实数,所得不等式与原不等式同向.通过教师课件展示a c +,b c +的变化,学生体会此性质的几何意义,并注意到可用运动方向表达实数c 的正负.教师强调,几何语言的表达具有“直观”的特点,建议学生经常从几何视角发现或解释一些代数问题,能实现更直观地认识问题,更深刻地理解问题.设计意图:对同一个概念从不同的角度来表述,有利于揭示概念的本质.不等式是用不等号连接起来的式子,有的不等式的内涵是比较抽象的,为了帮助学生理解和掌握不等式的本质,用文字语言、图形语言等多种形式来表达重点的不等式的性质,有助于对问题的深入理解.追问:利用以上不等式的基本性质,我们还可以推导出不等式的其它一些性质吗?师生活动:由性质3学生得到猜想“大数加大数大于小数加小数”,即“如果a b >,c d >,那么a c b d ++>”.学生分析证明方法,若要证a c b d ++>只需证0a c b d +-+())>(,由已知0a b ->,0c d ->,由“正数加正数是正数”这一基本事实,猜想得证.教师评价,此证明是基于两个实数大小关系的基本事实和实数的一些基本事实证明的,这是证明不等式的根本大法,在证明不等关系时起到重要作用.追问:在基本性质4中,不等式的两边同乘同实数.如果同乘不同的实数,你有何结论? 师生活动:学生独立思考、讨论交流得出:两边同乘负数不等号要変方向,所以此问题中,乘法不一定具备“保号性”.同时,学生与性质4进行对比,发现对于正数乘法是具有“保号性”的.教师指出此性质为不等式性质6,即“如果0a b >>,0c d >>,那么ac bd >”.追问:如果性质6中=a c ,=b d ,你有何新的结论?师生活动:学生独立思考、讨论交流得出“如果0a b >>,那么22a b >”,并能推广到“如果0a b >>,那么n n a b >2n n ∈N (,≥)”.教师指出这是不等式的性质7,它是性质6的特例.设计意图:证明以上性质的过程可以看作不等式的性质在代数证明中的初步应用,通过不等式性质的推导,让学生经历“猜想—证明—修正再证明—得出性质—理解”的研究数学问题的过程.(六)不等式性质的简单应用例2 已知00a b c >>,<,求证c c a b>. 师生活动:学生独立思考得出分析:要证明c c a b >,因为0c <,所以可以先证明11a b<.利用已知0a b >>和性质3,即可证明c c a b>. 设计意图:通过本题向学生示范了应用不等式的性质证明命题的一般思路.对于有些不等式的证明,要在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”.此外,通过本例引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.(七)单元小结教师引导学生回顾本单元所学知识,并引导学生回答下面的问题:(1)本单元我们研究了两个实数大小关系的基本事实,这个基本事实在研究不等式时有什么作用?(2)本单元我们还重点学习了不等式的性质,我们采取什么样的方法进行研究?能否梳理并总结出探究的过程?师生活动:问题(1)学生总结并回答,研究两个实数大小关系的基本事实是为了研究不等式的性质,从而解决解不等式的问题.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而把实数的大小关系转化为使实数的运算问题,使实数大小关系的比较有了抓手.问题(2)学生总结并回答,通过梳理等式的基本性质及蕴含的思想方法,猜想并证明不等式的基本性质,再由不等式的基本性质推理得到不等式另外一些常用性质.教师帮助整理:经历“前备经验—归纳特点—类比猜想—推理证明—理解表达—应用反思”的过程.设计意图:梳理、总结、归纳提炼本单元的核心内容和方法.(八)布置作业教科书习题2.1第1,2,3,4,5,6题.五、目标检测设计1.用不等式或不等式组表示下面的不等关系:(1)某高速公路规定通过车辆的车货总高度h(单位:m)从地面起不超过4 m;(2)a与b的和是非负实数;(3)如图,在一个面积小于2350m的矩形地基的中心位置上建造一个仓库,仓库的四周建成绿地,仓库的长L(单位:m)大于宽W(单位:m)的4倍.设计意图:考查从实际问题中抽象出不等式的能力.2.比较37++()()的大小.x x++x x()()和46设计意图:利用两个实数大小关系的基本事实比较大小.3.用不等号“>”或“<”填空:(1)如果a b c d >,<,那么_____a c b d --;(2)如果00a b c d >><<,,那么_____ac bd ;(3)如果0a b >>,那么2211_____a b; (4)如果0a b c >>>,那么_____c c a b . 设计意图:考查学生对不等式性质的简单应用能力.4.已知a b >,0ab >,求证11a b<. 设计意图:考查学生对不等式证明方法的探究水平,以及综合运用不等式性质的能力.。