青岛版2020八年级数学下册第八章一元一次不等式单元综合能力测试题2(附答案)
- 格式:doc
- 大小:877.00 KB
- 文档页数:17
青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案) 1.(雅安校级月考)不等式组323x x ->⎧⎨<⎩的解集是( ) A .x <3B .3<x <5C .x >5D .无解 2.下列各题中,结论正确的是( )A .若a >0,b <0,则b a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b a<0 3.若不等式组5x 23x 5x 5a+≤-⎧⎨-+<⎩无解,则a 的取值范围是( )A .17a 2≤B .a 12≤C .17a 2<D .a 12<4.不等式组9511x x x a ++⎧⎨+⎩<> 的解集是x >2,则a 的取值范围是( ) A .a≤2 B .a≥2 C .a≤1 D .a >15.下列变形中,不正确的是( )A .由x -5>0可得x >5B .由12x >0可得x >0 C .由-3x >-9可得x >3 D .由-34x >1可得x <-43 6.下列说法错误的是( ).A .不等式x -3>2的解集是x >5B .不等式x <3的整数解有无数个C .x =0是不等式2x <3的一个解D .不等式x +3<3的整数解是0 7.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m ≤3D .m ≥3 8.关于x 的不等式组0312(1)x m x x -≤⎧⎨->+⎩恰有四个整数解,则m 的取值范围是( ) A .78m <<B .78m <≤C .78m ≤<D .78m ≤≤ 9.不等式组3213x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( )10.-2x >6的解集为( )A .x >-3B .x <-3C .x≥-3D .x≤-311.若关于x 的不等式组31x x a <⎧⎨+≤⎩的解集为x<3,则a 的取值范围是______________. 12.已知x =3是方程2xa -=x +1的解,那么不等式(2-5a )y<13的解是________. 13.代数式2x-5的值不大于0,则x 的取值范围是 __________14.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等组为:_________________15.不等式7-2x >1的解集为____________.16.若a<b ,则 3a________ 3b , -a+1 ________-b+1,(m 2+1)a _______(m 2+1)b .(用“ >”,“ <”或“=”填空)17.不等式组212x x m -≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__. 18.已知a 、b 、c 是非负数,且2a+3b+c=10,a+b-c=4,如果S=2a+b-2c ,那么S 的最大值和最小值的和等于_________.19.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是____________.20.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.21.解不等式(组):.22.甲乙两地相距200千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距50km 的A 、B 两个加油站,当客车进入A 站加油时,出租车恰好进入B 站加油,求A 加油站到甲地的距离.(3)若出租车到达甲地休息10分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返..的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?23.23.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式) 24.某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务。
第8章 一元一次不等式基础类:一.填空题1.若582112 m x 是关于x 的一元一次不等式,则m =_________. 2.不等式0126 x 的解集是____________.3.当x _______时,代数式423x 的值是正数. 4.当2 a 时,不等式52 x ax 的解集时________.5.已知13222 k x k 是关于x 的一元一次不等式,那么k =_______,不等式的解集是_______. 6.若不等式组3212 b x a x 的解集为11 x ,则 11 b a 的值为_________. 7.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有_______个.8.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买________枝钢笔.一. 选择题9.下列不等式,是一元一次不等式的是 ( )A.24)1(2 y y yB.0122 x xC.613121 D.2 x y x 10.4与某数的7倍的和不大于6与该数的5倍的差,若设某数为x ,则x 的最大整数解是( )A.1B.2C.-1D.011.若代数式72 a 的值不大于3,则a 的取值范围是( )A.4 aB.2 aC.4 aD.2 a12.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折A.6B.7C.8D.913.若不等式组a x x 3的解集是a x ,则a 的取值范围是( ) A.3 a B 3 a . C.3 a D.3 a14.不等式 0352 x x 的解集是( ) A.253x x 且 B.253 x x 或 C.325 x D.253 x 15.若不等式组 b x a x 无解,则不等式组 bx a x 22 的解集是( ) A.a x b 22 B.22 a x b C.b x a 22 D.无解16.如果,2323,11 x x x x 那么x 的取值范围是( ) A.321x B.1 x C.32 x D.132 x 二. 解答题17.解下列不等式组 1) 43233231x x x x x 2) .3212352x x x x三.应用题18.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?19.一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满.(1)设有x间宿舍,请写出x应满足的不等式组;(2)可能有多少间宿舍、多少名学生?提高类:1. 对于整数a ,b ,c ,d ,定义bd ac c d b a ,已知3411 d b ,则b +d 的值为_________. 2. 若不等式组k x x ,21有解,则k 的取值范围是( ). (A)k <2(B)k ≥2 (C)k <1 (D)1≤k <2 3. 不等式组1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥14. 已知关于x ,y 的方程组134,123p y x p y x 的解满足x >y ,求p 的取值范围.5. 已知方程组②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.6. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解;(2) x 一个整数解也没有.7. 当k 取何值时,方程组52,53y x k y x 的解x ,y 都是负数.8. 已知 122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.9. 已知a 是自然数,关于x 的不等式组02,43x a x 的解集是x >2,求a 的值.10. 关于x 的不等式组123,0x a x 的整数解共有5个,求a 的取值范围.8.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495元。
八年级数学下册第8章一元一次不等式单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+2、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能3、某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤334、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定5、不等式组1224x x x+>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6、甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关 7、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b < 8、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-9、若a b >,则下列式子中一定成立的是( )A .22a b ->-B .22a b >C .11a b -<-D .11a b> 10、已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正整数a ,b ,c 均小于5,存在整数m 满足20221000222a b c m +=++,则()m a b c ++的值为______.2、给出下列不等式:①23x +1>x -x 2;②y -1>3;③x +2x≥2;④x ≤0;⑤3x -y <5,其中属于一元一次不等式的是:___.(只填序号)3、一元一次不等式的概念:2x -6>0,3x -24<4+x 这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.4、某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,根据题意,得:_________,解这个不等式,得:_________,所以至少需要_________名八年级学生参加活动.5、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点三、解答题(5小题,每小题10分,共计50分)1、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的14.如果他平均每天的提成不低于318,求他平均每天的送件数.2、某团委在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的单价比甲种树苗贵10元,用360元购买甲种树苗的棵数恰好与用480元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗的单价各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?3、求不等式组41341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解. 4、某医院计划选购A 、B 两种防护服.已知A 防护服每件价格是B 防护服每件价格的1.5倍,用6000元单独购买A 防护服比用5000元单独购买B 防护服要少2件.(1)A ,B 两种防护服每件价格各是多少元?(2)如果该医院计划购买B 防护服的件数比购买A 防护服件数的3倍多80件,且用于购买A ,B 两种防护服的总经费不超过265000元,那么该医院最多可以购买多少件B 防护服?5、解不等式组()3841710x x x x <+⎧⎨+≤+⎩,并把解集表示在数轴上.-参考答案-一、单选题1、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确;选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.2、D【解析】【分析】设腰长为x ,则底边为162x -,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.【详解】解:设腰长为x ,则底边为162x -,162162x x x x x --<<-+,48x ∴<<,三边长均为整数, x 可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D .【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.3、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.4、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A,B两人的体重分别为a,b,根据题意得:a+m=n+b,a>b,∴m<n,故选:A.【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.5、D【解析】【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:由12x +>得:1x >由24x x -≤得:4x ≤综合得:14x <≤故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.6、C【解析】【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元, ∵甲赚了钱,∴32a b +<5()2a b +, 解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.7、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.8、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.9、C【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A. a b >,∴22a b -<-,故该选项不正确,不符合题意;B.当0a b >>时,22a b >,故该选项不正确,不符合题意;C. a b >,∴11a b -<-,故该选项正确,符合题意;D. 当0a b >>时,11a b<,故该选项不正确,不符合题意; 故选C【点睛】 本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.故选:B.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.二、填空题1、14【解析】【分析】首先根据正整数a,b,c均小于5,得出2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,即6≤2022+1000m≤48,解不等式组求出m的范围,根据m为整数,得出m=-2,那么2022+1000m=22.观察得只有2+4+16=22,求出a+b+c=1+2+4=7,进而得到m(a+b+c)=-2×7=-14.【详解】解:∵正整数a,b,c均小于5,∴2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,∴6≤2022+1000m≤48,∴-2.016≤m≤-1.974,∵m为整数,∴m=-2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=-2×7=-14.故答案为:-14.【点睛】本题考查了有理数的混合运算,不等式的性质,一元一次不等式组的解法,求出m与a+b+c的值是解题的关键.2、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①23x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+2x≥2中2x不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.3、整式一个未知数 1【解析】略4、 15×(60-x )+20x ≥1000 x ≥20 20【解析】略5、 右 左 空心 不含【解析】略三、解答题1、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,列二元一次方程求解;(2)设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,根据题意得: 802016012025230x y x y +=⎧⎨+=⎩, 解得 1.52x y =⎧⎨=⎩, 答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,根据题意得:()120041.52200318m m m m ⎧-⎪⎨⎪+-⎩, 解得160164m ,m 是正整数,m ∴的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.2、 (1)甲种树苗的单价是30元,乙种树苗的单价是40元;(2)他们最多可购买11棵乙种树苗;【解析】【分析】(1)根据题意可得等量关系:480360=乙树苗单价甲树苗单价,根据等量关系列出方程求解即可; (2)根据题意可知不等关系:×110501500-⨯-≤甲树苗单价(%)(乙树苗数量),根据题意列出不等式求解即可.(1)解:设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,依题意有48036010x x=+ , 解得:x =30,经检验,x =30是原方程的解,x +10=40,∴甲种树苗的单价是30元,乙种树苗的单价是40元.(2)设他们可购买y棵乙种树苗,依题意有,30×(1﹣10%)(50﹣y)+40y≤1500 ,解得,71113y≤,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查列分式方程解决实际问题,以及列不等式解决实际问题,能够根据题意找出等量关系并列出方程是解决本题的关键.3、该不等式的整数解为-2,-1,0,1.【解析】【分析】首先求出不等式组中每一个不等式的解集,再根据大小小大中间确定不等式的解集即可.【详解】解:41341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,由①得:x>-3,由②得x≤1,不等式组的解集为:-3<x≤1,则该不等式的整数解为-2,-1,0,1.【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律,同大取大,同小取小,大小小大中间找,大大小小找不到.4、 (1)B种防护服每件价格是500元,A种防护服每件价格是750元(2)该医院最多可以购买380件B防护服【解析】【分析】根据题意可知等量关系:500060002B A-=防护服单价防护服单价,根据A防护服每件价格是B防护服每件价格的1.5倍,可用一个未知数表示出A,B两种防护服单价,进而可列分式方程解决本题;根据该医院计划购买B防护服的件数比购买A防护服件数的3倍多80件,可知A,B两种防护服购买数量之间的关系,由题意可得,购买A型防护服装所需经费+B型防护服所需经费≤265000,故列出不等式解决即可.(1)设B种防护服每件价格是x元,则A种防护服每件价格是1.5x元,依题意得:5000600021.5x x-=,解得:x=500,经检验,x=500是原方程的解,且符合题意,则1.5x=750,答:B种防护服每件价格是500元,A种防护服每件价格是750元.(2)设该医院可以购买y件A防护服,则购买(3y+80)件B防护服,依题意得:750y+500(3y+80)≤265000,解得:y≤100,则3y+80≤380,答:该医院最多可以购买380件B 防护服.【点睛】本题考查列方式方程解应用题,用不等式解决应用题,能够根据题意找到等量关系并列出方程是解决本题的关键.5、不等式组的解集为24x -≤<,数轴见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得4x <,解不等式②得 2x ≥-,在数轴上表示为:∴此不等式组的解集为24x -≤<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。
八年级数学下册第8章一元一次不等式必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定2、已知关于x 的分式方程()()232626mx x x x x +=----无解,且关于y 的不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .83、若数a 使关于x 的不等式组()324263x x x a ⎧+<+⎨-≤⎩有且仅有5个整数解,且使关于y 的分式方程312122y a y y++=--有整数解,则满足条件的所有a 的值之和是( ) A .﹣21 B .﹣12 C .﹣14 D .﹣184、如果关于x 的方程35122x a x x ++=--有正整数解,且关于x 的不等式组2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩的解集为6x <-,则符合条件的所有整数a 之和为( )A .4B .3C .2D .15、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+6、若关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩的解集为32x ,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的和为( )A .2B .7C .11D .107、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x 的取值范围是( )A .x >20B .x >40C .x ≥40D .x <408、若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ≥D .3a ≤9、若方程组233x y k x y +=⎧⎨-=-⎩的解满足20x y +>,则k 的值可能为( ) A .-1 B .0 C .1 D .210、如果关于x 的分式方程3111ax x x =---的解为整数,且关于y 的不等式组()322242y y y y a +⎧≥+⎪⎨⎪+>+⎩有解,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x 道题,可列不等式 _____.2、不等式组5202131x x x <⎧⎨-<+⎩的解集为_________. 3、如果关于x 的不等式mx ﹣2m >x ﹣2的解集是x <2,那么m 的取值范围是______.4、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.5、关于x 的不等式组1(25)131(3)2x x x x a ⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a 的取值范围是 _____. 三、解答题(5小题,每小题10分,共计50分)1、已知:A =222111x x x x x -+--+. (1)化简A ;(2)若x 为不等式a +1≥3的最小整数解,求A 的值.2、先化简,再求值:(x -1-1x x +)÷221x x x ++,其中x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解. 3、六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元, 已知用2000元购进A 种服装的数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元, 则最少购进A 品牌的服装多少套?4、对于数轴上给定两点M 、N 以及一条线段PQ ,给出如下定义:若线段MN 的中点R 在线段PQ 上(点R 能与点P 或Q 重合),则称点M 与点N 关于线段PQ “中位对称”.如图为点M 与点N 关于线段PQ“中位对称”的示意图.已知:点O为数轴的原点,点A表示的数为﹣1,点B表示的数为2(1)若点C、D、E表示的数分别为﹣3,1.5,4,则在C、D、E三点中,与点A关于线段OB“中位对称”;点F表示的数为t,若点A与点F关于线段OB“中位对称”,则t的最大值是;(2)点H是数轴上一个动点,点A与点B关于线段OH“中位对称”,则线段OH的最小值是;(3)在数轴上沿水平方向平移线段OB,得到线段O'B',设平移距离为d,若线段O'B'上(除端点外)的所有点都与点A关于线段O'B'“中位对称”,请你直接写出d的取值范围.5、为了更安全地开展冰上运动某校决定购进一批护肘及护膝.已知用900元购进护膝的数量比用400元购进护肘的数量多10副,且每副护膝价格是每副护肘价格的1.5倍.(1)每副护肘和护膝的价格分别是多少元;(2)若学校决定用不超过8000元购进两种护具共300副,且护肘数量不多于102副,求有哪几种购买方案;(3)在(2)的条件下,若已知商家每副护肘的进价为15元,每副护膝的进价为20元,为支持学校的冰上运动,该商家准备正好用去方案中的最大利润的10%再次购进两种护具赠送给学校,请直接写出最多可赠送护膝多少副?-参考答案-一、单选题1、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A ,B 两人的体重分别为a ,b ,根据题意得:a +m =n +b ,a >b ,∴m <n ,故选:A .【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.2、B【解析】【分析】分式方程无解的情况有两种,第一种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m 的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m 的范围,进而求出符合条件的所有m 的和即可.【详解】解:分式方程去分母得:()22()63mx x x +-=-,整理得:6(10)m x --=,分式方程无解的情况有两种,情况一:整式方程无解时,即10m -=时,方程无解,∴1m =;情况二:当整式方程有解,是分式方程的增根,即x =2或x =6,①当x =2时,代入6(10)m x --=,得:280m -=解得:得m =4.②当x =6时,代入6(10)m x --=,得:6120m -=,解得:得m=2.综合两种情况得,当m=4或m=2或1m=,分式方程无解;解不等式443(4)m yy y->⎧⎨-≤+⎩,得:48 y my<-⎧⎨≥-⎩根据题意该不等式有且只有三个偶数解,∴不等式组有且只有的三个偶数解为−8,−6,−4,∴−4<m−4≤−2,∴0<m≤2,综上所述当m=2或1m=时符合题目中所有要求,∴符合条件的整数m的乘积为2×1=2.故选B.【点睛】此题考查了分式方程的无解的问题,以及一元一次不等式组的偶数解,其中分式方程无解的情况有两种情况,一种是分式方程化成整式方程后整式方程无解,另一种是化成整式方程后有解,但是解为分式方程的增根,易错点是容易忽略某种情况;对于已知一元一次不等式组解,求参数的值,找到参数所表示的代数式的取值范围是解题关键.3、B【解析】【分析】先解不等式组,根据不等式组的有且仅有5个整数解确定a的范围,根据分式方程的解为整数,确定a的值,进而即可求解.【详解】解:324(2)63x x x a +<+⎧⎨-≤⎩①②解不等式①得:6x >- 解不等式②得:36a x +≤ ∵不等式组有且仅有5个整数解, ∴3106a +-≤< 解得93a -≤<-解3(12)2y a y -+=- 解得102a y +=, 1022a +≠且y 为整数,又93x -≤<- ∴a =−8,−48412--=-故选B【点睛】本题考查了解分式方程,解一元一次不等式组,掌握解分式方程,解一元一次不等式组是解题的关键.4、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出a 的范围,再由不等式组的解集确定出a 的范围,进而求出a 的具体范围,确定出整数a 的值,求出之和即可.【详解】解:分式方程去分母得:3(5)2x a x -+=-, 解得:32a x +=, 由分式方程的解为正整数,得到30a +>,即3a >-,2x ≠, ∴232a +≠,1a ≠, 不等式2()641115x a x a x x +≤+-⎧⎪-⎨-<⎪⎩,整理得:636x a x ≤-⎧⎨<-⎩, 由不等式的解集为6x <-,得到636a -≥-,即4a ≤,a ∴的范围是34a -<≤,且1a ≠ a 是整数,a ∴的值为2-,1-,0, 2,3,4,把2a =-代入32a x +=,得:223x -+=,即12x =,不符合题意; 把1a =-代入32a x +=,得:123x -+=,即1x =,符合题意; 把0a =代入32a x +=,得:320x +=,即32x =,不符合题意; 把2a =代入32a x +=,得:322x +=,即52x =,不符合题意; 把3a =代入32a x +=,得:323x +=,即3x =,符合题意; 把4a =代入32a x +=,得:324x +=,即72x =,不符合题意; ∴符合条件的整数a 取值为1-,3,之和为2,故选:C .【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.5、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确; 选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.6、B【解析】【分析】先解关于x 的一元一次不等式组()23242741x m x x x -+⎧⎪⎨⎪++⎩,再根据其解集是32x ,得m 小于5;再解方程,根据其有非负整数解,得出m 的值,再求积即可. 【详解】解:由2324x m x -+,得:310x m ,由()2741x x ++,得:32x , 不等式组的解集为32x , ∴33102m , 解得5m ;解关于y 的方程得:213m y -=, 方程的解为非负整数,210m ∴-=或3或6或9,解得0.5m =或2或3.5或5,所以符合条件的所有整数m 的和257+=,故选:B .【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.7、B【解析】略8、A【解析】【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.9、D【解析】【分析】将两个方程组相加得到:233+=-x y k ,再由330->k 即可求出1k >进而求解.【详解】解:由题意可知:233x y k x y +=⎧⎨-=-⎩①②, 将①+②得到:233+=-x y k ,∵20x y +>,∴330->k ,解得1k >,故选:D .【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出233+=-x y k ,进而求出k 的取值范围.10、A【解析】【分析】先解分式方程,根据分式方程有整数解求解a的值,再根据一元一次不等式组有解,求解a的取值范围,从而可得答案.【详解】解:3111axx x=---13,ax x12, a x关于x的分式方程3111axx x=---的解为整数,1,a∴≠则2,1xa11a∴-=±或12,a解得:2a=或0a=或3a=或1,a=-又10,x则1,x≠即21,1a3,a∴≠所以2a=或0a=或1,a=-()322242yyy y a①②+⎧≥+⎪⎨⎪+>+⎩由①得:2y≥由②得:42,y a关于y的不等式组()322242yyy y a+⎧≥+⎪⎨⎪+>+⎩有解,422,a1,a综上:0a=或1,a=-∴符合条件的所有整数a的和为 1.-故选A【点睛】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.二、填空题1、5x−(20−x)>90【解析】【分析】设小明答对x道题,则答错(20−x)道题,根据小明的得分=5×答对的题目数−1×答错的题目数结合小明得分要超过90分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则答错(20−x)道题,依题意,得: 5x−(20−x)>90,故答案为:5x−(20−x)>90.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、故答案为:【点睛】本题主要考查了一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.7.﹣2<x <4【解析】【分析】分别求出每一个不等式的解集,然后取交集,即可解题.【详解】解:解不等式5x <20,得:x <4,解不等式2x ﹣1<3x +1,得:x >﹣2,则不等式组的解集为﹣2<x <4,故答案为:﹣2<x <4.【点睛】本题考察了解不等式组的知识,在取交集时牢记口诀:同大取大、同小取小、大小小大中间找、大大小小无解了来确定不等式组的解集.3、m <1【解析】【分析】根据不等式的基本性质,两边都除以1m -后得到2x <,可知10m -<,解之可得.【详解】解:22mx m x ->-,移项得,22mx x m ->-,∴()()121m x m ->-,∵不等式22mx m x ->-的解集为2x <,∴10m -<,即1m <,故答案为:1m <.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.4、八##8【解析】【分析】设该商品打x 折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x 折销售, 依题意得:750×10x -500≥500×20%, 解得:x ≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、732a ≤<【解析】【分析】根据不等式组所有整数解之和为﹣5可知,比2小的连续整数之和为﹣5的情况为,10(1)(2)+(3)=5++-+---,最小整数为﹣3,故323a -≤-且324a ->-,解出解集即可.【详解】 解:不等式()12513x x +>+,解集为:2x <, 不等式()132x x a +≤+ ,的解集为:32a x -≤, ∵不等式组所有整数解之和为﹣5,10(1)(2)+(3)=5++-+---,∴ 323a -≤-且324a ->-,解得:3a ≥,72a <, 综上所述,732a ≤< , 故答案为:732a ≤<. 【点睛】本题考查解一元一次不等式组的解集,以及数形结合思想,能够熟练应用数形结合思想是解决本题的关键.三、解答题1、 (1)﹣11x + (2)﹣13【解析】【分析】(1)先将分式的分子分母分解因式,然后约分,再根据分式的减法计算即可;(2)根据x 为不等式a +1≥3的最小整数解,可以得到x 的值,然后代入(1)中的结果,即可得到A 的值.(1)A=222111 x x x x x-+--+=2(1)(1)(1)xx x-+-﹣1xx+=11xx-+﹣1xx+=11 x x x--+=11x-+;(2)由不等式a+1≥3可得,a≥2,∵x为不等式a+1≥3的最小整数解,∴x=2,由(1)知,A化简后的式子是﹣11x+,当x=2时,原式=﹣121+=﹣13,即A的值是﹣13,【点睛】本题考查了分式的化简求值,求一元一次不等式的整数解,正确的计算是解题的关键.2、321x xx--,2-【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x 是不等式组()213324x x x ⎧⎨≥⎩-<++的整数解,可以得到x 的整数值,再从x 的整数值中选取使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 解:2(1)121x x x x x x --÷+++ 2(1)(1)(1)1x x x x x x-+-+=⋅+ 221(1)1x x x x x--+=⋅+ 2(1)(1)x x x x--+= 321x x x--=, 由不等式组()213324x x x ⎧⎨≥⎩-<++得,-1≤x <2, ∴x 的整数值为-1,0,1,∵x ≠0,x +1≠0,∴x ≠0,-1,∴x =1, ∴原式3121121-⨯-==-. 【点睛】本题考查了分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.3、 (1)A 、B 两种品牌服装的进价分别为100元和75元;(2)最少购进A 品牌的服装16套【分析】(1)首先设B 品牌服装每套进价为x 元,则A 品牌服装每套进价为(x+25)元,根据关键语句“用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a +4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a +(95-75)(2a +4)≥200,再解不等式即可.(1)设B 品牌服装每套进价为x 元种,则A 品牌服装每套进价为(x +25)元根据题意得:2000750225x x=⨯+, 解得:x =75经检验:x =75是原方程的解,x +25=100,答:A 、B 两种品牌服装的进价分别为100元和75元;(2)设购买A 种品牌服装a 件,则购买B 种品牌服装(2a +4)件,根据题意得:(130-100)a +(95-75)(2a +4)≥1200解得:a ≥16,∴a 取最小值是16,答:最少购进A 品牌的服装16套.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.4、 (1)D 、E ;5(2)0.5(3)13d <<【分析】(1)根据“中位对称”的定义求出中点再去判断即可;(2)根据“中位对称”的定义求出中点再去判断即可;(3)分别表示出O B ''、表示的数,再分别求O B ''、与点A 关于线段O 'B '“中位对称”,对称时的d 值即可,需要注意向左或右两种情况.(1)点A 表示的数为﹣1,点B 表示的数为2,点C 、D 、E 表示的数分别为﹣3,1.5,4∴线段AC 的中点表示的数为-2,不在线段OB 上,不与点A 关于线段OB “中位对称”; 线段AD 的中点表示的数为0.25,在线段OB 上,D 与点A 关于线段OB “中位对称”; 线段AE 的中点表示的数为1.5,在线段OB 上,E 与点A 关于线段OB “中位对称”; ∴D 、E 与点A 关于线段OB “中位对称”;∵点F 表示的数为t∴线段AF 的中点表示的数为12t -+ ∴若点A 与点F 关于线段OB “中位对称”,∴点F 在线段OB 上,∴当AF 中点与B 重合时 t 最大,此时122t -+=,解得5t =,即t 的最大值是5 (2)∵点A 表示的数为﹣1,点B 表示的数为2∴线段AE 的中点表示的数为0.5,∵点A 与点B 关于线段OH “中位对称”,∴0.5在线段OH 上∴线段OH 的最小值是0.5(3)当向左平移时,O '表示的数是d -,B '表示的数是2d -线段AO '的中点表示的数为12d --,线段AB '的中点表示的数为12d -, 当O '与点A 关于线段O 'B '“中位对称”时,∴线段AO '的中点在O B ''上, ∴122d d d ---<<- ∴15d <<当B '与点A 关于线段O 'B '“中位对称”时,线段AB '的中点在O B ''上, ∴122d d d --<<- ∴13d -<<∵线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”∴当向左平移时,13d <<同理,当向右平移时,d 不存在综上若线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”13d <<【点睛】本题考查数轴上的动点问题,解题的关键是根据“中位对称”的定义进行解题,同时熟记数轴上中点公式也是解题的关键点.5、 (1)每副护肘的价格是20元,每副护膝的价格的价格是30元(2)方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副(3)最多可赠送护膝11副【解析】【分析】1)设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,利用数量=总价÷单价,结合用900元购进护膝的数量比用400元购进护肘的数量多10副,即可得出关于x的分式方程,解之经检验后即可求出每副护肘的价格,再将其代入1.5x中即可求出每副护膝的价格;(2)设购进护肘m副,则购进护膝(300﹣m)副,利用总价=单价×数量,结合总价不超过8000元且购进护肘数量不多于102副,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案;(3)利用总利润=每副的销售利润×购进数量,即可求出选择各方案获得的销售总利润,比较后可得出最大利润,设可赠送护膝a副,护肘b副,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数可得出最多可赠送护膝11副.(1)解:设每副护肘的价格是x元,则每副护膝的价格的价格是1.5x元,依题意得:900400101.5x x-=,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴1.5x=1.5×20=30.答:每副护肘的价格是20元,每副护膝的价格的价格是30元.(2)解:设购进护肘m副,则购进护膝(300﹣m)副,依题意得:2030(300)8000102m mm+-≤⎧⎨≤⎩,解得:100≤m≤102.又∵m为正整数,∴m可以取100,101,102,∴共有3种购买方案,方案1:购进护肘100副,护膝200副;方案2:购进护肘101副,护膝199副;方案3:购进护肘102副,护膝198副.(3)解:方案1获得的利润为(20﹣15)×100+(30﹣20)×200=2500(元);方案2获得的利润为(20﹣15)×101+(30﹣20)×199=2495(元);方案3获得的利润为(20﹣15)×102+(30﹣20)×198=2490(元).∵2500>2495>2490,∴选择方案1获得的利润最大,最大利润为2500元.设可赠送护膝a副,护肘b副,依题意得:20a+15b=2500×10%,化简得:a=5034b-.又∵a,b均为正整数,∴112ab=⎧⎨=⎩或86ab=⎧⎨=⎩或510ab=⎧⎨=⎩或{a=2a=14,∴最多可赠送护膝11副.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.。
八年级数学下册第8章一元一次不等式综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a 5<a 的值为( )A .5B .6C .25D .262、不等式组{x +3>1−3x ≥−3的解集在数轴上表示正确的是( ) A . B .C .D .3、若关于x 的一元一次不等式组222x x a≤⎧⎨-<⎩的解集为1x ≤,且关于y 的分式方程2522y a a y y ++=--的解是非负整数解,则所有满足条件的整数a 的值之和是( )A .6B .12C .16D .184、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b <5、已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( )A .4个B .3个C .2个D .1个6、已知a >b ,则下列各式中一定成立的是( )A .a ﹣b <0B .﹣a +1>﹣b +1C .a ﹣2>b ﹣2D .ac >bc7、如果a 、b 都是实数,且a b <,那么下列结论中,正确的是( )A .1a b <B .1a b -+>-C .11a b >D .||||a b <8、若n m <,则不等式组x n x m<⎧⎨>⎩的解集是( ) A .x m > B .x n < C .n x m << D .无解9、下列变形中不正确的是( )A .由m >n 得n <mB .由﹣a <﹣b 得b <aC .由﹣4x >1得14x >D .由13x y -<得x >﹣3y 10、把不等式组2020x x +>⎧⎨-≤⎩的解集表示在数轴上,正确的是( ) A . B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、求不等式组的解集的过程,叫做__________.2、不等式()211x ->-的解为______.3、判断下列不等式组是否为一元一次不等式组:(1)276331y x -<⎧⎨+>⎩__________;(2)12x x <⎧⎨>-⎩__________; (3)2111x x+=⎧⎪⎨<⎪⎩ __________;(4)271330a a ->⎧⎨+<⎩__________ 4、不等式组23142x x +>⎧⎪⎨-<⎪⎩的解集为 __. 5、中午放学后,有a 个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,若P ,Q 为某个菱形相邻的...两个顶点,且该菱形的两条对角线分别与x 轴,y 轴垂直,则称该菱形为点P ,Q 的“相关菱形”.图1为点P ,Q 的“相关菱形”的一个示意图.已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=2,则R(1,-4),S(3,4),T(5,4)中能够成为点A,B的“相关菱形”顶点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)点C的坐标为(4,4).若在线段AC上存在点M,使点M,B的“相关菱形”为正方形,请直接写出b的取值范围.2、某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的12倍.若用这台检测机检测900个零件要比10名检测员检测这些零件少3小时.(1)求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过8小时检测完成2720个零件.该厂调配了2台检测机和20名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?3、“学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?4、利用不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式,并将解集在数轴上表示出来.(1)x -1<-2;(2)-2x ≤6;(3)3x -1>4;(4)1-12x ≤3.5、解不等式组:24113x x x x <+⎧⎪-⎨-<⎪⎩,并写出它的正整数解.-参考答案-一、单选题1、C【解析】【分析】由2525=可得关于a 的一元一次不等式组,得出24<a <26,即可得出a 的值.【详解】解:∵2525=,∴1251a a -<<+ ,∴24<a <26,∵a 为整数,∴a =25.故选:C .【点睛】本题考查了解一元一次不等式组,估算无理数的大小,得出a 的取值范围是解题的关键.2、B【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:31?33?x x +>⎧⎨-≥-⎩①②, 由①得x >﹣2,由②得x ≤1,不等式组的解集为﹣2<x ≤1.故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、C【解析】【分析】先计算不等式组的解集,根据“同小取小”原则,得到21a +>解得1a >-,再解分式方程得到10=4-a y ,根据分式方程的解是非负整数解,得到10a ≤,且10a -是4的倍数,据此解得所有符合条件的整数a 的值,最后求和即可.【详解】解:222x x a ≤⎧⎨-<⎩①②, 解不等式①得:1x ≤,解不等式②得:2x a <+,不等式组的解集为:1x ≤,21∴+>a ,1a ∴>-, 解分式方程:2522y a a y y++=--, 2522+-=--y a a y y , 25(2)∴+-=-y a a y , 整理得10=4-a y , 20,y -≠ 则1024a -≠, 2a ∴≠,分式方程的解是非负整数解,1004-∴≥a , 10a ∴≤,且10a -是4的倍数,110∴-<≤a ,且10a -是4的倍数,∴整数a 的值为6或10,∴所有满足条件的整数a 的值之和是16,故选:C .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,熟练掌握不等式及分式方程的解法、解的确定是解题关键.4、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.5、C【解析】【分析】先求出方程组和不等式的解集,再求出a 的范围,最后得出答案即可.【详解】解:解方程组32121399x y ax y a+=--⎧⎪⎨-=+⎪⎩得:213322x ay a⎧=+⎪⎪⎨⎪=--⎪⎩,∵关于x、y的二元一次方程组32121399x y ax y a+=--⎧⎪⎨-=+⎪⎩的解满足x y≥,∴213a+≥322a--,解得:a≥-18 13,∵关于s的不等式组731ass-⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2,∴7323a--≤<-,解得-2≤a<1,∴1813-≤a<1,∴符合条件的整数a的值有:-1,0,共2个,故选:C.【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6、C【解析】【分析】依据不等式的基本性质解答即可.【详解】解:∵a>b,∴a-b>0,∴选项A不符合题意;∵a>b,∴-a<-b,∴-a+1<-b+1,∴选项B不符合题意;∵a>b,∴a-2>b-2,∴选项C符合题意;∵a>b,当c<0时,ac<bc,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.7、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】,解:a、b都是实数,且a b∴当b 为负数时,1a b>,故选项A 错误; a b ->-,则1a b -+>-,故选项B 正确;当2a =-,3b =时,11a b<,故选项C 错误; 5a =-,3b =时,||||a b >,故选项D 错误;故选:B .【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.8、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若n m <,则不等式组x n x m <⎧⎨>⎩的解集是无解. 故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9、C【解析】【分析】由题意直接根据不等式的性质逐项进行分析判断即可.【详解】解:A、m>n,n<m,故A正确;B、-a<-b,b<a,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:C.【点睛】本题考查不等式的性质,注意本题考查不正确的,以防错选.10、D【解析】略二、填空题1、解不等式组【解析】略2、x>12【解析】【分析】不等式去括号,移项,合并同类项,把x系数化为1,即可求出解集.【详解】解:去括号得:2x−2>−1,移项得:2x>−1+2,合并得:2x >1,解得:x >12.故答案为:x >12.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.3、 不是 是 不是 是【解析】略4、19x <<【解析】【分析】先求出各个不等式的解集,然后依据“同大取大,同小取小,小大大小中间找,大大小小无处找”即可确定不等式组的解集.【详解】解:解不等式23x +>,得:1x >, 解不等式142x -<,得:9x <, 则不等式组的解集为19x <<,故答案为:19x <<.【点睛】题目主要考查解不等式组,熟练掌握解不等式组的方法是解题关键.5、29【解析】【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:101012 21421420a x ya x y+=⨯⎧⎨+⨯=⨯⎩,∴570x ya y=⎧⎨=⎩,设两个食堂同时一共开放m个配餐窗口,依题意得:15my≥a+2a+15×(x+2x),解得:m≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题1、 (1)R,S(2)3-或5(3)3 ≤b≤0或5≤b≤8【解析】【分析】(1)由A(1,4)、B(2,0)、R(1,-4)、S(3,4),可判断点B在AR的垂直平分线上,也在AS 的垂直平分线上,由“相关菱形”的定义,可判断点R、S能成为点A、B的“相关菱形”的顶点;(2)作点A关于x轴的对称点E,连接AE交x轴于点N,由“相关菱形”的定义和正方形的性质,可得BN=AN=4,然后按点B在AE左侧及点B在AE右侧,分点求出b的值;(3)分别作点A、C、M关于x轴的对称点A′、C′、F,连接AA′、CC′、AF分别交x轴于点G、H、Q,当点Q与点G重合时,b的值最小;当点Q与点H重合时,b的值最大;由“相关菱形”的定义和正方形的性质,可得BQ=MQ=4,按点B在AF左侧及点B在AF右侧分别列出不等式组求出b的取值范围.(1)解:当b=2时,则B(2,0).如图1、图2,连接AR、AS,∵A(1,4)、B(2,0)、R(1,-4)、T(3,4),∴点B在AR的垂直平分线上,点B也在AS的垂直平分线上,∴点R、S能成为点A、B的“相关菱形”的顶点.故答案为:R,S.(2)解:过点A作AH垂直x轴于H点.∵ 点A,B的“相关菱形”为正方形,∴ △ABH为等腰直角三角形.∵ A(1,4),∴ BH=AH=4.∴b =3 或5.(3)解:如图4,作分别作点A、C、M关于x轴的对称点A′、C′、F,连接AA′交x轴于点G,连接CC′交x轴于点H,则G(1,0)、H(4,0);连接MF交x轴于点Q,∵点M、B的“相关菱形”为正方形,∴BQ=MQ=4.当点B在MF左侧时,则Q(b+4,0),由题意,得1≤b+4≤4,解得-3≤b≤0;当点B在MF右侧时,则Q(b-4,0),由题意,得1≤b-4≤4,解得5≤b≤8.综上所述,b的取值范围是-3≤b≤0或5≤b≤8.3 ≤b≤0或5≤b≤8.【点睛】此题考查菱形了的判定与性质、正方形的判定与性质、一元一次不等式组的应用、图形与坐标等知识,解题的关键是正确地画出图形并且能综合运用有关知识和方法;涉及求点的坐标及动点的坐标的取值范围,要分类讨论,求出所有符合条件的值和取值范围,以免丢解.2、 (1)60(2)至少4台【解析】【分析】(1)设一台零件检测机每小时检测零件x 个,根据题意列分式方程,解方程求解即可;(2)设该厂再调配y 台检测机才能完成任务,根据题意列一元一次不等式求解即可.(1)解:设一台零件检测机每小时检测零件x 个,根据题意可得,90090031012x x -=⨯ , 解得:x =60 ,经检验,x =60是原方程的解,答:一台零件检测机每小时检测零件60个,(2)设该厂再调配y 台检测机才能完成任务,根据题意得,20×8×5+2×60×3+(2+y )×5×60≥2720,165y ≥, y 是正整数,∴至少4台【点睛】本题考查了分式方程的应用,一元一次不等式的应用,根据题意列出方程是解题的关键.3、 (1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案【解析】【分析】(1)设政府对划线新增一个停车位补贴x 元,对建设改造新增一个停车位补贴y 元,根据“划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设老旧小区划线新增m 个停车位,则建设改造新增(100-m )个停车位,根据“建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数即可得出老旧小区新增停车位方案的个数.(1)设政府对划线新增一个停车位补贴x 元,对建设改造新增一个停车位补贴y 元,依题意得:4380002500x y x y +=⎧⎨+=⎩, 解得:{x =500x =2000. 答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增m 个停车位,则建设改造新增(100)m -个停车位,依题意得:()100 1.55002000100143000m m m m -⎧⎨+-⎩, 解得:3840m .又m 为整数,m ∴可以为38,39,40,∴老旧小区新增停车位共有3种方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.4、 (1)x <-1,在数轴表示见解析(2)x≥-3,在数轴表示见解析(3)x>53,在数轴表示见解析(4)x≥-4,在数轴表示见解析【解析】【分析】(1)不等式两边都加上1求解,利用数轴上数的大小关系表示解集;(2)不等式两边同除以-2求解,利用数轴上数的大小关系表示解集;(3)不等式两边同时加1再除以3求解,利用数轴上数的大小关系表示解集;(4)两边同时减1再乘以-2求解,利用数轴上数的大小关系表示解集.(1)解:不等式两边都加上1,不等号的方向不变,得x-1+1<-2+1,即x<-1.这个不等式的解集在数轴上的表示,如图:(2)解:不等式两边同除以-2,不等号的方向改变,得-2x÷(-2)≥6÷(-2),即x≥-3.这个不等式的解集在数轴上的表示,如图:(3)解:不等式两边同时加1得:3x-1+1>4+1,整理得:3x>5,同除以3得:x>53,数轴上表示为.(4)解:两边同时减1得:-12x≤2,两边同时乘以-2得:x≥-4,数轴上表示为.【点睛】此题考查了解一元一次不等式,解题的关键是正确掌握不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.5、﹣2<x<4,正整数解为1,2,3【解析】【分析】分别解不等式组中的两个不等式,再确定解集的公共部分,再根据解集确定符合条件的整数即可. 【详解】解:24113x xxx①②<+⎧⎪⎨--<⎪⎩由①得:x<4,由②得:x>﹣2,∴不等式组的解集为﹣2<x<4,则不等式组的正整数解为1,2,3【点睛】本题考查的是一元一次不等式组的解法,求解不等式组的正整数解,掌握“解一元一次不等式组的步骤”是解本题的关键.。
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
青岛版2020八年级数学下册第八章一元一次不等式自主学习基础达标测试题4(附答案详解) 1.不等式组31220x x ->⎧⎨-≥⎩ 的解集在数轴上表示为( )A .B .C .D .2.解不等式组3122(1)1x x x -⎧<⎪⎨⎪+≥-⎩的所有整数解有( )A .6个B .7个C .8个D .9个3.如果不等式ax <b 的解集是x <ba,那么a 的取值范围是() A .a≥0B .a≤0C .a >0D .a <04.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入( )个小球时有水溢出.A .8B .9C .10D .115.某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为( ) A .18 B .19 C .20 D .21 6.已知a <b,下列结论正确的是( ) A .a+m >b+mB .a-m >b-mC .-2a >-2bD .a b 22>7.若关于x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-⎪⎩<有且仅有5个整数解,且关于y 的分式方程3111y a y y---=--有非负整数解,则满足条件的所有整数a 的和为( )8.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x +y >0 B .x ﹣y >0 C .x +y <0 D .x ﹣y <0 9.下列四个数中,为不等式组36033x x -<⎧⎨+>⎩,的解的是( )A .-1B .0C .1D .210.下列式子中,不等式的个数为( )①﹣2<0;②34x y +>;③21x +=;④x y +;⑤6a ≠。
A .2个 B .3个C .4个D .5个11.不等式214323x x ---<的所有自然数解的和等于_____. 12.当x<a<0时,x 2与ax 的大小关系是_______________.13.今年三月份甲、乙两个工程队承包了面积1800m 2的区域绿化,已知甲队每天能完成100m 2,需绿化费用为0.4万元;乙队每天能完成 50 m 2 ,需绿化费用为 0.25万元,要使这次的绿化总费用不超过 8 万元,至少应安排甲队工作________天 14.若33x x +=-, 则x 的取值范围是______. 15.满足﹣1.2<x≤3的整数有________个.16.苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克_________元. 17.已知关于x 的不等式组12524x x a -<⎧⎨+≤⎩有解,则a 的取值范围是______.18.用不等式表示“x 的3倍与1的差为负数”_______.19.如果有一种新的运算定义为:“32()a bT a b a b-=+,,其中a 、b 为实数,且0a b +≠”,比如:34236(43)437T ⨯-⨯==+,,解关于m 的不等式组(232)5(6)3T m m T m m -≥⎧⎨-<⎩,,,则m的取值范围是__________.20.如果关于x 的不等式ax >2的解集为x <2a,写出一个满足条件的a=__. 21.甲、乙两家公司共有150名工人,甲公司每名工人月工资为1200元,乙公司每名工人月工资为1500元,两家公司每月需付给工人工资共计19.5万元. (1)求甲、乙公司分别有多少名工人;(2)经营一段时间后发现,乙公司工人人均月产值是甲公司工人的3.2倍,于是甲公司决定内部调整,选拔了本公司部分工人到新岗位工作.调整后,原岗位工人和新岗位工人的人均月产值分别为调整前的1.2倍和4倍,且甲公司新岗位工人的月生产总值不超过乙公司月生产总值的40%,甲公司的月生产总值不少于乙公司的月生产总值,求甲公司选拔到新岗位有多少人?(甲公司调整前人均月产值设定为p 元) 22.(1)解方程1x x --31x-=2; (2)解不等式组23(5)52413x x x --≥⎧⎪-⎨<-⎪⎩.23.解不等式组:2(21)4,132x x x x --≤-⎧⎪⎨+>⎪⎩。
《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。