2015-2016年四川省资阳市简阳市城南九义校九年级(上)期中数学试卷和答案
- 格式:doc
- 大小:256.00 KB
- 文档页数:16
新人教版九年级(上)期中模拟数学试卷及答案一、填空题(本大题共 6 小题,每题 3 分,共 18 分,每题只有一个正确选项)1.( 3 分)如图,不是中心对称图形的是()A .B.C.D.2.( 3 分)若 y=( m﹣ 2)x+3 x﹣ 2 是二次函数,则m 等于()A.﹣2 B .2C.± 2 D .不可以确立3.( 3 分)方程 x 2﹣ 2x﹣ 4= 0 和方程 x2﹣ 4x+2= 0 中全部的实数根之和是()A .2 B.4C. 6D. 84.( 3 分)若将抛物线y=x 2向右平移 2 个单位,再向上平移 3 个单位,则所得抛物线的表达式为()22C. y=( x+222A .y=( x+2) +3B . y=( x﹣ 2) +3)﹣ 3 D .y=( x﹣ 2)﹣ 3 5.( 3 分)如图,已知在⊙ O 中,点 A,B,C 均在圆上,∠ AOB= 80°,则∠ ACB 等于()A .130°B .140°C. 145° D .150°21,0),对称6.( 3 分)二次函数 y= ax +bx+c( a≠ 0)的部分图象以下图,图象过点(﹣轴为直线x= 2,系列结论:( 1) 4a+b= 0;( 2) 4a+c> 2b;( 3)5a+3 c> 0;( 4)方程 a( x﹣ 1)2+b( x﹣ 1) +c= 0 的两根是 x1= 0, x2= 6.此中正确的结论有()A.1 个B.2 个C.3个 D.4 个二、填空题(本大题共 6 小题,每题 3 分,共 18 分)7.( 322﹣ 9m+2015的值为分)若 m 是方程 2x ﹣ 3x﹣ 1=0 的一个根,则6m8.( 3分)已知 A(﹣ 2, y1),B(﹣ 1, y2), C( 1, y3)两点都在二次函数的图象上,则 y1,y2, y3的大小关系为..2y=( x+1 ) +m9.( 3 分)将两块直角三角尺的直角极点重合为如图的地点,若∠AOD= 110°,则∠ COB =度.10.( 3 分)将量角器按以下图的方式搁置在三角形纸板上,使点 C 在半圆上.点A、 B 的读数分别为86°、 30°,则∠ ACB 的大小为.11.(3 分)如图,在矩形A BCD 中, AB= 4,AD =5, AD, AB, BC 分别与⊙O 相切于 E,F,G 三点,过点 D 作⊙O 的切线交 BC 于点 M,切点为N,则 DM 的长为.12.( 3 分)如图,点O 是等边△ ABC 内一点,∠ AOB= 110°.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连结 OD .当α为度时,△AOD 是等腰三角形?三、(本大题共 5 小题,每题12 分,共 30 分)13.( 12 分)用适合的方法解以下方程:( 1)(x﹣ 3)2= 2x﹣ 6;2( 2) 2x +5x﹣ 3= 014.( 8 分)跟着港珠澳大桥的顺利开通,估计大陆赴港澳旅行的人数将会从2018 年的 100万人增至 2020 年的 144 万人,求 2018 年至 2020 年这两年的赴港旅行人数的年均匀增添率.15.( 10 分)如图,有一座抛物线型拱桥,桥下边水位AB 宽 20 米时,此时水面距桥面 4米,当水面宽度为 10 米时就达到戒备线 CD ,若洪水到来时水位以每小时0.2 米的速度上涨,问从戒备线开始,再连续多少小时才能到拱桥顶?(平面直角坐标系是以桥极点为点 O的)216.( 6 分)如图,抛物线y= ax +bx+c 与 x 轴交于 A、 B 两点,与 y 轴交于点 C,请仅用无刻度的直尺,分别按下列要求绘图.( 1)如图( 1),在抛物线2y= ax +bx+c 找一点 D ,使点 D 与点 C 对于抛物线对称轴对称.( 2)如图( 2),点 D 为抛物线上的另一点,且CD∥ AB,请画出抛物线的对称轴.17.( 13 分)如图,在△ ABC 中,∠ ACB=90°, AC= BC,D 是 AB 边上一点(点 D 与 A,B 不重合),连结 CD ,将线段 CD 绕点C 按逆时针方向旋转 90°获取线段 CE,连结 DE交 BC 于点 F,连结 BE.(1)求证:△ ACD ≌△ BCE;(2)当 AD = BF 时,求∠ BEF 的度数.四.(本大题共 3 小题,每题10 分,共 24 分)218.( 10 分)已知一元二次方程x ﹣ 4x+k=0 有两个不相等的实数根( 2)假如 k 是切合条件的最大整数,且一元二次方程x 2﹣ 4x+k= 0 与 x2+mx﹣ 1=0 有一个同样的根,求此时m 的值.19.( 8 分)如图,有长为24m 的篱笆,现一面利用墙(墙的最大可用长度 a 为 10m)围成中间隔有一道篱笆的长方形花园,设花园的宽AB 为 xm ,面积为 Sm 2.( 1)求 S 与 x 的函数关系式及x 值的取值范围;( 2)要围成面积为 45m 2的花园, AB 的长是多少米?20.( 10 分)如图,已知直线 PA 交 ⊙O 于 A 、 B 两点, AE 是⊙ O 的直径,点 C 为 ⊙ O 上一点,且 AC 均分∠ PAE ,过 C 作 CD ⊥ PA ,垂足为 D .( 1)求证: CD 为⊙ O 的切线;( 2)若 DC +DA = 6,⊙ O 的直径为 10,求 AB 的长度.五.(本大题共 2 小题,每题9 分,共 18 分)221.(9 分)假如对于 x 的一元二次方程 ax +bx+c = 0( a ≠ 0)有两个实数根,且此中一个根为另一个根的2 倍,那么称这样的方程为“倍根方程”.比如,一元二次方程x 2﹣6x+8= 0 的两个根是2 和4,则方程 x 2﹣6x+8= 0 就是“倍根方程” .( 1)若一元二次方程x 2﹣3x+c = 0 是“倍根方程” ,则c =;( 2)若( x ﹣ 2)( mx ﹣n )= 0(m ≠ 0)是“倍根方程” ,求代数式的值;( 3)若方程 2M ( k+1 , 5), N (3﹣ k ,ax +bx+c = 0(a ≠ 0)是倍根方程,且不一样的两点5)都在抛物线22y = ax +bx+c 上,求一元二次方程 ax +bx+c = 0( a ≠ 0)的根.22.( 9 分)在 Rt △ABC 中,∠ ACB = 90°,∠ A = 30°,点 D 是 AB 的中点, DE ⊥BC ,垂足为点 E ,连结 CD .( 1)如图 1, DE 与 BC 的数目关系是;( 2)如图 2,若 P 是线段 CB 上一动点(点 P 不与点 B 、C 重合),连结 DP ,将线段DP绕点 D 逆时针旋转60°,获取线段DF ,连结 BF ,请猜想DE、 BF 、 BP 三者之间的数量关系,并证明你的结论;( 3)若点 P 是线段CB 延伸线上一动点,依照(2)中的作法,请在图 3 中补全图形,并直接写出DE、 BF、 BP 三者之间的数目关系.六、(本大题共12 分)23.( 9 分)如图,在平面直角坐标系中,二次函数2y= x +bx+c 的图象与 x 轴交于 A、 B 两点, A 点在原点的左边, B 点的坐标为(3, 0),与 y 轴交于 C( 0,﹣ 3)点,点P 是直线 BC 下方的抛物线上一动点.( 1)求这个二次函数的表达式.( 2)连结 PO、PC,并把△ POC 沿 CO 翻折,获取四边形 POP′ C,那么能否存在点 P,使四边形 POP′C 为菱形?若存在,恳求出此时点 P 的坐标;若不存在,请说明原因.( 3)当点 P 运动到什么地点时,四边形 ABPC 的面积最大?求出此时 P 点的坐标和四边形 ABPC的最大面积.2018-2019 学年江西省赣州市南康区五校九年级(上)期中数学试卷参照答案与试题分析一、填空题(本大题共6 小题,每题 3 分,共 18 分,每题只有一个正确选项)1.【解答】 解:依据中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180 度,旋转后的图形能和原图形完整重合,可知A 、B 、C 是中心对称图形;D 不是中心对称图形.应选: D .2.【解答】 解:由题意,得m 2﹣2= 2,且 m ﹣2≠ 0,解得 m =﹣ 2,应选: A .3.【解答】 解:∵方程 2 2x ﹣ 2x ﹣4= 0 的根的鉴别式△=(﹣ 2) ﹣ 4× 1×(﹣ 4)= 20> 0,∴方程 x 2﹣ 2x ﹣ 4= 0 有两个不相等的实数根,两根之和为2;∵方程 x2﹣ 4x+2=0 的根的鉴别式△=(﹣ 4) 2﹣ 4× 1× 2= 8> 0, ∴方程 x 2﹣ 4x+2=0 有两个不相等的实数根,两根之和为4.∵ 2+4 =6,∴双方程全部的实数根之和是6.应选: C .4.【解答】 解:将抛物线2 向右平移 2 个单位可得 23 个单位y = x y =( x ﹣ 2) ,再向上平移 2, 可得 y =( x ﹣ 2) +3应选: B .5.【解答】 解:设点 E 是优弧 AB 上的一点,连结EA ,EB∵∠ AOB = 80°∴∠ E =∠ AOB =40°∴∠ ACB = 180°﹣∠ E =140°.应选: B .6.【解答】 解:由对称轴为直线 x = 2,获取﹣= 2,即 b =﹣ 4a ,∴ 4a+b = 0,故( 1)正确;当 x =﹣ 2 时, y =4a ﹣ 2b+c < 0,即 4a+c < 2b ,故( 2)错误;当 x =﹣ 1 时, y =a ﹣ b+c =0,∴ b = a+c ,∴﹣ 4a = a+c ,∴ c =﹣ 5a ,∴ 5a+3c = 5a ﹣ 15a =﹣ 10a , ∵抛物线的张口向下∴ a < 0,∴﹣ 10a > 0,∴ 5a+3c > 0;故( 3)正确;2∵方程 ax +bx+c ( a ≠ 0)= 0 的两根为 x 1=﹣ 1,x 2= 5,2∴方程 a ( x ﹣ 1) +b ( x ﹣ 1)+c = 0 的两根是 x 1= 0, x 2= 6,故( 4)正确.应选: C .二、填空题(本大题共6 小题,每题3 分,共 18 分)7.【解答】 解:由题意可知: 2m 2﹣ 3m ﹣ 1= 0,∴ 2m 2﹣ 3m = 1∴原式= 3( 2m 2﹣ 3m ) +2015= 2018故答案为: 201828.【解答】 解:∵二次函数 y =( x+1) +m ,∴当 x >﹣ 1 时, y 随 x 的增大而增大,当 x <﹣ 1 时, y 随 x 的增大而减小,函数有最小值,极点坐标为(﹣ 1, m ),∵点 A(﹣ 2,y1), B(﹣1, y2),C( 1,y3)两点都在二次函数2y=( x+1) +m 的图象上,﹣ 1﹣(﹣ 2)= 1,﹣ 1﹣(﹣ 1)= 0, 1﹣(﹣ 1)= 2,∴ y2< y1<y3,故答案为: y2< y1< y3.9.【解答】解:由题意可得∠AOB+∠ COD = 180°,又∠ AOB+∠ COD =∠ AOC+2∠ COB+∠ BOD=∠ AOD +∠ COB,∵∠ AOD= 110°,∴∠ COB= 70°.故答案为: 70.10.【解答】解:设半圆圆心为O,连 OA, OB,如图,∵∠ ACB=∠ AOB,而∠ AOB= 86°﹣ 30°= 56°,∴∠ ACB=新九年级(上)期中考试数学试题及答案一、选择题(本大题共10 小题,每题 4 分,满分 40 分)2的对称轴是()1.抛物线y=﹣ 2x+1A.直线B.直线C.y轴D.直线x= 2 2.将抛物线y= 2x2向左平移 3 个单位,所得抛物线的分析式是()A.y=2(x+3)2B.y=2(x﹣ 3)2C.y= 2x2+3D.y= 2x2﹣ 3 3.若a= 5cm,b= 10mm,则的值是()A.B.C. 2D.54.函数=﹣的图象位于()yA.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小盈余用一些花布的边角料,剪裁后装修手工画,下边四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,此中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边沿所围成的几何图形不必定相像的是()A.B.C.D.6.以下对于二次函数y= x2﹣2x﹣1的说法中,正确的选项是)(A.抛物线的张口向下B.抛物线的点点坐标是(1,﹣ 1)C.当x> 1 时,y随x的增大而减小D.当x= 1 时,函数y的最小值是﹣ 27.以下图,点P是 ?ABCD的对角线AC上的一点,过点 P分别作 PE∥BC,PF∥ CD,交 AB,AD于点 E, F,则以下式子中不可立的是()A.=B.=C.=D.=8.反比率函数y=( k≠0)与二次函数y= x2+kx﹣k 的大概图象是()A.B.C.D.9.如图,将矩形纸片A BCD折叠,使点 A 与点 C重合,折痕为EF,若 AB=4, BC=2,那么线段 EF的长为()A. 2B.C.D.10.以下图,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点 A 出发以1cm/ s的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y( cm),则以下最能反应y( cm)与运动时间x( s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共 4 大题,每题 5 分,满分20 分)11.如图,在△中点、E 分别在边、上,请增添一个条件:,使△∽ABC D AB AC ABC △AED.12.若抛物线y= x2﹣2x﹣3与 x 轴分别交于13.如图,正方形OAPB,矩形 ADFE的极点P, F 在函数 y=(x>0)图象上,则点A, B 两点,则 AB的长为O,A,D, B在座标轴上,点F 的坐标是.E 是.AP的中点,点14.如图,矩形ABCD中, AB=3, AD=9,将△ ABE沿 BE翻折获取△ A' BE,点 A'落在矩形ABCD的内部,且∠ AA' G=90°,若以点A'、 G、 C 为极点的三角形是直角三角形,则AE =.三、(本大题共 2 小题,每题8 分,满分16 分)15.已知,求的值.16.已知二次函数y= x2+2x﹣3.(1)用配方法求该二次函数图象的极点坐标;(2)指出y随x的变化状况.四、(本大题共 2 小题,每题 8分,满分16 分)17.如图,矩形的极点、C 分别在x轴和y轴上,点B的坐标为( 2, 3).双曲线yOABC A=(x>0)的图象经过BC的中点 D,且与 AB交于点 E,连结 DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的分析式.18.如图是一个3× 8 的网格图,每个小正方形的边长均为1,三个极点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ ABC相像但不全等的格点三角形,并求与△ ABC相像的格点三角形的最大面积.五、(本大题共 2 小题,每题10 分,满分20 分)19.已知抛物线y=( x﹣ m)2﹣( x﹣ m),此中 m是常数.(1)求证:无论m为什么值,该抛物线与x轴必定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数分析式;②把该抛物线沿y 轴向上平移多少个单位长度后,获取的抛物线与x 轴只有一个公共点.20.如图,在Rt △ABC中,∠ACB= 90°,CD是边AB上的高.求证:2( 1)求证:AC=AD?AB;( 2)利用相像形的知识证明222 AB= AC+BC.六、(本题满分 12 分)21.依据对宁波市有关的市场物价调研,某批发市场内甲种水果的销售收益y1(千元)与进货量 x(吨)近似知足函数关系y1=0.25 x,乙种水果的销售收益y2(千元)与进货量 x(吨)之间的函数y 2=2+ +c的图象以下图.ax bx( 1)求出y2与x之间的函数关系式;( 2)假如该市场准备进甲、乙两种水果共8 吨,设乙水果的进货量为t 吨,写出这两种水果所获取的销售收益之和W(千元)与t (吨)之间的函数关系式,并求出这两种水果各进多少吨时获取的销售收益之和最大,最大收益是多少?七、(本题满分12 分)22.定义:极点、张口大小同样,张口方向相反的两个二次函数互为“反簇二次函数”.( 1)已知二次函数2;y=﹣( x﹣2)+3,则它的“反簇二次函数”是( 2)已知对于x的二次函数y1=2x2﹣2mx+m+1和 y2= ax2+bx+c,此中 y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤ 3 时,y2的最小值.八、(本题满分 14分)23.二次函数y =2++的图象经过点(﹣1, 4),且与直线y=﹣x+1 订交于、B两ax bx c A点(如图),A 点在y轴上,过点B作⊥轴,垂足为点(﹣ 3, 0).BC x C(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在 AB上方),过 N作 NP⊥ x 轴,垂足为点 P,交AB于点 M,求 MN的最大值;(3)在( 2)的条件下,点N在何地点时,BM与NC相互垂直均分?并求出全部知足条件的 N点的坐标.参照答案与试题分析一.选择题(共10 小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【剖析】已知抛物线分析式为极点式,可直接写出极点坐标及对称轴.2【解答】解:∵抛物线y=﹣2x +1的极点坐标为(0, 1),∴对称轴是直线x=0( y 轴),应选: C.2.将抛物线y = 2 2向左平移 3 个单位,所得抛物线的分析式是()x2B.y=2(x﹣ 3)22D.y2A.y=2(x+3)C.y= 2x +3= 2x﹣ 3【剖析】依照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移 3 个单位,得y= 2(x+3)2;故所得抛物线的分析式为y=2( x+3)2.应选: A.3.若a= 5cm,b= 10mm,则的值是()A.B.C. 2D.5【剖析】依据比率线段计算即可.【解答】解:因为a=5cm, b=10mm,所以的值=,应选: D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【剖析】依据反比率函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解: y=﹣中k=﹣2<0,依据反比率函数的性质,图象位于第二、四象限.应选: D.5.手工制作课上,小盈余用一些花布的边角料,剪裁后装修手工画,下边四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,此中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边沿所围成的几何图形不必定相像的是()A.B.C.D.【剖析】依据相像图形的定义,联合图形,对选项一一剖析,清除不切合要求答案.【解答】解: A:形状同样,切合相像形的定义,对应角相等,所以三角形相像,故 A 选项不切合要求;B:形状同样,切合相像形的定义,故 B 选项不切合要求;C:形状同样,切合相像形的定义,故C选项不切合要求;D:两个矩形,固然四个角对应相等,但对应边不可比率,故D选项切合要求;应选: D.6.以下对于二次函数y= x2﹣2x﹣1的说法中,正确的选项是()A.抛物线的张口向下B.抛物线的点点坐标是(1,﹣ 1)C.当x> 1 时,y随x的增大而减小D.当x= 1 时,函数y的最小值是﹣ 2【剖析】依据二次函数的图象性质即可判断.【解答】解:由二次函数y= x2﹣2x﹣1=( x﹣1)2﹣2可知 a=﹣2<0,∴二次函数张口向下,极点为(1,﹣ 2),对称轴为:直线x=1,当 x=1时,函数 y 的最小值是﹣2,当x>1时, y 随 x 的增大而增大,应选:D.7.以下图,点P 是 ?的对角线上的一点,过点P分别作∥ ,∥,交,ABCD AC PE BC PF CD ABAD于点 E, F,则以下式子中不可立的是()A.=B.=C.=D.=【剖析】依据相像三角形的判断和性质,以及平行线分线段成比率定理即可获取结论.【解答】解:∵PF∥ CD,PE∥ BC,∴△ APF∽△ ACD,△ AEP∽△ ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC, PF∥CD,∴四边形AEPF是平行四边形,∴ PF=AE,∵=,∴;故 B 正确;同理,故 C错误;应选: C.8.反比率函数y=(k≠ 0)与二次函数y= x2+kx﹣k 的大概图象是()A.B.C.D.【剖析】第一依据反比率函数所在象限确立k 的符号,再依据k 的符号确立抛物线的开口方向和对称轴,即可选出答案.【解答】解: A、反比率函数y=( k≠0)的图象经过第一、三象限,则k>0,此时函数y =x2+﹣k的对称轴为y=﹣< 0,对称轴在y轴的左边,与所示图象不符,故本kx选项错误;、反比率函数y =(≠ 0)的图象经过第一、三象限,则k> 0,此时函数y=x2+kxB k﹣ k 的对称轴为y=﹣< 0,对称轴在y 轴的左边,﹣ k<0,与 y 轴交于负半轴,与所示图象符合,故本选项正确;C、反比率函数y=( k≠0)的图象经过第二、四象限,则k<0,此时函数y= x2+kx﹣ k 的对称轴为y=﹣> 0,对称轴在y轴的右边,与所示图象不符,故本选项错误;D、反比率函数y=(k≠ 0)的图象经过第二、四象限,则k<0,此时,﹣ k>0,函数y= x2+kx﹣k 的与 y 轴交于正半轴,与所示图象不符,故本选项错误;应选: B.9.如图,将矩形纸片A BCD折叠,使点 A 与点 C重合,折痕为EF,若 AB=4, BC=2,那么线段 EF的长为()A.2B.C.D.【剖析】第一利用勾股定理计算出AC的长,从而获取 CO的长,而后证明△ DAC∽△ OFC,依据相像三角形的性质可得,而后辈入详细数值可得FO的长,从而获取答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点 A 重合,∴AC⊥EF, AO=CO,在矩形 ABCD,∠ D=90°,∴△ ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠ EOC=∠ D=90°,∠ ECO=∠ DCA,∴△ DAC∽△ OFC,∴,∴,∴ EO=,∴ EF=2×=.应选: B.5cm,高为4cm,直线l⊥边AB,并从点 A 出发以1cm/ s 10.以下图,菱形ABCD的边长为y( cm),则以下最能的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为反应y( cm)与运动时间x( s)之间的函数关系的图象是()A.B.C.D.【剖析】依据题意能够分别获取各段y 与 x 的函数分析式,从而能够解答本题.【解答】解:点M从点 A到点 D的过程中, y==x,( x≤3),应选项A、 B、 C错误,当点 M从 D点使点 N到点 B 的过程中, y=4,(3< x≤5),点 M到 C的过程中, y=4﹣=﹣x+,(x>5),应选项D正确,应选: D.二.填空题(共 4 小题)11.如图,在△ABC中点D、E分别在边AB、 AC上,请增添一个条件:∠ AED=∠ B(答案不独一),使△ ABC∽△ AED.【剖析】依据∠AED=∠ B 和∠ A=∠ A 能够求证△ AED∽△ ABC,故增添条件∠AED=∠ B 即能够求证△ AED∽△ ABC.【解答】解:∵∠AED=∠ B,∠ A=∠ A,∴△ AED∽△ ABC,故增添条件∠ AED=∠ B 即能够使得△ AED∽△ ABC,故答案为:∠=∠(答案不独一).AED B12.若抛物线y=x2﹣ 2x﹣ 3 与x轴分别交于A,B两点,则AB的长为 4 .【剖析】先求出二次函数与x 轴的2个交点坐标,而后再求出 2 点之间的距离.【解答】解:二次函数=2﹣2x ﹣ 3 与x轴交点、B的横坐标为一元二次方程2﹣ 2y x A xx ﹣ 3=0 的两个根,求得x1=﹣1, x2=3,则 AB=| x2﹣x1|=4.13.如图,正方形OAPB,矩形 ADFE的极点 O,A,D, B在座标轴上,点E是 AP的中点,点P, F 在函数 y=(x>0)图象上,则点F 的坐标是(2,).【剖析】依据题意能够求得点 A 的坐标,从而能够求得点 F 的坐标,本题得以解决.【解答】解:设点P 的坐标为( a,),∵ a=,得a=1或a=﹣1(舍去),∴点 P的坐标为(1,1),∵点 E是 AP的中点,四边形ADFE是矩形,∴AE=DF, AE=,∴DF=,当 y=时,,得x=2,∴点 F 的坐标为(2,).14.如图,矩形ABCD中, AB=3, AD=9,将△ ABE沿 BE翻折获取△ A' BE,点 A'落在矩形ABCD的内部,且∠ AA' G=90°,若以点A'、 G、 C 为极点的三角形是直角三角形,则AE = 1 或.【剖析】分两种状况,依据相像三角形的判断和性质以及翻折的性质解答即可.【解答】解:①如图 1 所示,∠GA' C= 90°,∵四边形 ABCD是矩形,∴∠ BAE=∠ D=90°, CD= AB=3,∵∠ AA' G=90°,∴点 A、 A'、 C在同向来线上,∠BAE=∠ ADC=90°,∠ ABE=∠DAC,∴△ ABE∽△ DAC,∴=,即=,解得: x=1;②如图 2 所示,∠A' GC=90°,∴∠ DGC=∠ GAA'=∠ ABE,∴△ ABE∽△ DGC,∴=,设 AE=EA'= EG= x,∴=,解得: x=,或x=3(舍去),∴AE=;综上所述, x=1或;故答案为: 1 或.三.解答题(共15.已知2 小题),求的值.【剖析】设【解答】解:设= k,获取= k,a=3k.b=4k, c=6k,代入即可获取结论.则 a=3k. b=4k, c=6k,∴==.16.已知二次函数y= x2+2x﹣3.(1)用配方法求该二次函数图象的极点坐标;(2)指出y随x的变化状况.【剖析】( 1)依据配方法的要求把一般式转变为极点式,依据极点式的坐标特色,写出极点坐标;(2)当a> 0 时,抛物线张口向上,依据二次函数的性质求解即可.【解答】解:( 1)∵y=x2+2x﹣ 3=(x+1)2﹣ 4,∴极点坐标(﹣ 1,﹣ 4);( 2)∵函数图象张口向上,其对称轴是直线x=﹣1,∴当 x>﹣1时, y 随x 的增大而增大,当x<﹣1时, y 随x 的增大而减小.四.解答题(共7 小题)17.如图,矩形OABC的极点A、C 分别在x 轴和y轴上,点 B 的坐标为(2, 3).双曲线y=(x>0)的图象经过BC的中点 D,且与 AB交于点 E,连结 DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的分析式.【剖析】( 1)第一依据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比率函数的分析式求得 k 值,而后将点 E 的横坐标代入求得 E点的纵坐标即可;( 2)依据△FBC∽△DEB,利用相像三角形对应边的比相等确立点 F 的坐标后即可求得直线 FB的分析式.【解答】解:( 1)∵BC∥x轴,点B的坐标为( 2, 3),∴ BC=2,∵点D 为的中点,BC∴CD=1,∴点 D的坐标为(1,3),代入双曲线y=(x>0)得k=1× 3=3;∵BA∥y 轴,∴点 E的横坐标与点 B 的横坐标相等,为2,∵点 E在双曲线上,∴y=∴点 E的坐标为(2,);( 2)∵点E的坐标为( 2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1, BE=, BC=2∵△ FBC∽△ DEB,∴即:∴FC=∴点 F 的坐标为(0,)设直线 FB的分析式 y= kx+b( k≠0)则解得: k=,b=y=∴直线FB的分析式18.如图是一个3× 8 的网格图,每个小正方形的边长均为1,三个极点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相像但不全等的格点三角形,并求与△ABC相像的格点三角形的最大面积.【剖析】依照格点△ ABC的三边长分别为,2、,将该三角形的各边扩大必定倍数,即可画出与△ ABC相像但不全等的格点三角形,从而得出与△ ABC相像的格点三角形的最大面积.【解答】解:以下图:以下图,格点三角形的面积最大,S=2×8﹣× 2× 3﹣×1× 5﹣× 1× 8=6.519.已知抛物线y=( x﹣ m)2﹣( x﹣ m),此中 m是常数.(1)求证:无论m为什么值,该抛物线与x轴必定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数分析式;②把该抛物线沿y 轴向上平移多少个单位长度后,获取的抛物线与x 轴只有一个公共点.【剖析】( 1)先把抛物线分析式化为一般式,再计算△的值,获取△=1> 0,于是依据△= b2﹣4ac 决定抛物线与x 轴的交点个数即可判断无论m为什么值,该抛物线与 x 轴必定有两个公共点;( 2)①依据对称轴方程获取=﹣=,而后解出m 的值即可获取抛物线分析式;②依据抛物线的平移规律,设抛物线沿y 轴向上平移k 个单位长度后,获取的抛物线与x轴只有一个公共点,则平移后抛物线分析式为y =2﹣ 5 +6+ ,再利用抛物线与x轴的只xx k有一个交点获取△=52﹣ 4( 6+k)= 0,而后解对于k 的方程即可.222【解答】( 1)证明:y=(x﹣m)﹣(x﹣m)=x﹣( 2m+1)x+m+m,22∵△=( 2m+1)﹣ 4(m+m)= 1> 0,∴无论 m为什么值,该抛物线与x 轴必定有两个公共点;( 2)解:①∵x=﹣=,∴ m=2,∴抛物线分析式为y= x2﹣5x+6;②设抛物线沿y 轴向上平移k 个单位长度后,获取的抛物线与x 轴只有一个公共点,则平移后抛物线分析式为y= x2﹣5x+6+k,∵抛物线 y= x2﹣5x+6+k 与 x 轴只有一个公共点,∴△= 52﹣ 4( 6+k)= 0,∴ k=,即把该抛物线沿y 轴向上平移个单位长度后,获取的抛物线与x 轴只有一个公共点.20.如图,在Rt △ABC中,∠ACB= 90°,CD是边AB上的高.求证:2( 1)求证:AC=AD?AB;( 2)利用相像形的知识证明222 AB= AC+BC.【剖析】( 1)证明△ACB∽△ADC,依据相像三角形的性质证明结论;2( 2)证明△ACB∽△CDB,获取BC=BD?AB,与( 1)中两式相加,获取答案.【解答】证明(1)∵∠A=∠A,∠ACB=∠ADC= 90°,∴△ ACB∽△ ADC,∴=,2∴ AC= AD?AB;(2)∵∠B=∠B,∠ACB=∠ADC=90°,∴△ ACB∽△ CDB,∴=,2∴ BC= BD?AB,222∴ AC+BC= AD?AB+BD?AB=AB×( AD+BD)= AB.21.依据对宁波市有关的市场物价调研,某批发市场内甲种水果的销售收益y1(千元)与进货量 x(吨)近似知足函数关系y1=0.25 x,乙种水果的销售收益y2(千元)与进货量 x(吨)之间的函数y 2=ax2+ +c的图象以下图.bx( 1)求出y2与x之间的函数关系式;( 2)假如该市场准备进甲、乙两种水果共8 吨,设乙水果的进货量为t 吨,写出这两种水果所获取的销售收益之和W(千元)与t (吨)之间的函数关系式,并求出这两种水果各进多少吨时获取的销售收益之和最大,最大收益是多少?【剖析】( 1)利用待定系数法即可解决问题;( 2)销售收益之和W=甲种水果的收益+乙种水果的收益,利用配方法求得二次函数的最值即可.【解答】解:( 1)∵函数y2=ax2+bx+c 的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣ x2+ x.( 2)w=( 8﹣t)﹣t 2+t =﹣( t ﹣4)2+6,∴ t =4时, w的值最大,最大值为6,∴两种水果各进 4 吨时获取的销售收益之和最大,最大收益是 6 千元.22.定义:极点、张口大小同样,张口方向相反的两个二次函数互为“反簇二次函数”.( 1)已知二次函数y=﹣( x﹣2)2+3,则它的“反簇二次函数”是y=( x﹣2)2+3;(2)已知对于x的二次函数y1=2x2﹣2mx+m+1 和y2=ax2+bx+c,此中y1的图象经过点( 1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当 0≤x≤3 时,y2的最小值.【剖析】( 1)依据“反簇二次函数”定义写出所求即可;(2)把A坐标代入y1,求出m的值,从而表示出y1+y2,依据y1+y2与y1互为“反簇二次函数”,求出 a,b, c 的值,确立出 y2,写出知足题意的范围即可.【解答】解:( 1)y=(x﹣ 2)2 +3;故答案为: y=( x﹣2)2+3;(2)∵y1的图象经过点A(1,1),∴ 2﹣ 2m+m+2= 2,解得: m=2,∴y1=2x2﹣4x+3=2( x﹣1)2+1,∴y1+y2=2x2﹣4x+3+ax2+bx+c=( a+2) x2+( b﹣4) x+c+3,∵ y1+y2与 y1为“反簇二次函数” ,22∴ y1+y2=﹣2( x﹣1)+1=﹣2x +4x﹣1,∴,解得:,∴函数 y2的表达式为: y2=﹣4x2+8x﹣4,当 0≤x≤ 3 时,y2的最小值为﹣ 16.23.二次函数y =ax2++的图象经过点(﹣1, 4),且与直线y=﹣x+1 订交于、B两bx c A点(如图),A 点在y轴上,过点B作⊥轴,垂足为点(﹣ 3, 0).BC x C(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在 AB上方),过 N作 NP⊥ x 轴,垂足为点 P,交AB于点 M,求 MN的最大值;(3)在( 2)的条件下,点N在何地点时,BM与NC相互垂直均分?并求出全部知足条件的 N点的坐标.【剖析】方法一:( 1)第一求得A、 B 的坐标,而后利用待定系数法即可求得二次函数的分析式;(2)设M的横坐标是x,则依据M和N所在函数的分析式,即可利用x表示出M、N的坐标,利用 x 表示出 MN的长,利用二次函数的性质求解;(3)BM与NC相互垂直均分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得 x 的值,从而获取 N的坐标.方法二:(1)略.(2)求出点M,N的参数坐标,并获取MN的长度表达式,从而求出MN的最大值.( 3)因为BM与NC相互垂直均分,所以四边形BCMN为菱形,因为MN∥ BC,所以只需MN=BC可得出四边形 BCMN为平行四边形,再利用 NC⊥BM进行求解.【解答】方法一:解:( 1)由直线y=﹣x+1可知 A(0,1), B(﹣3,),又点(﹣1,4)经过二次函数,依据题意得:,解得:,则二次函数的分析式是:y=﹣﹣x+1;( 2)设N(x,﹣x2﹣x+1),则 M(x,﹣x+1), P(x,0).∴MN=PN﹣ PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣( x+)2+,则当 x=﹣时,MN的最大值为;(3)连结MC、BN、BM与NC相互垂直均分,即四边形 BCMN是菱形,则 MN=BC,且 BC= MC,即﹣ x2﹣ x=,且(﹣ x+1)2+( x+3)2=,解 x2+3x+2=0,得: x=﹣1或 x=﹣2(舍去).故当 N(﹣1,4)时, BM和 NC相互垂直均分.方法二:( 1)略.( 2)设(,﹣),N t∴ M( t ,﹣t +1),∴ MN=NY﹣ MY=﹣+t ﹣1,∴ MN=﹣,当 t =﹣时,MN有最大值,MN=.( 3)若BM与NC相互垂直均分,则四边形BCMN为菱形.∴NC⊥BM且 MN= BC=,即﹣=,∴ t 1=﹣1,t 2=﹣2,① t 1=﹣1,N(﹣1,4), C(﹣3,0),∴ NC== 2,K∵ K AB=﹣,∴K NC× K AB=﹣1,∴NC⊥BM.② t 2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC× K AB≠﹣1,此时 NC与 BM不垂直.∴知足题意的 N点坐标只有一个, N(﹣1,4).新人教版九年级数学上册期中考试一试题(含答案)一. 选择题(每题 3 分,总分36 分)1.以下方程中,对于x 的一元二次方程是()A.(x+1)2= 2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣ 12.若对于x 的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3B.m≤3C.m< 3 且m≠ 2D.m≤ 3 且m≠2 3.方程x( x﹣1)= x 的根是()A.x=2B.x=﹣ 2C.x1=﹣ 2,x2= 0D.x1= 2,x2=0 4.以下方程中以1,﹣ 2 为根的一元二次方程是()A.(x+1)(x﹣ 2)= 0B.(x﹣ 1)(x+2)= 1C.(x+2)2=1D.5.把二次函数y=3x2的图象向左平移 2 个单位,再向上平移 1 个单位,所获取的图象对应的二次函数表达式是()A.=3(﹣2)2+1B.=3( +2)2﹣1y x y xC.=3(﹣2)2﹣ 1D.= 3( +2)2+1y x y x6.函数=﹣2﹣ 4+3 图象极点坐标是()yx xA.( 2,﹣ 7)B.( 2, 7)C.(﹣ 2,﹣ 7)D.(﹣ 2, 7)7.抛物线y=(x+2)2+1的极点坐标是()A.( 2, 1)B.(﹣ 2, 1)C.( 2,﹣ 1)D.(﹣ 2,﹣ 1)8.y=(x﹣ 1)2+2 的对称轴是直线()A.x=﹣ 1B.x=1C.y=﹣ 1D.y= 19.假如x1,x2是方程x2﹣ 2x﹣ 1= 0 的两个根,那么x1+x2的值为()A.﹣ 1B. 2C.D.10.当a>0,b< 0,c> 0 时,以下图象有可能是抛物线y= ax2+bx+c 的是()A.B.C.D.11.无论x为什么值,函数y=ax2+bx+c( a≠0)的值恒大于0 的条件是()A.a>0,△> 0B.a>0,△< 0C.a< 0,△< 0D.a< 0,△> 0 12.某班同学毕业时都将自己的照片向全班其余同学各送一张表示纪念,全班共送1035 张照片,假如全班有x 名同学,依据题意,列出方程为()A.x(x+1)= 1035B.x(x﹣ 1)= 1035× 2C.x(x﹣ 1)= 1035D. 2x(x+1)= 1035二. 填空题(每题 3 分,总分18 分)13.若对于x 的一元二次方程2﹣ 3 + = 0 有实数根,则的取值范围是.xx m m14.方程x 2﹣ 3 +1= 0 的解是.x15.以下图,在同一坐标系中,作出①y=3x2② y=x2③ y= x2的图象,则图象从里到外的三条抛物线对应的函数挨次是(填序号).。
九年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.(2分)抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)2.(2分)下面的四条线段中不能成比例的是()A.3,6,2,4 B.4,6,5,10 C.1,2,3,6 D.2,4,5,103.(2分)如图,在△ABC中,D为AB中点,DE∥BC交AC于E点,则△ADE 与△ABC的面积比为()A.1:1 B.1:2 C.1:3 D.1:44.(2分)将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=﹣x2﹣1 D.y=x2﹣15.(2分)将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位6.(2分)如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB 放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C 的坐标是()A.(2,5) B.(,5)C.(3,5) D.(3,6)7.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.8.(2分)三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:49.(2分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.10.(2分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若=,则=.12.(3分)点A(﹣2,y1),B(3,y2)在抛物线y=x2﹣3x上,则y1y2.(填“>”,“<”或“=”)13.(3分)请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式.14.(3分)如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m,与树相距10m,则树的高度为m.15.(3分)如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为.16.(3分)如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为.三、解答题(本大题共62分:第17题-23题每题6分,第24题7分,第25题6分,第26题7分)17.(6分)已知抛物线y=x2﹣4x+3.(1)把这个二次函数化为顶点式;(2)在坐标系中利用五点作图法画出它的图象(不需要列表);(3)请结合函数图象直接写出不等式y>0的解集.18.(6分)如图,在平行四边形ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.求证:(1)△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC 对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:.20.(6分)已知:关于x的二次函数y=x2+2x+2k﹣4图象与x轴有两个交点.(1)求k的取值范围;(2)若k为正整数,且抛物线与x轴交点的横坐标为整数,求k的值.21.(6分)廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)22.(6分)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.23.(6分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.24.(7分)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x﹣3与x轴交于A、B两点,点A的坐标为(﹣1,0).(1)求B点与顶点D的坐标;=5,求直线l的解析式;(2)经过点B的直线l与y轴正半轴交于点M,S△ADM(3)点P(t,0)为x轴上一动点,过点P作x轴的垂线m,将抛物线在直线m 左侧的部分沿直线m对折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线l没有公共点时,t的取值范围是.25.(6分)已知矩形ABCD,AD=3,AB=m,点P是线段CD的中点,点E是线段AD上的一个动点(点E可以和点A、D重合),过点P作线段PE的垂线PF,交矩形的边AB于点F.(1)如图1,若m=,求的值;(2)如图2,若m=8,点M是线段AD上另一动点(不与点E重合),过点P作线段PM的垂线PN交边AB于点N,求的值;(3)如图3,点D关于直线PE的对称点为点N,当点E和点A重合时,点N到直线AB的距离等于1,请你直接写出m的值.26.(7分)在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“伴随菱形”.图1为点P,Q的“伴随菱形”的一个示意图.(1)已知点A的坐标为(1,4),点B是直线y=﹣1上一点,记点B坐标为(m,﹣1),①若m=﹣1,则R(1,﹣5),S(﹣3,4),T(3,﹣1)中能够成为点A,B的“伴随菱形”顶点的是;②若点A,B的“伴随菱形”为正方形,求直线AB的解析式;(2)已知抛物线y=x2﹣2nx+,过点A(1,4)作垂直于y轴的直线y=4交抛物线于E、F两点,记抛物线在点E和点F之间(包括点E和F)的图象为图象G,若图象G上存在点C,使点A,C的“伴随菱形”为正方形,请你直接写出n 的取值范围.参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:y=﹣(x﹣1)2+3的顶点坐标为(1,3).故选:A.2.(2分)下面的四条线段中不能成比例的是()A.3,6,2,4 B.4,6,5,10 C.1,2,3,6 D.2,4,5,10【解答】解:A、3:6=2:4,则a:b=c:d,即a,b,c,d成比例;B、四条线段中,任意两条的比都不相等,因而不成比例;C、1:3=2:6,则a:c=b:d.故a,c,b,d成比例;D、2:4=5:10,即a:b=c:d,故a,b,c,d成比例.故选:B.3.(2分)如图,在△ABC中,D为AB中点,DE∥BC交AC于E点,则△ADE 与△ABC的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是边AB的中点,∴AD:AB=1:2,∴=()2=.故选:D.4.(2分)将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=﹣x2﹣1 D.y=x2﹣1【解答】解:如图,由于所得函数图象与原函数图象关于原点对称,故所得函数顶点为(0,﹣1),则所得函数为y=﹣x2﹣1.故选:C.5.(2分)将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位【解答】解:∵y=﹣3x2的顶点坐标为(0,0),y=﹣3(x﹣1)2﹣2的顶点坐标为(1,﹣2),∴将抛物线y=﹣3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=﹣3(x﹣1)2﹣2.故选:D.6.(2分)如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB 放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C 的坐标是()A.(2,5) B.(,5)C.(3,5)D.(3,6)【解答】解:∵以原点O为位似中心,把线段AB放大后得到线段CD,且B(2,0),D(5,0),∴=,∵A(1,2),∴C(,5).故选:B.7.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.8.(2分)三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.9.(2分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【解答】解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.10.(2分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题(每小题3分,共18分)11.(3分)若=,则=.【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.12.(3分)点A(﹣2,y1),B(3,y2)在抛物线y=x2﹣3x上,则y1>y2.(填“>”,“<”或“=”)【解答】解:由抛物线y=x2﹣3x可知对称轴x=﹣=,∵抛物线开口向上,而点A(﹣2,y1)到对称轴的距离比B(3,y2)远,∴y1>y2.故答案为:>.13.(3分)请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式y=x2﹣1(答案不唯一).【解答】解:抛物线的解析式为y=x2﹣1.故答案为:y=x2﹣1(答案不唯一).14.(3分)如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m,与树相距10m,则树的高度为6m.【解答】解:设树的高度为xm,根据题意得:=,解得:x=6.故答案为:6.15.(3分)如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为2.【解答】解:在△BCD和△ACB中,∵∠C=∠C(公共角),∠DBC=∠A(已知),∴△BCD∽△ACB,∴=,∵,AC=3,∴CD=2.16.(3分)如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为﹣3或6.【解答】解:∵点A(﹣4,0)、B(﹣2,0),∴点C(﹣4,﹣2)、D(﹣2,﹣2),则对角线AC、BD交点P的坐标为(﹣3,﹣1),根据题意,将点P(﹣3,﹣1)代入解析式y=2x2﹣nx﹣n2﹣1,得:18+3n﹣n2﹣1=﹣1,整理,得:n2﹣3n﹣18=0,解得:n=﹣3或n=6,故答案为:﹣3或6.三、解答题(本大题共62分:第17题-23题每题6分,第24题7分,第25题6分,第26题7分)17.(6分)已知抛物线y=x2﹣4x+3.(1)把这个二次函数化为顶点式;(2)在坐标系中利用五点作图法画出它的图象(不需要列表);(3)请结合函数图象直接写出不等式y>0的解集x<1或x>3.【解答】解:(1)y=x2﹣4x+3=(x﹣2)2﹣1;(2)图右图所示;(3)由图象可得,不等式y>0的解集是x<1或x>3,故答案为:x<1或x>3.18.(6分)如图,在平行四边形ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.求证:(1)△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.∴∠B=∠ECF,∠DAE=∠AEB.又∵∠DAE=∠F,∴∠AEB=∠F.∴△ABE∽△ECF;(2)∵△ABE∽△ECF,∴,∵四边形ABCD是平行四边形,∴BC=AD=8.∴EC=BC﹣BE=8﹣2=6.∴.∴19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为(a﹣7,b).(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC 对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:(1,4)或(﹣1,﹣4).【解答】解:(1)A点坐标为:(2,8),C点坐标为:(6,6);(2)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,可知M1的坐标(a﹣7,b);(3)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(1,4)或(﹣1,﹣4).20.(6分)已知:关于x的二次函数y=x2+2x+2k﹣4图象与x轴有两个交点.(1)求k的取值范围;(2)若k为正整数,且抛物线与x轴交点的横坐标为整数,求k的值.【解答】解:(1)根据题意知,△=22﹣4×1×(2k﹣4)>0,解得:k<;(2)∵k<,且k为正整数,∴k=1或k=2,当k=1时,函数解析式为y=x2+2x﹣2,不符合题意,舍去;当k=2时,函数解析式为y=x2+2x,与x轴的交点为(0,0)、(﹣2,0),符合题意,故k=2.21.(6分)廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)【解答】解:如图,以AB所在直线为x轴、线段AB的中垂线为y轴建立直角坐标系,由题意知,A(﹣20,0),B(20,0),C(0,10).设过点A、B、C的抛物线方程为:y=a(x+20)(x﹣20)(a<0).把点C(0,10)的坐标代入,得10=a(0+20)(0﹣20),解得:a=﹣,则该抛物线的解析式为:y=﹣(x+20)(x﹣20)=﹣x2+10把y=8代入,得﹣x2+10=8,即x2=80,x1=4,x2=﹣4.所以两盏警示灯之间的水平距离为:EF=|x1﹣x2|=|4﹣(﹣4)|=8(m).22.(6分)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.【解答】证明:(1)∵BE平分∠ABC,∴∠ABD=∠EBC,∵BA•BC=BD•BE.即,∴△ABD∽△EBC;(2)∵△ABD∽△EBC,∴∠BAD=∠BEC,∠ADB=∠BCE,∵∠AED=∠BEC,∴∠BAD=∠AED,∴△ADE∽△BEC,∴△AED∽△ABD,∴,即AD2=BD•DE.23.(6分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.24.(7分)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x﹣3与x轴交于A、B两点,点A的坐标为(﹣1,0).(1)求B点与顶点D的坐标;=5,求直线l的解析式;(2)经过点B的直线l与y轴正半轴交于点M,S△ADM(3)点P(t,0)为x轴上一动点,过点P作x轴的垂线m,将抛物线在直线m 左侧的部分沿直线m对折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线l没有公共点时,t的取值范围是t>.【解答】解:(1)把点A的坐标(﹣1,0)代入y=ax2﹣(a+1)x﹣3中,得:a+(a+1)﹣3=0,a=1,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4),由对称性得:B(3,0);(2)设直线AD的解析式为:y=kx+b,则,解得:,∴直线AD的解析式为:y=﹣2x﹣2,设AD交y轴于N,∴ON=2,=MN•(﹣x A+x D)=5,∴S△ADM∴(2+OM)×(1+1)=5,OM=3,∴M(0,3),设直线l的解析式为:y=kx+b,则,解得:;直线l的解析式为:y=﹣x+3;(3)如图2,由对折得:OC=3+2(t﹣3)+2=2t﹣1,∴新抛物线的顶点为(2t﹣1,﹣4),解析式为:y=(x﹣2t+1)2﹣4,则,(x﹣2t+1)2﹣4=﹣x+3,x2﹣(4t﹣3)x+4t2﹣4t﹣6=0,当△<0时,图象G与直线l没有公共点,即△=[﹣(4t﹣3)]2﹣4(4t2﹣4t﹣6)<0,t>,故答案为:.25.(6分)已知矩形ABCD,AD=3,AB=m,点P是线段CD的中点,点E是线段AD上的一个动点(点E可以和点A、D重合),过点P作线段PE的垂线PF,交矩形的边AB于点F.(1)如图1,若m=,求的值;(2)如图2,若m=8,点M是线段AD上另一动点(不与点E重合),过点P作线段PM的垂线PN交边AB于点N,求的值;(3)如图3,点D关于直线PE的对称点为点N,当点E和点A重合时,点N到直线AB的距离等于1,请你直接写出m的值.【解答】解:(1)如图1,过点F作FG⊥CD于G,FG=AD=3,∴∠PFG+∠FPG=90°,∵∠EPF=90°,∴∠DPE+∠FPG=90°,∴∠PFG=∠EPD,∵四边形ABCD是矩形,∴∠D=∠FGP=90°,∴△PDE∽△FGP,∴,∵CD=AB=6,而点P是CD的中点,∴DP=3,∴=;(2)如图2,过点F作FG⊥CD于G,同(1)的方法得,∴△PDE∽△FGP,∴,∵CD=AB=8,而点P是CD的中点,∴DP=4,∴;过点N作NQ⊥CD于Q,同理:,∴,∵∠EPF=∠MPN=90°,∴∠MPE=∠NPF,∵,∴△MPE∽△NPF,∴;(3)如图3,∵点N是点D关于PE的对称点,∴AP⊥DN,AN=AD=3,∵点N到直线AB的距离为1,∴NH=1,在Rt△AHN中,AH==2,过点N作NI⊥AD交DA的延长线于I,∴四边形AHNI是矩形,∴IN=AH=2,AI=NH=1,∴DI=AD+AI=3+1=4,∵∠ADN+∠PDN=90°,∠APD+∠PDN=90°,∴∠ADN=∠APD,∵∠DIN=∠PDA=90°,∴△ADP∽△NID,∴,∵点P是CD中点,∴DP=m,∴,∴m=6.26.(7分)在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“伴随菱形”.图1为点P,Q的“伴随菱形”的一个示意图.(1)已知点A的坐标为(1,4),点B是直线y=﹣1上一点,记点B坐标为(m,﹣1),①若m=﹣1,则R(1,﹣5),S(﹣3,4),T(3,﹣1)中能够成为点A,B的“伴随菱形”顶点的是S、T;②若点A,B的“伴随菱形”为正方形,求直线AB的解析式;(2)已知抛物线y=x2﹣2nx+,过点A(1,4)作垂直于y轴的直线y=4交抛物线于E、F两点,记抛物线在点E和点F之间(包括点E和F)的图象为图象G,若图象G上存在点C,使点A,C的“伴随菱形”为正方形,请你直接写出n 的取值范围.【解答】解:(1)当m=﹣1时,B(﹣1,﹣1).如图1所示:∵点R到B的距离不等于AB,∴点R不能构成点A,B的“伴随菱形”顶点.∵点S为以AS为对角线的菱形的顶点,点为以BT为对角线的菱形的顶点,∴能够成为点A,B的“伴随菱形”顶点的是S、T为.故答案为:S、T.(2)如图2所示:当点B位于点A的右侧时,过点A作AC∥y轴,作BC∥x轴.∵点A,B的“伴随菱形”为正方形,∴∠ABC=45°.设直线AB的解析式为y=﹣x+b,将点(1,4)代入得:﹣1+b=4,解得b=5,∴直线AB的解析式为y=﹣x+5.如图3所示,当点B位于点A的左侧时,过点A作AC∥y轴,作BC∥x轴.同理:∠ABC=45°.设直线AB的解析式为y=x+b,将点(1,4)代入得:1+b=4,解得b=3,∴直线AB的解析式为y=x+3.综上所述,直线AB的解析式为y=﹣x+5或y=x+3.(3)y=x2﹣2nx+=(x﹣n)2+.将y=﹣x+5代入y=x2﹣2nx+得,x2﹣2nx+=﹣x+5,整理得:x2+(1﹣2n)x﹣4+n2=0,当△=0,即(1﹣2n)2﹣4(n2﹣4)=0,图象G上恰好存在点C,使点A,C 的“伴随菱形”为正方形,解得:n=5.将y=x+3代入y=x2﹣2nx+得,x2﹣2nx+=x+3,整理得:x2+(1+2n)x ﹣2+n2=0,当△=0,即(1+2n)2﹣4(n2﹣2)=0,图象G上恰好存在点C,使点A,C的“伴随菱形”为正方形,解得:n=﹣3.∴当﹣3≤n≤5时,图象G上存在点C,使点A,C的“伴随菱形”为正方形.。
2014-2015学年四川省资阳市简阳中学九年级(上)期中数学试卷一、仔细填一填(本题共10题,每空2分,共20分)1.(2分)当x时,根式有意义.2.(2分)已知a、b、c、d是成比例线段,其中a=5cm,b=3cm,c=6cm,则线段d=.3.(2分)若x:y=1:2,则=.4.(2分)请你写一个能先提公因式、再运用公式来分解因式求解的方程,并写出方程的解.5.(2分)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则x12+x22=.6.(2分)等腰梯形的周长是36cm,腰长是7cm,则它的中位线长为cm.7.(2分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,AB=3,则CD为.8.(2分)在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标为(﹣2,0)、(0,3)、(2,1),则点B′的坐标是.9.(2分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.10.(2分)如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB 相似的条件是(只填序号).二.精心选一选(本题共8题,每题3分,共24分)11.(3分)下列方程中一定是一元二次方程的是()A.ax2﹣bx=0 B.2x2+﹣2=0C.(x﹣2)(3x+1)=0 D.3x2﹣2x=3(x+1)(x﹣2)12.(3分)下列运算正确的是()A.2a+a=3a2B.=×C.(3a2)3=9a6 D.+=313.(3分)如果2是一元二次方程x2=x+c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣414.(3分)某中学准备建一个面积为375m2的矩形游泳池,且游泳池的周长为80m.设游泳池的长为xm,则可列方程()A.x(80﹣x)=375 B.x(80+x)=375 C.x(40﹣x)=375 D.x(40+x)=375 15.(3分)如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.16.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米17.(3分)如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且∠AEF=90°则下列结论正确的是()A.△ABF∽△AEF B.△ABF∽△CEF C.△CEF∽△DAE D.△DAE∽△BAF 18.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.3秒或4.8秒B.3秒 C.4.5秒D.4.5秒或4.8秒三、认真算一算:(每题6分,共12分)19.(6分)(1)﹣+1(2)+|7|+()0+()﹣1.20.(6分)(1)x(x﹣3)=15﹣5x;(2)x2﹣2x﹣4=0.四、动脑筋做一做:21.(4分)若x=0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一个解,求实数m的值和另一个根.22.(4分)已知a、b、c是△ABC的三边,且方程b(x2﹣1)﹣2ax+c(x2+1)=0有两个相等的实数根,试判断△ABC的形状.23.(6分)如图,图中小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形顶点上.(1)画出位似中心点O;(2)△ABC与△A′B′C′的位似比为;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似为1:2.24.(6分)如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.25.(5分)某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.26.(5分)我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.27.(6分)如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG•FE.28.(8分)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.2014-2015学年四川省资阳市简阳中学九年级(上)期中数学试卷参考答案与试题解析一、仔细填一填(本题共10题,每空2分,共20分)1.(2分)当x≥2时,根式有意义.【解答】解:∵根式有意义,∴x﹣2≥0,解得x≥2,∴当x≥2时,根式有意义.故答案为≥2.2.(2分)已知a、b、c、d是成比例线段,其中a=5cm,b=3cm,c=6cm,则线段d= 3.6cm.【解答】解;已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=3cm,c=6cm,解得:d=3.6,则d=3.6cm.故答案为:3.6cm.3.(2分)若x:y=1:2,则=.【解答】解:设x=k,y=2k,∴==﹣.4.(2分)请你写一个能先提公因式、再运用公式来分解因式求解的方程,并写出方程的解(答案不唯一,例如3x2﹣12=0,x1=﹣2,x2=2).【解答】解:答案不唯一,如:3x2﹣12=0;原方程可化为:3(x2﹣4)=0,(x+2)(x﹣2)=0,解得:x1=﹣2,x2=2.5.(2分)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则x12+x22=10.【解答】解:x(x﹣1)+3(x﹣1)=0,(x﹣1)(x+3)=0,x﹣1=0或x+3=0,∴x1=1,x2=﹣3.∴x12+x22=1+9=10.故答案是10.6.(2分)等腰梯形的周长是36cm,腰长是7cm,则它的中位线长为11cm.【解答】解:∵上底+下底+两腰=周长,∴(上底+下底)+2×7=36,∴上底+下底=22,∴中位线=×22=11.7.(2分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,AB=3,则CD为2.【解答】解:根据题意得:BC===.∵△ABC的面积=•AC•BC=•AB•CD∴CD===2.8.(2分)在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标为(﹣2,0)、(0,3)、(2,1),则点B′的坐标是(4,4).【解答】解:由点A平移到A′的规律可知,此题规律是(x+4,y+1),照此规律计算可知点B′的坐标是(4,4).故答案填:(4,4).9.(2分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.10.(2分)如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB 相似的条件是①,②,③(只填序号).【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③.二.精心选一选(本题共8题,每题3分,共24分)11.(3分)下列方程中一定是一元二次方程的是()A.ax2﹣bx=0 B.2x2+﹣2=0C.(x﹣2)(3x+1)=0 D.3x2﹣2x=3(x+1)(x﹣2)【解答】解:A、a=0时,不是一元二次方程,错误;B、是分式方程,错误;C、原式可化为:3x2﹣5x﹣2=0,符合一元二次方程的定义,正确;D、原式可化为:x+6=0,是一元一次方程,错误.故选:C.12.(3分)下列运算正确的是()A.2a+a=3a2B.=×C.(3a2)3=9a6 D.+=3【解答】解:A、2a+a=3a,选项错误;B、和没有意义,则选项错误;C、(3a2)3=27a6,选项错误;D、+=2+=3,选项正确.故选:D.13.(3分)如果2是一元二次方程x2=x+c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣4【解答】解:∵x=2是关于x的一元二次方程x2=x+c的一个根,∴22=2+c,解得c=2.故选:A.14.(3分)某中学准备建一个面积为375m2的矩形游泳池,且游泳池的周长为80m.设游泳池的长为xm,则可列方程()A.x(80﹣x)=375 B.x(80+x)=375 C.x(40﹣x)=375 D.x(40+x)=375【解答】解:∵游泳池的周长为80m.游泳池的长为xm,∴宽为(40﹣x)m,∵矩形游泳池为375m2,∴可列方程为x(40﹣x)=375.故选:C.15.(3分)如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.【解答】解:∵ABCD是平行四边形∴AD∥BC∴△BFE∽△DFA∴BE:AD=BF:FD=1:3∴BE:EC=BE:(BC﹣BE)=BE:(AD﹣BE)=1:(3﹣1)∴BE:EC=1:2故选:A.16.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米【解答】解:设这棵树的高度为x.∵在同一时刻同一地点任何物体的高与其影子长比值是相同的.∴∴x==4.8∴这棵树的高度为4.8米.故选:B.17.(3分)如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且∠AEF=90°则下列结论正确的是()A.△ABF∽△AEF B.△ABF∽△CEF C.△CEF∽△DAE D.△DAE∽△BAF 【解答】解:∵∠AEF=90°,∴∠ADE+∠CEF=90°,而∠ADE+∠DAE=90°,∴∠DAE=∠CEF,而∠D=∠C=90°,∴△CEF∽△DAE.故选:C.18.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.3秒或4.8秒B.3秒 C.4.5秒D.4.5秒或4.8秒【解答】解:根据题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是x秒,①若△ADE∽△ABC,则,∴,解得:x=3;②若△ADE∽△ACB,则,∴,解得:x=4.8.∴当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.故选:A.三、认真算一算:(每题6分,共12分)19.(6分)(1)﹣+1(2)+|7|+()0+()﹣1.【解答】解:(1)原式=2﹣(2+)+1=2﹣2﹣+1=﹣1;(2)原式=3+7+1+2=3+10.20.(6分)(1)x(x﹣3)=15﹣5x;(2)x2﹣2x﹣4=0.【解答】解:(1)x(x﹣3)=﹣5(x﹣3)(1分)(x﹣3)(x+5)=0(2分)x1=3,x2=﹣5(3分);(2)△=20(4分)x==1±,,.(6分)四、动脑筋做一做:21.(4分)若x=0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一个解,求实数m的值和另一个根.【解答】解:m2+2m﹣8=0,m1=﹣4,m2=2,(1分)∵m﹣2≠0,∴m≠2,∴m=﹣4,(2分)把m=﹣4代入原方程得另一个根为0.5.(4分)22.(4分)已知a、b、c是△ABC的三边,且方程b(x2﹣1)﹣2ax+c(x2+1)=0有两个相等的实数根,试判断△ABC的形状.【解答】解:原方程化为:(b+c)x2﹣2ax﹣b+c=0,∵方程b(x2﹣1)﹣2ax+c(x2+1)=0有两个相等的实数根,∴△=(﹣2a)2﹣4(b+c)•(﹣b+c)=4a2﹣4c2+4b2=0∴a2+b2=c2,即为直角三角形.23.(6分)如图,图中小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形顶点上.(1)画出位似中心点O;(2)△ABC与△A′B′C′的位似比为1:2;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似为1:2.【解答】解:(1)如图:(2)△ABC与△A′B′C′的位似比为AO:A′O=6:12=1:2.故答案为1:2.(3)如图:24.(6分)如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.【解答】解:(1)△ABE与△ADF相似.理由如下:∵四边形ABCD为矩形,DF⊥AE,∴∠ABE=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA.(2)∵△ABE∽△ADF∴=,∵在Rt△ABE中,AB=6,BE=8,∴AE=10∴DF===7.2.答:DF的长为7.2.25.(5分)某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.【解答】解:设该产品的质量档次为x[10+2(x﹣1)][76﹣4(x﹣1)]=1080整理得:x2﹣16x+55=0解得:x1=5,x2=11∵x≤10,∴x=5答:第5档次.26.(5分)我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.【解答】解:原式=3(y﹣1)2+8,∵(y﹣1)2≥0,∴3(y﹣1)2+8≥8,∴有最小值,最小值为8.27.(6分)如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG•FE.【解答】证明:∵BE∥AC,∴∠1=∠E.(2分)∵∠1=∠2,∴∠2=∠E.(4分)又∵∠BFG=∠EFB,∴△BFG∽△EFB.(5分)∴,∴BF2=FG•EF.(6分)∵BE∥AC,BE=AD,∴ABED为平行四边形,FD=FB.∴FD2=FG•FE.(10分)28.(8分)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.【解答】(1)证明:由∠APC为△ABP的外角得∠APC=∠B+∠BAP;∵∠B=∠APE∴∠EPC=∠BAP∵∠B=∠C∴△ABP∽△PCE;(2)解:过A作AF⊥BC于F;∵等腰梯形ABCD中,AD=3cm,BC=7cm,∴BF=,∵Rt△ABF中,∠B=60°,BF=2;∴AB=4cm;(3)解:存在这样的点P.理由是:∵解之得EC=cm.设BP=x,则PC=7﹣x由△ABP∽△PCE可得=,∵AB=4,PC=7﹣x,∴=解之得x1=1,x2=6,经检验都符合题意,即BP=1cm或BP=6cm.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
新人教版九年级(上)期中模拟数学试卷及答案一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,不是中心对称图形的是()A.B.C.D.2.(3分)若y=(m﹣2)x+3x﹣2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定3.(3分)方程x2﹣2x﹣4=0和方程x2﹣4x+2=0中所有的实数根之和是()A.2B.4C.6D.84.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.(3分)如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于()A.130°B.140°C.145°D.150°6.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a (x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.8.(3分)已知A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m 的图象上,则y1,y2,y3的大小关系为.9.(3分)将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB =度.10.(3分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为.11.(3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.12.(3分)如图,点O是等边△ABC内一点,∠AOB=110°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为度时,△AOD是等腰三角形?三、(本大题共5小题,每小题12分,共30分)13.(12分)用适当的方法解下列方程:(1)(x﹣3)2=2x﹣6;(2)2x2+5x﹣3=014.(8分)随着港珠澳大桥的顺利开通,预计大陆赴港澳旅游的人数将会从2018年的100万人增至2020年的144万人,求2018年至2020年这两年的赴港旅游人数的年平均增长率.15.(10分)如图,有一座抛物线型拱桥,桥下面水位AB宽20米时,此时水面距桥面4米,当水面宽度为10米时就达到警戒线CD,若洪水到来时水位以每小时0.2米的速度上升,问从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O的)16.(6分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,请仅用无刻度的直尺,分别按下列要求画图.(1)如图(1),在抛物线y=ax2+bx+c找一点D,使点D与点C关于抛物线对称轴对称.(2)如图(2),点D为抛物线上的另一点,且CD∥AB,请画出抛物线的对称轴.17.(13分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.四.(本大题共3小题,每小题10分,共24分)18.(10分)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.19.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?20.(10分)如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.五.(本大题共2小题,每小题9分,共18分)21.(9分)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值;(3)若方程ax2+bx+c=0(a≠0)是倍根方程,且不同的两点M(k+1,5),N(3﹣k,5)都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0(a≠0)的根.22.(9分)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.六、(本大题共12分)23.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2018-2019学年江西省赣州市南康区五校九年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.故选:D.2.【解答】解:由题意,得m2﹣2=2,且m﹣2≠0,解得m=﹣2,故选:A.3.【解答】解:∵方程x2﹣2x﹣4=0的根的判别式△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程x2﹣2x﹣4=0有两个不相等的实数根,两根之和为2;∵方程x2﹣4x+2=0的根的判别式△=(﹣4)2﹣4×1×2=8>0,∴方程x2﹣4x+2=0有两个不相等的实数根,两根之和为4.∵2+4=6,∴两方程所有的实数根之和是6.故选:C.4.【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.5.【解答】解:设点E是优弧AB上的一点,连接EA,EB∵∠AOB=80°∴∠E=∠AOB=40°∴∠ACB=180°﹣∠E=140°.故选:B.6.【解答】解:由对称轴为直线x=2,得到﹣=2,即b=﹣4a,∴4a+b=0,故(1)正确;当x=﹣2时,y=4a﹣2b+c<0,即4a+c<2b,故(2)错误;当x=﹣1时,y=a﹣b+c=0,∴b=a+c,∴﹣4a=a+c,∴c=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下∴a<0,∴﹣10a>0,∴5a+3c>0;故(3)正确;∵方程ax2+bx+c(a≠0)=0的两根为x1=﹣1,x2=5,∴方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6,故(4)正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:20188.【解答】解:∵二次函数y=(x+1)2+m,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小,函数有最小值,顶点坐标为(﹣1,m),∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m的图象上,﹣1﹣(﹣2)=1,﹣1﹣(﹣1)=0,1﹣(﹣1)=2,∴y2<y1<y3,故答案为:y2<y1<y3.9.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.10.【解答】解:设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°﹣30°=56°,∴∠ACB=新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2 2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3 3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =.三、(本大题共2小题,每小题8分,满分16分)15.已知,求的值.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.六、(本题满分12分)21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题满分12分)22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.八、(本题满分14分)23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选:C.2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3【分析】按照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移3个单位,得y=2(x+3)2;故所得抛物线的解析式为y=2(x+3)2.故选:A.3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.5【分析】根据比例线段计算即可.【解答】解:因为a=5cm,b=10mm,所以的值=,故选:D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【分析】根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解:y=﹣中k=﹣2<0,根据反比例函数的性质,图象位于第二、四象限.故选:D.5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣2【分析】根据二次函数的图象性质即可判断.【解答】解:由二次函数y=x2﹣2x﹣1=(x﹣1)2﹣2可知a=﹣2<0,∴二次函数开口向下,顶点为(1,﹣2),对称轴为:直线x=1,当x=1时,函数y的最小值是﹣2,当x>1时,y随x的增大而增大,故选:D.7.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=【分析】根据相似三角形的判定和性质,以及平行线分线段成比例定理即可得到结论.【解答】解:∵PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC,PF∥CD,∴四边形AEPF是平行四边形,∴PF=AE,∵=,∴;故B正确;同理,故C错误;故选:C.8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.【分析】首先根据反比例函数所在象限确定k的符号,再根据k的符号确定抛物线的开口方向和对称轴,即可选出答案.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,与所示图象不符,故本选项错误;B、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,﹣k<0,与y轴交于负半轴,与所示图象相符,故本选项正确;C、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时函数y=x2+kx﹣k的对称轴为y=﹣>0,对称轴在y轴的右侧,与所示图象不符,故本选项错误;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时,﹣k>0,函数y=x2+kx﹣k的与y轴交于正半轴,与所示图象不符,故本选项错误;故选:B.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,∴AC⊥EF,AO=CO,在矩形ABCD,∠D=90°,∴△ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC,∴,∴,∴EO=,∴EF=2×=.故选:B.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y=4﹣=﹣x+,(x>5),故选项D正确,故选:D.二.填空题(共4小题)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:∠AED=∠B(答案不唯一),使△ABC∽△AED.【分析】根据∠AED=∠B和∠A=∠A可以求证△AED∽△ABC,故添加条件∠AED=∠B 即可以求证△AED∽△ABC.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,故添加条件∠AED=∠B即可以使得△AED∽△ABC,故答案为:∠AED=∠B(答案不唯一).12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为 4 .【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x ﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是(2,).【分析】根据题意可以求得点A的坐标,从而可以求得点F的坐标,本题得以解决.【解答】解:设点P的坐标为(a,),∵a=,得a=1或a=﹣1(舍去),∴点P的坐标为(1,1),∵点E是AP的中点,四边形ADFE是矩形,∴AE=DF,AE=,∴DF=,当y=时,,得x=2,∴点F的坐标为(2,).14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE =1或.【分析】分两种情况,根据相似三角形的判定和性质以及翻折的性质解答即可.【解答】解:①如图1所示,∠GA'C=90°,∵四边形ABCD是矩形,∴∠BAE=∠D=90°,CD=AB=3,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△DAC,∴=,即=,解得:x=1;②如图2所示,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∴=,设AE=EA'=EG=x,∴=,解得:x=,或x=3(舍去),∴AE=;综上所述,x=1或;故答案为:1或.三.解答题(共2小题)15.已知,求的值.【分析】设=k,得到a=3k.b=4k,c=6k,代入即可得到结论.【解答】解:设=k,则a=3k.b=4k,c=6k,∴==.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.【分析】(1)根据配方法的要求把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标;(2)当a>0时,抛物线开口向上,根据二次函数的性质求解即可.【解答】解:(1)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标(﹣1,﹣4);(2)∵函数图象开口向上,其对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小.四.解答题(共7小题)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.【分析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.【解答】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.【分析】依据格点△ABC的三边长分别为,2、,将该三角形的各边扩大一定倍数,即可画出与△ABC相似但不全等的格点三角形,进而得出与△ABC相似的格点三角形的最大面积.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.519.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【分析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2﹣4ac决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=﹣=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52﹣4(6+k)=0,然后解关于k的方程即可.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=﹣=,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.【分析】(1)证明△ACB∽△ADC,根据相似三角形的性质证明结论;(2)证明△ACB∽△CDB,得到BC2=BD•AB,与(1)中两式相加,得到答案.【解答】证明(1)∵∠A=∠A,∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴=,∴AC2=AD•AB;(2)∵∠B=∠B,∠ACB=∠ADC=90°,∴△ACB∽△CDB,∴=,∴BC2=BD•AB,∴AC2+BC2=AD•AB+BD•AB=AB×(AD+BD)=AB2.21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x (吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是y=(x﹣2)2+3 ;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.【分析】(1)根据“反簇二次函数”定义写出所求即可;(2)把A坐标代入y1,求出m的值,进而表示出y1+y2,根据y1+y2与y1互为“反簇二次函数”,求出a,b,c的值,确定出y2,写出满足题意的范围即可.【解答】解:(1)y=(x﹣2)2+3;故答案为:y=(x﹣2)2+3;(2)∵y1的图象经过点A(1,1),∴2﹣2m+m+2=2,解得:m=2,∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,∵y1+y2与y1为“反簇二次函数”,∴y1+y2=﹣2(x﹣1)2+1=﹣2x2+4x﹣1,∴,解得:,∴函数y2的表达式为:y2=﹣4x2+8x﹣4,当0≤x≤3时,y2的最小值为﹣16.23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【分析】方法一:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.方法二:(1)略.(2)求出点M,N的参数坐标,并得到MN的长度表达式,从而求出MN的最大值.(3)因为BM与NC相互垂直平分,所以四边形BCMN为菱形,因为MN∥BC,所以只需MN =BC可得出四边形BCMN为平行四边形,再利用NC⊥BM进行求解.【解答】方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=04.下列方程中以1,﹣2为根的一元二次方程是()A.(x+1)(x﹣2)=0 B.(x﹣1)(x+2)=1C.(x+2)2=1 D.5.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A.y=3(x﹣2)2+1 B.y=3(x+2)2﹣1C.y=3(x﹣2)2﹣1 D.y=3(x+2)2+16.函数y=﹣x2﹣4x+3图象顶点坐标是()A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( ) A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( ) A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( ) A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A .B .C .D .11.不论x 为何值,函数y =ax 2+bx +c (a ≠0)的值恒大于0的条件是( ) A .a >0,△>0B .a >0,△<0C .a <0,△<0D .a <0,△>012.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x +1)=1035 B .x (x ﹣1)=1035×2 C .x (x ﹣1)=1035D .2x (x +1)=1035二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 . 14.方程x 2﹣3x +1=0的解是 .15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .16.抛物线y =﹣x 2+15有最 点,其坐标是 .17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 . 18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 三.解答题(本大题共8个小题,) 19.(6分)解方程x 2﹣4x +1=0 x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式. 21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2. (1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值. 22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标; (2)求抛物线与坐标轴的交点坐标; (3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)。
AC B D九年级第一学期期中数学试卷一、仔细填一填 (本题共10题, 每空2分,共20分) 1.当x 时,2-x 有意义。
2.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=6cm .则线段d=___________cm .3.若x ∶y =1∶2,则y x yx +-=_____________.4.请你写一个能先提公因式、再运用公式来分解因式来解的方程,并写出方程的解 .5.设x 1,x 2是方程x(x-1)+3(x-1)=0的两根,则2212x x += 。
6.等腰梯形的周长是36cm ,腰长是7cm ,则它的中位线长为________cm .7.如图,在ABC △中,90ACB ∠=,AB =则CD 为 _____.8.在平面直角坐标系中,将线段AB 平移到A ′B ′,若点A 、B 、 A ′的坐标(-2,0)、(0,3)、(2,1),则点B ′的坐标是 。
9.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两 次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______. 10. 已知,如图所示,在△ABC 中,P 为AB 上一点,在下列四个条件中:①B ACP ∠=∠;②ACB APC ∠=∠;③AP AC =2·AB ;④AB ·AP CP =·CB 。
其中,能满足△ABC 和△ACP 相似的条件是 。
(填序号) 二.精心选一选(本题共8题,每题3分,共24分) 11.下列方程中一定是一元二次方程的是( )A .ax 2-bx =0B .2x 2+2x-2=0C .(x -2)(3x +1)=0D .3x 2-2x =3(x +1)(x -2) 12. 下列运算正确的是( )。
A. 232a a a =+ B. 94)9()4(-⨯-=-⨯-C.()63293a a = D. =13. 如果2是一元二次方程x 2=x+c 的一个根,那么常数c 是( )。
四川省简阳市简城城南九义校2015—2016学年秋九年级期中检测英语试卷一、听力测试(20分)听下面5段对话,从题中所给的3个选项中选出与其意思相符的图片。
(}1. What does the man think tastes best?()2. Where was the car made?()3. What will Miss Jones make?()4. What is the woman choosing?()5. Where does the conversation take placemost probabiy?听下面5段对话或独白,从题中所给的3个选项中选出最佳选项。
()6.Where is the table?A. I n the dining room.B. I n the living room. C .In the bedroom. ()7.Whet does the woman think ofthe process of making the table?A. BoringB. Hard. C .In teresti ng()8.What is the table made of ?A .Wood B. Bamboo C. Steel听下面一段对话,回答第9-11小题。
()9.When was Dani els holiday?A. I n MarchB. I n AprilC. I n May .()10.How did Dan iel go to Weifa ng?A. By trainB. By busC. By ship()11.What was the winner ' s kite made of ?A. Pap erB. SilkC. Plastic听下面一段对话,回答第12-14小题。
()12.When did woma n buy the han dbag?A. Last yearB. Last monthC. Last week()13.What is NOT true about the han dbag?A. It is expe nsiveB. It is a famous brandC. It was made in Chi na()14.Where is the material of the han dbag produced?A. In chi naB. In ItalyC. In France听下面一段对话,回答第15-17小题。
2016-2017学年四川省资阳市简阳市城南九义校七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.把一个正方体展开,不可能得到的是()A.B.C.D.2.如图,是由几个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.3.下列各式中,计算结果为正的是()A.(﹣7)+4 B.2.7+(﹣3.5)C.﹣4+9 D.0+(﹣2)4.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形5.下列说法中,不正确的是()A.没有最小的有理数B.互为相反数的两个数到原点的距离相等C.零没有相反数D.最大的负整数是﹣16.一个数x的相反数的绝对值为3,则这个数是()A.3 B.﹣3 C.|﹣x| D.±37.下列立体图形中,有五个面的是()A.四棱锥B.五棱锥C.四棱柱D.五棱柱8.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长()A.一样长B.小明的长 C.小芳的长 D.不能确定9.将一个正方体截去一个角,则其面数()A.增加 B.不变C.减少 D.上述三种情况均有可能10.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题(每小题3分,共18分)11.长方体有个面,条棱,个顶点,条侧棱.12.已知|x﹣1|+|y+2|=0,则x﹣y=.13.若|x|=3,则x= ;若|x|=3,且x<0,则x= ;若|x|=3,且x>0,则x= .14.数轴上与﹣1的距离等于4个单位长度的点所表示的数为.15.如果收入2万元记作+2万元,那么﹣1万元表示.16.能展开成如图所示的几何体可能是.三、解答题(共72分)17.计算(1)36﹣76+(﹣23)﹣(﹣10)(2)﹣6﹣9(3)(﹣1)﹣(+6)﹣2.25+(4)11+(﹣35)﹣(﹣41)+(﹣16)(5)(﹣3)﹣(﹣2)﹣(﹣1)﹣(+1.75)(6)(﹣4)﹣(﹣5)+(﹣4)﹣(+3).18.如图是一个正方体盒子的展开图,要把﹣8、10、﹣12、8、﹣10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0.19.所有的正数组成正数集合,所有的负数组成负数集合,所有的正数组成正数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:﹣2.5,3.14,﹣2,+72,﹣0.6,0.618,0,﹣0.101正数集合:{ }负数集合:{ }分数集合:{ }非负数集合:{ }.20.计算.(1)已知|a|=3,|b|=2,且|a+b|=﹣(a+b),则a+b的值;(2)计算2﹣4+6﹣8+10﹣12+…﹣2016+2018﹣2020.21.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.22.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,1.并用“<”将它们连接起来.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?24.观察下列数,探索其中的规律:=1﹣, =﹣, =﹣, =﹣…(1)填空:第8,9,10个分别是,,;(2)第2016个数是;(3)第n个算式为:= .(4)计算+++…+.2016-2017学年四川省资阳市简阳市城南九义校七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.把一个正方体展开,不可能得到的是()A.B.C.D.【考点】几何体的展开图.【分析】根据平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解:A、C、D、都是正方体的展开图,故选项错误;B、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选:B.2.如图,是由几个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看易得第一行有3个正方形,第二行最左边有一个正方形.故选:D.3.下列各式中,计算结果为正的是()A.(﹣7)+4 B.2.7+(﹣3.5)C.﹣4+9 D.0+(﹣2)【考点】有理数的加法.【分析】根据有理数的加法法则①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.进行计算即可.【解答】解:A、(﹣7)+4=﹣3,故此选项错误;B、2.7+(﹣3.5)=﹣(3.5﹣2.7)=﹣0.8,故此选项错误;C、﹣4+9=5,故此选项正确;D、0+9﹣2)=﹣2,故此选项错误;故选:C.4.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形【考点】截一个几何体.【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.5.下列说法中,不正确的是()A.没有最小的有理数B.互为相反数的两个数到原点的距离相等C.零没有相反数D.最大的负整数是﹣1【考点】有理数;相反数.【分析】根据相反数的定义,可判断B、C,根据有理数的分类,可判断A、D.【解答】解:A、没有最小的有理数,故A正确;B、互为相反数的两个数到原点的距离相等,故B正确;C、0的相反数是0,故C错误;D、最大的负整数是﹣1,故D正确;故选:C.6.一个数x的相反数的绝对值为3,则这个数是()A.3 B.﹣3 C.|﹣x| D.±3【考点】绝对值;相反数.【分析】依据绝对值、相反数的定义求解即可.【解答】解:由题意得:|﹣x|=3,即|x|=3,则x=±3.故选:D.7.下列立体图形中,有五个面的是()A.四棱锥B.五棱锥C.四棱柱D.五棱柱【考点】认识立体图形.【分析】要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.【解答】解:四棱锥有一个底面,四个侧面组成,共5个面.故选A.8.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长()A.一样长B.小明的长 C.小芳的长 D.不能确定【考点】生活中的平移现象.【分析】首先根据已知图形中两个图形中共同含有的边,再判断形状不同的边的长度即可.【解答】解:两个图形右侧边与左侧相等,上侧与下侧相等,即两个图形都可以利用平移的方法变为长为8cm,宽为5cm的矩形,所以两个图形的周长都为(8+5)×2=26(cm),所以他们用的材料一样长.故选:A.9.将一个正方体截去一个角,则其面数()A.增加 B.不变C.减少 D.上述三种情况均有可能【考点】截一个几何体.【分析】截去正方体一角变成一个多面体,有三种情况,变成的多面体都是多了一个面.【解答】解:如图所示:将一个正方体截去一个角,则其面数增加一个.故选A.10.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数【考点】有理数.【分析】根据正数、负数以及分数的定义即可解答.【解答】解:A、没有最小的整数,故错误;B、1是最小的正整数,正确;C、0是最小的自然数,正确;D、自然数是0和正整数的统称,则正确.故选A.二、填空题(每小题3分,共18分)11.长方体有 6 个面,12 条棱,8 个顶点, 4 条侧棱.【考点】认识立体图形.【分析】直接根据正方体的结构特征进行填空即可.【解答】解:长方体有6个面,12条棱,8个顶点,4条侧棱,故答案为6,12,8,4.12.已知|x﹣1|+|y+2|=0,则x﹣y= 3 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1=0,y+2=0,解得x=1,y=﹣2,x﹣y=1﹣(﹣2)=1+2=3.故答案为:3.13.若|x|=3,则x= ±3 ;若|x|=3,且x<0,则x= ﹣3 ;若|x|=3,且x>0,则x= 3 .【考点】绝对值.【分析】原式利用绝对值的代数意义判断即可.【解答】解:若|x|=3,则x=±3;若|x|=3,且x<0,则x=﹣3;若|x|=3,且x>0,则x=3,故答案为:±3;﹣3;3.14.数轴上与﹣1的距离等于4个单位长度的点所表示的数为﹣5或3 .【考点】数轴.【分析】由于所求点在﹣1的哪侧不能确定,所以应分在﹣1的左侧和在﹣1的右侧两种情况讨论.【解答】解:当所求点在﹣1的左侧时,则距离4个单位长度的点表示的数是﹣1﹣4=﹣5;当所求点在﹣1的右侧时,则距离4个单位长度的点表示的数是﹣1+4=3.故答案为:﹣5或3.15.如果收入2万元记作+2万元,那么﹣1万元表示支出1万元.【考点】正数和负数.【分析】收入与支出是两个相反意义的量,根据正数与负数的意义得到收入2万元记作+2万元,﹣1万元表示支出1万元.【解答】解:∵收入2万元记作+2万元,∴﹣1万元表示支出1万元.故答案为支出1万元.16.能展开成如图所示的几何体可能是三棱柱.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及三棱柱的表面展开图的特点解题.【解答】解:观察图形可得,这是个上底面、下底面为三角形,侧面有三个长方形的三棱柱的展开图.故答案为:三棱柱.三、解答题(共72分)17.计算(1)36﹣76+(﹣23)﹣(﹣10)(2)﹣6﹣9(3)(﹣1)﹣(+6)﹣2.25+(4)11+(﹣35)﹣(﹣41)+(﹣16)(5)(﹣3)﹣(﹣2)﹣(﹣1)﹣(+1.75)(6)(﹣4)﹣(﹣5)+(﹣4)﹣(+3).【考点】有理数的加减混合运算. 【分析】(1)把减法变成加法,再根据有理数的加法法则进行计算即可; (2)根据有理数的减法法则进行计算即可;(3)把减法变成加法,再根据有理数的加法法则进行计算即可; (4)把减法变成加法,再根据有理数的加法法则进行计算即可; (5)把减法变成加法,再根据有理数的加法法则进行计算即可; (6)把减法变成加法,再根据有理数的加法法则进行计算即可. 【解答】解:(1)原式=36﹣76﹣23+10 =﹣53;(2)原式=﹣(6+9)=﹣15;(3)原式=﹣1﹣6﹣2+3 =﹣4﹣3 =﹣7;(4)原式=11﹣35+41﹣16 =52﹣51 =1;(5)原式=﹣3+2+1﹣1 =﹣2+1 =﹣1;(6)原式=﹣4+5﹣4﹣3=﹣8+1=﹣6.18.如图是一个正方体盒子的展开图,要把﹣8、10、﹣12、8、﹣10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0.【考点】专题:正方体相对两个面上的文字.【分析】先根据正方体及其表面展开图的特点,找到相对的面,再相加得0的两个数填入即可.【解答】解:﹣8和8,﹣12和12,﹣10和10互为相反数,所作图形如下:.19.所有的正数组成正数集合,所有的负数组成负数集合,所有的正数组成正数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:﹣2.5,3.14,﹣2,+72,﹣0.6,0.618,0,﹣0.101正数集合:{ 3.14,+72,0.618 }负数集合:{ ﹣2.5,﹣2,﹣0.6,﹣0.101 }分数集合:{ ﹣2.5,3.14,﹣0.6,0.618,﹣0.101 }非负数集合:{ 3.14,+72,0.618,0 }.【考点】有理数.【分析】根据有理数的分类,即可解答.【解答】解:正数集合:{3.14,+72,0.618}负数集合:{﹣2.5,﹣2,﹣0.6,﹣0.101}分数集合:{﹣2.5,3.14,﹣0.6,0.618,﹣0.101}非负数集合:{3.14,+72,0.618,0}.故答案为:3.14,+72,0.618;﹣2.5,﹣2,﹣0.6,﹣0.101;﹣2.5,3.14,﹣0.6,0.618,﹣0.101;3.14,+72,0.618,0.20.计算.(1)已知|a|=3,|b|=2,且|a+b|=﹣(a+b),则a+b的值;(2)计算2﹣4+6﹣8+10﹣12+…﹣2016+2018﹣2020.【考点】有理数的加减混合运算;绝对值.【分析】(1)根据绝对值的性质求出a、b的值,再根据负数的绝对值等于它的相反数确定出a、b,然后相加即可;(2)原式两个一组结合后,相加即可得到结果.【解答】解:(1)∵|a|=3,|b|=2,∴a=±3,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴a=﹣3,b=±2,a+b=﹣3﹣2=﹣5,或a+b=﹣3+2=﹣1.(2)2﹣4+6﹣8+10﹣12+…+2018﹣2020=(2﹣4)+(6﹣8)+(10﹣12)+…+=﹣2﹣2﹣2+…﹣2=﹣2×=﹣2×505=﹣1010.21.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【考点】作图-三视图.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:22.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,1.并用“<”将它们连接起来.【考点】有理数大小比较;数轴.【分析】根据数轴上右边的数大于左边的数,即可解答.【解答】解:如图,﹣2.5<﹣2<0<<<+5.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【考点】点、线、面、体.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3).24.观察下列数,探索其中的规律:=1﹣, =﹣, =﹣, =﹣…(1)填空:第8,9,10个分别是=﹣,=﹣,=﹣;(2)第2016个数是;(3)第n个算式为:= ﹣.(4)计算+++…+.【考点】规律型:数字的变化类.【分析】解:(1)(2)(3)由=1﹣, =﹣, =﹣, =﹣…下列各式可知:相邻的两个正整数的积的倒数,等于较小的这个数的倒数与较大的这个数的倒数的差,即: =﹣.由此规律可解决问题(1)(2)(3)(4)利用以上规律进行简便运算.【解答】解:(1)的答案为: =﹣, =﹣, =﹣;(2)的答案为:;(3)的答案为: =﹣;(4)+++…+═1﹣+﹣+﹣+﹣+…+﹣=1﹣=。
2015-2016学年四川省资阳市简阳市城南九义校八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题3分,共30分).1.(3分)下列说法,正确的是()A.3的平方根是 B.7的算术平方根是C.﹣15的平方根是D.2的算术平方根是2.(3分)在下列实数中,无理数的个数为()﹣0.101001,,,,,,,0,.A.1个 B.2个 C.3个 D.4个3.(3分)小马在下面的计算中只做对了一道题,做对的题目是()A.(a﹣b)2=a2﹣b2 B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)2=﹣a2﹣14.(3分)若a2+ma+9是一个完全平方式,那么()A.m=6 B.m=﹣6 C.m=±6 D.m=±35.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.76.(3分)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=97.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM ≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN8.(3分)下列命题是假命题的有()①若a2=b2,则a=b;②一个角的余角大于这个角;③若a,b是有理数,则|a+b|=|a|+|b|;④如果∠A=∠B,那∠A与∠B是对顶角.A.1个 B.2个 C.3个 D.4个9.(3分)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半10.(3分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则这个数是()A.3 B.5 C.﹣5 D.25二、填空题(每小题3分,共18分)11.(3分)计算:(x﹣4)(x+4)=.12.(3分)因式分解:x3﹣6x2+9x=.13.(3分)计算:(x﹣4)2=.14.(3分)已知m+n=8,mn=15,则m2﹣mn+n2的值是.15.(3分)如图,△ABC中,AB=AC,D为BC中点,∠BAD=30°,E为AC上一点,且AE=AD,则∠EDC的度数为.16.(3分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三、解答题(本大题2个小题,每小题16分,解答时每小题必须给出必要的演算过程或推理步骤.)17.(16分)计算:(1)(2x+y)2﹣(2x+3y)(2x﹣3y)(2)[5xy2(x2﹣3xy)+(3x2y2)3]÷(5xy)2(3)[(﹣2a2b3)2﹣(3ab2)3]÷(﹣a2b3)(4)×+×﹣.18.(8分)分解因式:(1)3a4bc﹣12a3b2c+12a2b3c;(2)16(a﹣b)2﹣9(a+b)219.(5分)化简,再先求值:(2a﹣b)2﹣(a+2b)(a﹣2b)+(a+3b)2,其中,b=﹣2.20.(5分)已知:x2+xy=12,xy+y2=15,求(x+y)2﹣(x+y)(x﹣y)的值.21.(6分)如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.22.(6分)已知a,b,c是△ABC的三条边长,当a2+c2+2b(b﹣a﹣c)=0时,试判断△ABC的形状.23.(8分)已知:如图,A、F、C、D四点在同一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.24.(8分)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).25.(10分)如图,△ABC中,AD平分∠BAC,若AC=AB+BD,求:∠B:∠C的值.2015-2016学年四川省资阳市简阳市城南九义校八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题3分,共30分).1.(3分)下列说法,正确的是()A.3的平方根是 B.7的算术平方根是C.﹣15的平方根是D.2的算术平方根是【解答】解:A、3的平方根是±,故本选项错误;B、7的算术平方根是,正确;C、﹣15没有平方根,故本选项错误;D、2的算术平方根是,故本选项错误.故选:B.2.(3分)在下列实数中,无理数的个数为()﹣0.101001,,,,,,,0,.A.1个 B.2个 C.3个 D.4个【解答】解:,,,是无理数,故选:D.3.(3分)小马在下面的计算中只做对了一道题,做对的题目是()A.(a﹣b)2=a2﹣b2 B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)2=﹣a2﹣1【解答】解:A、(a﹣b)2=a2﹣2ab+b2,错误;B、(﹣2a3)2=4a6,正确;C、原式不能合并,错误;D、﹣(a﹣1)2=﹣a2+2a﹣1,错误,故选:B.4.(3分)若a2+ma+9是一个完全平方式,那么()A.m=6 B.m=﹣6 C.m=±6 D.m=±3【解答】解:∵a2+ma+9=a2+ma+32,∴ma=±2×3a,解得m=±6.故选:C.5.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.7【解答】解:∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=84°∴∠P4P3P5=64°∴∠P3P5P4=64°∴∠P3P4P5=52°∴∠P5P4P6=80°∴∠P4P6P5=80°∴∠P4P5P6=20°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.(3分)已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9【解答】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.7.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM ≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;故选:D.8.(3分)下列命题是假命题的有()①若a2=b2,则a=b;②一个角的余角大于这个角;③若a,b是有理数,则|a+b|=|a|+|b|;④如果∠A=∠B,那∠A与∠B是对顶角.A.1个 B.2个 C.3个 D.4个【解答】解:若a2=b2,则a=b或a=﹣b,所以①为假命题;60°的余角小于60°,所以②为假命题;若a,b是有理数,当a、b同号时,|a+b|=|a|+|b|,所以③为假命题;如果∠A=∠B,那∠A与∠B不一定是对顶角,所以④为假命题.故选:D.9.(3分)等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半【解答】解:△ABC中,∵AB=AC,BD是高,∴∠ABC=∠C=在Rt△BDC中,∠CBD=90°﹣∠C=90°﹣=.故选A.10.(3分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则这个数是()A.3 B.5 C.﹣5 D.25【解答】解:∵一个正数的两个平方根分别是2m﹣1和4﹣3m,∴2m﹣1+4﹣3m=0,解得:m=3,2m﹣1=5,即这个数是25,故选:D.二、填空题(每小题3分,共18分)11.(3分)计算:(x﹣4)(x+4)=x2﹣16.【解答】解:(x﹣4)(x+4)=x2﹣16.故答案为:x2﹣16.12.(3分)因式分解:x3﹣6x2+9x=x(x﹣3)2.【解答】解:原式=x(x2﹣6x+9)=x(x﹣3)2,故答案为:x(x﹣3)213.(3分)计算:(x﹣4)2=x2﹣8x+16.【解答】解::(x﹣4)2=x2﹣8x+16.故答案为:x2﹣8x+16.14.(3分)已知m+n=8,mn=15,则m2﹣mn+n2的值是19.【解答】解:∵m+n=8,mn=15,∴m2﹣mn+n2=(m+n)2﹣3mn=82﹣3×15=19.故答案为:19.15.(3分)如图,△ABC中,AB=AC,D为BC中点,∠BAD=30°,E为AC上一点,且AE=AD,则∠EDC的度数为15°.【解答】解:∵在△ABC中,D为BC中点,AB=AC,∠BAD=30°,∴△ABC为等边三角形,AD为角平分线,AD⊥BC;又∵AD=AE,∠DAE=30°,∴∠ADE=75°又∵AD⊥BC,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.16.(3分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.三、解答题(本大题2个小题,每小题16分,解答时每小题必须给出必要的演算过程或推理步骤.)17.(16分)计算:(1)(2x+y)2﹣(2x+3y)(2x﹣3y)(2)[5xy2(x2﹣3xy)+(3x2y2)3]÷(5xy)2(3)[(﹣2a2b3)2﹣(3ab2)3]÷(﹣a2b3)(4)×+×﹣.【解答】解:(1)原式=4x2+4xy+y2﹣4x2+9y2=4xy+10y2;(2)原式=(5x3y2﹣15x2y3+27x6y6)÷(25x2y2)=x﹣y+x4y4;(3)原式=(4a4b6﹣27a3b6)÷(﹣a2b3)=﹣6a2b3+ab3;(4)原式=×2+×12﹣10=3+6﹣10=﹣1.18.(8分)分解因式:(1)3a4bc﹣12a3b2c+12a2b3c;(2)16(a﹣b)2﹣9(a+b)2【解答】解:(1)3a4bc﹣12a3b2c+12a2b3c,=3a2bc(a2﹣4ab+4b2),=3a2bc(a﹣2b)2;(2)16(a﹣b)2﹣9(a+b)2,=[4(a﹣b)+3(a+b)][4(a﹣b)﹣3(a+b)],=(7a﹣b)(a﹣7b).19.(5分)化简,再先求值:(2a﹣b)2﹣(a+2b)(a﹣2b)+(a+3b)2,其中,b=﹣2.【解答】解:原式=4a2﹣4ab+b2﹣a2+4b2+a2+6ab+9b2=4a2+2ab+14b2,当a=,b=﹣2时,原式=1﹣2+56=55.20.(5分)已知:x2+xy=12,xy+y2=15,求(x+y)2﹣(x+y)(x﹣y)的值.【解答】解:∵x2+xy=12,xy+y2=15,∴x2+xy+xy+y2=12+15,∴(x+y)2=27,x2+xy﹣(xy+y2)=12﹣15,∴(x+y)(x﹣y)=﹣3,∴原式=27﹣(﹣3)=30.21.(6分)如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.【解答】证明:∵,∴△ABC≌△BAD(AAS).∴AC=BD(全等三角形对应边相等).22.(6分)已知a,b,c是△ABC的三条边长,当a2+c2+2b(b﹣a﹣c)=0时,试判断△ABC的形状.【解答】解:∵a2+c2+2b(b﹣a﹣c)=0,∴a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c,∴△ABC为等边三角形.23.(8分)已知:如图,A、F、C、D四点在同一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.【解答】证明:(1)∵AF=CD,∴AF+FC=CD+FC即AC=DF.∵AB∥DE,∴∠A=∠D.∵AB=DE,∴在△ABC和△DEF中.∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF(已证),∴BC=EF,∠ACB=∠DFE.在△BCF和△EFC中,∴△BCF≌△EFC(SAS).∴∠CBF=∠FEC.24.(8分)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【解答】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).25.(10分)如图,△ABC中,AD平分∠BAC,若AC=AB+BD,求:∠B:∠C的值.【解答】解:(截长法)在AC上截取AE=AB连接DE∵AD平分∠BAC,∴∠1=∠2,在△ABD和△AED中,,∴△ABD≌△AED,∴BD=DE∠4=∠B,∵AC=AB+BD 且AE=AB,∴EC=BD,∴DE=EC , ∴∠3=∠C .∵∠4是△CDE 的外角, ∴∠4=∠3+∠C=2∠C , ∴∠B=2∠C ∴∠B :∠C=2:1.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
四川省资阳市简阳市城南九义校2015-2016学年八年级数学上学期第一次月考试题一.选择题(本题共10小题,每题3分,共30分)1.的算术平方根是()A.±9B.±3C.9 D.32.已知,那么a=()A.0 B.0或1 C.0或﹣1 D.0,﹣1或13.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C. D.(﹣2x)3=﹣6x34.计算:a2﹣(a+1)(a﹣1)的结果是()A.1 B.﹣1 C.2a2+1 D.2a2﹣15.下列各个数中,是无理数的是(),,π,﹣3.1416,,,0.030 030 003…,0.571,.A.0个B.1个C.2个D.3个6.计算()2011×1.52010×(﹣1)2012所得的结果是()A.﹣B.2 C.D.﹣27.如果有意义,则a的取值范围是()A.有理数B.整数 C.非负数D.任意实数8.若4a2+18ab+m是一个完全平方式,则m等于()A.9b2B.18b2C.81b2D. b29.a、b为实数,在数轴上的位置如图所示,则的值是()A.﹣b B.b C.b﹣2a D.2a﹣b10.下列说法中,正确的个数是()①实数包括有理数、无理数和零;②(a+3)2=a2+9;③幂的乘方,底数不变,指数相加;④平方根与立方根都等于它本身的数为0和1.A.0个B.3个C.2个D.1个二.填空题(本题共8小题,每题3分,共24分)11.64的平方根的立方根是.12.计算:(﹣x2)4= .13.若+(y﹣3)2=0,则x y﹣xy= .14.填上适当的代数式:x3•x4•=x8.15.计算:若33x+1•53x+1=152x+4,则x= .16.一个三角形的面积为4a3b4.底边的长为2ab2,则这个三角形的高为.17.若32x+1=1,则x= .18.若(x+a)(x+2)=x2﹣5x+b,则a= ,b= .三.解答题(本题共4小题,每题5分,共20分)19.计算:4xy2•(﹣x2yz3).20.计算:(2a﹣3b)(a+2b)﹣a(2a﹣b).21.x m•(x n)3÷(x m﹣1•2x n﹣1).22.(p﹣q)4÷(q﹣p)3•(p﹣q)2.四.解答题(本题共8小题,第23、24,25,26,27,28小题每题5分,第29,30小题8分,共46分)23.已知:8•2 2m﹣1•23m=217,求m的值.24.解方程:x(3x﹣4)+2x(x+7)=5x(x﹣7)+90.25.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.26.已知x、y满足,求的平方根.27.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.28.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.29.若x2﹣5x﹣1=0,求①x2+,②x4+.30.探究题阅读下面把无限循环小数划为分数的过程:设X==0.3333 ①则10x=3.3333②由②﹣①得:9x=3,即x=根据以上提供的方法把0.和1.化为分数.2015-2016学年四川省资阳市简阳市城南九义校八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(本题共10小题,每题3分,共30分)1.的算术平方根是()A.±9B.±3C.9 D.3【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵ =9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故选D.【点评】此题主要考查了算术平方根的定义,解题的关键是知道实际上这个题是求9的算术平方根是3.注意这里的双重概念.2.已知,那么a=()A.0 B.0或1 C.0或﹣1 D.0,﹣1或1【考点】算术平方根.【专题】计算题.【分析】由于已知,由此得到a的算术平方根就是自己本身,根据“0的平方根是0,0的算术平方根也是0,1的算术平方根也是1”即可求解.【解答】解:∵ =a,∴a=0或1.故选B.【点评】此题主要考查了平方根的定义,求a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根.我们把正的平方根叫a的算术平方根.3.下列计算正确的是()A.a2•a3=a6B.a2+a3=a5C. D.(﹣2x)3=﹣6x3【考点】同底数幂的乘法;立方根;合并同类项;幂的乘方与积的乘方.【专题】常规题型.【分析】根据同底数幂相乘,底数不变指数相加,立方根的定义,积的乘方,先把每一个因式分别乘方,再把所得的幂相乘对各选项分析判断后利用排除法.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、a2与a3是加不是乘,不能利用同底数幂相乘的法则计算,故本选项错误;C、﹣=﹣(﹣3)=3,故本选项正确;D、(﹣2x)3=﹣8x3,故本选项错误.故选C.【点评】本题综合考查了同底数幂的乘法的性质,立方根的定义,积的乘方的性质,是基础题,熟练掌握各运算性质是解题的关键.4.计算:a2﹣(a+1)(a﹣1)的结果是()A.1 B.﹣1 C.2a2+1 D.2a2﹣1【考点】平方差公式.【分析】先利用平方差公式计算,再根据整式的加减运算法则,计算后直接选取答案.【解答】解:a2﹣(a+1)(a﹣1),=a2﹣(a2﹣1),=a2﹣a2+1,=1.故选A.【点评】本题主要考查平方差公式的运用,熟练掌握公式结构特征是解题的关键.5.下列各个数中,是无理数的是(),,π,﹣3.1416,,,0.030 030 003…,0.571,.A.0个B.1个C.2个D.3个【考点】实数.【专题】存在型.【分析】先把化为3的形式,化为﹣1的形式,再根据无理数及有理数的定义进行解答即可.【解答】解:∵ =3, =﹣1,3,1均为有理数,∴这一组数中的无理数有:,π,0.030 030 003…共3个.故选D.【点评】本题考查的是实数及无理数的概念,解答此类问题是要注意π是无理数的知识,这是此题的易错点.6.计算()2011×1.52010×(﹣1)2012所得的结果是()A.﹣B.2 C.D.﹣2【考点】幂的乘方与积的乘方.【专题】计算题.【分析】先把前两个写成同指数的幂相乘的形式,再逆用积的乘方的性质进行计算即可.【解答】解:()2011×1.52010×(﹣1)2012=×()2010×1.52010×1=×(×1.5)2010×1=.故选C.【点评】本题考查了积的乘方的性质的逆用,转化为同指数的幂相乘是解题的关键.7.如果有意义,则a的取值范围是()A.有理数B.整数 C.非负数D.任意实数【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数解答即可.【解答】解:∵a2≥0,∴不论a为何值,有意义,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.8.若4a2+18ab+m是一个完全平方式,则m等于()A.9b2B.18b2C.81b2D. b2【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵4a2+18ab+m是一个完全平方式,∴m=b2,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.a、b为实数,在数轴上的位置如图所示,则的值是()A.﹣b B.b C.b﹣2a D.2a﹣b【考点】二次根式的性质与化简.【分析】首先根据数轴上a、b的位置,判断出a﹣b、a的符号,然后再进行化简.【解答】解:由图知:a<0<b;∴a﹣b<0,a<0;原式=﹣(a﹣b)﹣a=b﹣2a;故选C.【点评】此题考查了二次根式的化简以及绝对值的性质;二次根式规律总结:当a≥0时, =a;当a≤0时, =﹣a.10.下列说法中,正确的个数是()①实数包括有理数、无理数和零;②(a+3)2=a2+9;③幂的乘方,底数不变,指数相加;④平方根与立方根都等于它本身的数为0和1.A.0个B.3个C.2个D.1个【考点】实数;有理数的乘方.【分析】①实数包括有理数、无理数,0属于有理数,据此判断即可.②根据完全平方公式判断即可.③幂的乘方,底数不变,指数相乘,不是底数相加,据此判断即可.④平方根等于它本身的数有:0、1,立方根等于它本身的数有:0、1、﹣1,所以平方根、立方根都等于它本身的数为0和1,据此判断即可.【解答】解:∵实数包括有理数、无理数,0属于有理数,∴①不正确;∵(a+3)2=a2+6a+9,∴②不正确;∵幂的乘方,底数不变,指数相乘,∴③不正确;∵平方根等于它本身的数有:0、1,立方根等于它本身的数有:0、1、﹣1,∴平方根、立方根都等于它本身的数为0和1,∴④正确,∴正确结论有1个:④.故选:D.【点评】(1)此题主要考查了实数的分类,要熟练掌握,解答此题的关键是要明确:实数分为有理数、无理数或正实数、0、负实数.(2)此题还考查了有理数的乘方问题,要熟练掌握,解答此题的关键是要明确:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.(3)此题还考查了幂的乘方,要熟练掌握,解答此题的关键是要明确:(a m)n=a mn(m,n是正整数).二.填空题(本题共8小题,每题3分,共24分)11.64的平方根的立方根是±2.【考点】立方根;平方根.【分析】求出64的平方根,再求出8、﹣8的立方根,即可得出答案.【解答】解:∵64的平方根是±8,8的立方根是2,﹣8的立方根是﹣2,∴64的平方根的立方根是±2,【点评】本题考查了对平方根和立方根的应用,主要考查学生的计算能力.12.计算:(﹣x2)4= x8.【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得(﹣1)4•(x2)4,再根据幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:(﹣x2)4=(﹣1•x2)4=(﹣1)4•(x2)4=x8.故答案为:x8.【点评】此题主要考查了积的乘方、幂的乘方,关键是熟练掌握两种计算法则,正确判断结果符号.13.若+(y﹣3)2=0,则x y﹣xy= ﹣2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入数据进行计算即可求解.【解答】解:根据题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,∴x y﹣xy=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2.故答案为:﹣2.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.填上适当的代数式:x3•x4•x =x8.【考点】同底数幂的乘法.【专题】计算题.【分析】原式利用同底数幂的乘法法则计算即可得到结果.【解答】解:x3•x4•x=x8.故答案为:x.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.计算:若33x+1•53x+1=152x+4,则x= 3 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵33x+1•53x+1=(3×5)3x+1═153x+1=152x+4,∴3x+1=2x+4,∴x=3.故答案为:3.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.16.一个三角形的面积为4a3b4.底边的长为2ab2,则这个三角形的高为4a2b2.【考点】整式的除法.【分析】利用面积乘以2再除以底边长进行计算即可.【解答】解:4a3b4×2÷2ab2=8a3b4÷2ab2=4a2b2.【点评】此题主要考查了整式的除法,关键是掌握单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.17.若32x+1=1,则x= ﹣0.5 .【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)可得2x+1=0,再解方程即可.【解答】解:由题意得:2x+1=0,解得:x=﹣0.5,故答案为:﹣0.5.【点评】此题主要考查了零指数幂,关键是掌握计算公式.18.若(x+a)(x+2)=x2﹣5x+b,则a= ﹣7 ,b= ﹣14 .【考点】多项式乘多项式.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a,b的值即可.【解答】解:∵(x+a)(x+2)=x2﹣5x+b,∴x2+2x+ax+2a=x2﹣5x+b,∴2+a=﹣5,解得:a=﹣7,2a=b,则b=﹣14.故答案为:﹣7,﹣14.【点评】本题主要考查了多项式相等条件:对应项的系数相同.解答此题的关键是熟知多项式的乘法法则,即识记公式:(x+a)(x+b)=x2+(a+b)x+ab.三.解答题(本题共4小题,每题5分,共20分)19.计算:4xy2•(﹣x2yz3).【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:4xy2•(﹣x2yz3)=﹣x3y3z3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.20.计算:(2a﹣3b)(a+2b)﹣a(2a﹣b).【考点】多项式乘多项式;单项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(2a﹣3b)(a+2b)﹣a(2a﹣b)=2a2+4ab﹣3ab﹣6b2﹣2a2+ab=﹣6b2+2ab.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.21.x m•(x n)3÷(x m﹣1•2x n﹣1).【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先根据幂的乘方计算(x n)3,然后再根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;单项式除以单项式:系数和同底数幂分别相除,对于只在被除式里含有的字母,则连同指数作为上的一个因式进行计算.【解答】解:原式=x m•x3n÷(2x m﹣1+n﹣1),=x m+3n÷2x m+n﹣2,=x2n+2.【点评】此题主要考查了同底数幂的乘法、除法、幂的乘方,以及单项式除以单项式,关键是掌握各计算法则和计算顺序.22.(p﹣q)4÷(q﹣p)3•(p﹣q)2.【考点】同底数幂的除法;同底数幂的乘法.【分析】先把底数都化为(p﹣q),然后根据同底数幂的除法法则求解.【解答】解:原式=(p﹣q)4÷[﹣(p﹣q)3]•(p﹣q)2=﹣(p﹣q)•(p﹣q)2=﹣(p﹣q)3.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的除法法则.四.解答题(本题共8小题,第23、24,25,26,27,28小题每题5分,第29,30小题8分,共46分)23.已知:8•2 2m﹣1•23m=217,求m的值.【考点】同底数幂的乘法.【分析】根据幂的乘方底数不变指数相乘,可得同底数幂的乘法,根据同底数幂的乘法底数不变指数相加,可得关于m的方程,根据解方程,可得答案.【解答】解:由幂的乘方,得23•22m﹣1•23m=217.由同底数幂的乘法,得23+2m﹣1+3m=217.即5m+2=17,解得m=3,m的值是3.【点评】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.24.解方程:x(3x﹣4)+2x(x+7)=5x(x﹣7)+90.【考点】单项式乘多项式;解一元一次方程.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,然后求解即可.【解答】解:x(3x﹣4)+2x(x+7)=5x(x﹣7)+90,3x2﹣4x+2x2+14x=5x2﹣35x+90,10x=﹣35x+90,45x=90,x=2.【点评】此题考查了单项式乘多项式,用到的知识点是解一元一次方程、单项式乘多项式的定义,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.25.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.【考点】同底数幂的乘法.【专题】计算题.【分析】首先合并同类项,根据同底数幂相乘,底数不变,指数相加的法则即可得出答案.【解答】解:(a m+1b n+2)(a2n﹣1b2n)=a m+1×a2n﹣1×b n+2×b2n=a m+1+2n﹣1×b n+2+2n=a m+2n b3n+2=a5b3.∴m+2n=5,3n+2=3,解得:n=,m=,m+n=.【点评】本题考查了同底数幂的乘法,难度不大,关键是掌握同底数幂相乘,底数不变,指数相加.26.已知x、y满足,求的平方根.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;平方根;解二元一次方程组.【专题】计算题.【分析】根据非负数的性质列出方程组,然后解方程组求出x、y的值,再代入代数式求值,然后根据平方根的定义求解即可.【解答】解:由可得,解得,∴2x﹣y=2×8﹣×5=12,∵(±2)2=12,∴的平方根是±2.故答案为:±2.注:因为还未学到二次根式的化简,结果为也为正确答案.【点评】本题主要考查了非负数的性质,解二元一次方程组,根据几个非负数的和等于0,则每一算式都等于0列出方程组是解题的关键.27.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【考点】单项式乘多项式.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.28.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.【考点】二次根式的性质与化简;三角形三边关系.【专题】计算题.【分析】根据两边之和大于第三边可将各二次根式求出,从而可得出化简后的答案.【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.【点评】本题考查二次根式的化简及三角形的三边关系,掌握三角形两边之和大于第三边是关键.29.若x2﹣5x﹣1=0,求①x2+,②x4+.【考点】完全平方公式.【分析】①根据题意得到x﹣=5,根据完全平方公式把原式化为(x﹣)2+2,代入计算即可;②把原式化为(x2+)2﹣2,代入计算得到答案.【解答】解:∵x2﹣5x﹣1=0,∴x﹣=5,①x2+=(x﹣)2+2=27;②x4+=(x2+)2﹣2=727.【点评】本题考查的是完全平方公式,掌握(a±b)2=a2±2ab+b2是解题的关键.30.探究题阅读下面把无限循环小数划为分数的过程:设X==0.3333 ①则10x=3.3333②由②﹣①得:9x=3,即x=根据以上提供的方法把0.和1.化为分数.【考点】一元一次方程的应用.【分析】(1)根据例题可设x=0.,则x=0.7777…①,再根据等式性质得:10x=7.777…②,然后利用②﹣①,再解方程即可.(2)设x=1.,则x=1.3333…①,根据等式性质得:10x=13.3333…②,再由②﹣①得方程,再解方程即可.【解答】解:(1)设0. =x,则x=0.7777…①,根据等式性质得:10x=7.777…②,由②﹣①得:10x﹣x=7.777…﹣0.777…,即:10x﹣x=7,可解得x=,即0. =;(2)设1. =x,则x=1.3333…①,根据等式性质得:10x=13.3333…②,由②﹣①得:10x﹣x=13.3333…﹣1.3333…,即:10x﹣x=12,可解得x=,即1. =.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.。
2015-2016学年四川省资阳市简阳市城南九义校九年级(上)期中数学试卷一、选择题:(每小题3分,共30分.)1.(3分)函数的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.(3分)下列二次根式中,属于最简二次根式的是()A. B.C. D.3.(3分)已知实数x满足x2++x+=0,如果设x+=y,则原方程可变形为()A.y2+y﹣2=0 B.y2+y+2=0 C.y2+2y=0 D.y2+2y=04.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.5.(3分)若的值为0,则x的值是()A.2或﹣3 B.3或﹣2 C.2 D.﹣36.(3分)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立 D.不存在7.(3分)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1 B.﹣1 C.0 D.﹣28.(3分)将方程x2﹣6x=﹣7的左边配成完全平方式,应变形为()A.x2﹣6x+32=﹣7 B.x2﹣6x+32=2 C.x2﹣6x+9=13 D.x2﹣6x+6=﹣19.(3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=1510.(3分)矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在线段BC上,F 在线段BC上,且BF:FC=1:2,AF分别与DE,DB交于点M,N,则MN=()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若代数式有意义,则实数x的取值范围是.12.(3分)已知x、y为实数,且y=﹣+4,则x﹣y=.13.(3分)一元二次方程x2﹣17x﹣11=0与x2﹣4x+13=0的所有实数根的和等于.14.(3分)已知:且3a﹣2b+c=10,则2a+4b﹣3c=.15.(3分)在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离约为25厘米,则甲、乙两地的实际距离约为千米.16.(3分)在△ABC所在平面内,DE∥BC且分别交直线AB,AC于D,E,AD:AB=1:3,EC=12,则AE=.三、解答题(72分)17.(8分)解方程:①﹣=.②4x(x﹣1)=3(x﹣1)18.(5分)+﹣4+2(﹣1)0.19.(6分)先化简,再求值:()()﹣,其中x=3,y=4.20.(6分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,求k的值.21.(6分)已知a,b是方程x2﹣x﹣3=0的两个根,求代数式2a3+b2+3a2﹣11a ﹣b+5的值.22.(6分)设a,b,c是△ABC的三条边,且,判断△ABC为何种三角形,并说明理由.23.(7分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?24.(7分)设(a,b)是一次函数y=(k﹣2)x+m与反比例函数图象的交点,且a,b是关于x的一元二次方程kx2+2(k﹣3)x+(k﹣3)=0不相等的两个实数根,其中k为非负整数;m,n为常数,试求两个函数解析表达式.25.(7分)当a是什么整数时,ax2﹣8x+7=0与x2﹣4ax+4a2﹣4a﹣5=0的根都是整数?26.(7分)如图,AC∥BD,AD、BC相交于E,EF∥BD,求证:+=.27.(7分)如图,AD为△ABC的角平分线,BF⊥AD的延长线于点F,AM⊥AD 于A交BC的延长线于M,FC的延长线交AM于E.求证:AE=EM.2015-2016学年四川省资阳市简阳市城南九义校九年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分.)1.(3分)函数的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠2【解答】解:根据题意得:解得x≥﹣1且x≠2,故选:D.2.(3分)下列二次根式中,属于最简二次根式的是()A. B.C. D.【解答】解:A、=3,被开方数含能开得尽方的因数,不是最简二次根式;B、=,被开方数含分母,不是最简二次根式;C、=|a|,被开方数含能开得尽方的因数,不是最简二次根式;D、是最简二次根式.故选:D.3.(3分)已知实数x满足x2++x+=0,如果设x+=y,则原方程可变形为()A.y2+y﹣2=0 B.y2+y+2=0 C.y2+2y=0 D.y2+2y=0【解答】解:∵x2+=(x+)2﹣2,∴原方程可变形为y2﹣2+y=0,整理得:y2+y﹣2=0.故选:A.4.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.5.(3分)若的值为0,则x的值是()A.2或﹣3 B.3或﹣2 C.2 D.﹣3【解答】解:∵的值为0,∴x2+x﹣6=0且2x2﹣3x﹣2=0,解方程x2+x﹣6=0得x1=﹣3,x2=2,当x当x=﹣3时,2x2﹣3x﹣2≠0,当x=2时,2x2﹣3x﹣2=0,∴x=﹣3.故选:D.6.(3分)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立 D.不存在【解答】解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.7.(3分)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1 B.﹣1 C.0 D.﹣2【解答】解:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选:A.8.(3分)将方程x2﹣6x=﹣7的左边配成完全平方式,应变形为()A.x2﹣6x+32=﹣7 B.x2﹣6x+32=2 C.x2﹣6x+9=13 D.x2﹣6x+6=﹣1【解答】解:方程x2﹣6x=﹣7,配方得:x2﹣6x+32=2,即(x﹣3)2=2.故选:B.9.(3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15【解答】解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.10.(3分)矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在线段BC上,F 在线段BC上,且BF:FC=1:2,AF分别与DE,DB交于点M,N,则MN=()A.B.C.D.【解答】解:过F作FH⊥AD于H,交DE于O.∵BF:FC=1:2,BC=AD=3,∴BF=1,FC=2,∴AF===.∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=.∵AE∥FO,∴△AME∽FMO,∴===,∴AM=AF=;∵AD∥DF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=.故选:C.二、填空题(每小题3分,共18分)11.(3分)若代数式有意义,则实数x的取值范围是x≥﹣1,且x≠3.【解答】解:由题意得:x+1≥0,且x﹣3≠0,解得:x≥﹣1,且x≠3,故答案为:x≥﹣1,且x≠3.12.(3分)已知x、y为实数,且y=﹣+4,则x﹣y=﹣1或﹣7.【解答】解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.13.(3分)一元二次方程x2﹣17x﹣11=0与x2﹣4x+13=0的所有实数根的和等于17.【解答】解:∵x2﹣17x﹣11=0,a=1,b=﹣17,c=﹣11,∴b2﹣4ac=289+44>0,∴方程有两个不相等的实数根;设这两个实数根分别为x1与x2,则x1+x2=17;又∵x2﹣4x+13=0,a=1,b=﹣4,c=13,∴b2﹣4ac=16﹣52<0,∴此方程没有实数根.∴一元二次方程x2﹣17x﹣11=0与x2﹣4x+13=0的所有实数根的和等于17.故答案为:17.14.(3分)已知:且3a﹣2b+c=10,则2a+4b﹣3c=2.【解答】解:设===k(k≠0),则a=2k,b=3k,c=5k,∴3a﹣2b+c=3•2k﹣2•3k+5k=10,解得k=2,∴a=4,b=6,c=10,∴2a+4b﹣3c=2×4+4×6﹣3×10=8+24﹣30=2.故答案为:2.15.(3分)在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离约为25厘米,则甲、乙两地的实际距离约为1250千米.【解答】解:设甲、乙两地的实际距离是x厘米,则:1:5 000 000=25:x,∴x=125 000 000,∵125 000 000厘米=1250千米,∴两地的实际距离是1250千米.故答案为1250.16.(3分)在△ABC所在平面内,DE∥BC且分别交直线AB,AC于D,E,AD:AB=1:3,EC=12,则AE=3或6.【解答】解:设AE=x,分两种情况:①D、E分别在AB、AC边上,如图1;∵DE∥BC,∴==,即=,解得x=6;②D、E分别在AB、AC边的反向延长线上,如图2;∵DE∥BC,∴==,=,解得x=3.综上可知AE的长为3或6.故答案为3或6.三、解答题(72分)17.(8分)解方程:①﹣=.②4x(x﹣1)=3(x﹣1)【解答】解:①去分母得:x2+x﹣2x+2=4,即x2﹣x﹣2=0,分解因式得:(x﹣2)(x+1)=0,解得:x=2或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=2;②去括号得:4x2﹣4x=3x﹣3,即4x2﹣7x+3=0,分解因式得:(x﹣1)(4x﹣3)=0,解得:x1=1,x2=..18.(5分)+﹣4+2(﹣1)0.【解答】解:原式=5+2(﹣1)﹣2+2×1=5+2﹣2﹣2+2=5.19.(6分)先化简,再求值:()()﹣,其中x=3,y=4.【解答】解:原式=2x﹣y﹣(2x﹣2+y)=2x﹣y﹣2x+2﹣y=﹣2y当x=3,y=4时,原式==.20.(6分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,求k的值.【解答】解:∵方程x2+2kx+k2﹣2k+1=0的两个实数根,∴△=4k2﹣4(k2﹣2k+1)≥0,解得k≥.∵x12+x22=4,∴x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,又∵x1+x2=﹣2k,x1•x2=k2﹣2k+1,代入上式有4k2﹣2(k2﹣2k+1)=4,解得k=1或k=﹣3(不合题意,舍去).∴k=1.21.(6分)已知a,b是方程x2﹣x﹣3=0的两个根,求代数式2a3+b2+3a2﹣11a ﹣b+5的值.【解答】解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.22.(6分)设a,b,c是△ABC的三条边,且,判断△ABC为何种三角形,并说明理由.【解答】解:△ABC为等边三角形,理由如下:∵a,b,c是△ABC的三条边,∴a+b+c≠0,∵,∴==0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.23.(7分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?【解答】解:(1)设该市对市区绿化工程投入资金的年平均增长率为x,(1分)根据题意得,2000(1+x)2=2420,(3分)得x1=0.1=10%,x2=﹣2.1(舍去),(5分)答:该市对市区绿化工程投入资金的年平均增长率为10%.(6分)(2)2012年需投入资金:2420×(1+10%)2=2928.2(万元)(7分)答:2012年需投入资金2928.2万元.(8分)24.(7分)设(a,b)是一次函数y=(k﹣2)x+m与反比例函数图象的交点,且a,b是关于x的一元二次方程kx2+2(k﹣3)x+(k﹣3)=0不相等的两个实数根,其中k为非负整数;m,n为常数,试求两个函数解析表达式.【解答】解:根据题意得:k≠0,k﹣2≠0,k>0,即k≠0,k≠2,△=4(k﹣3)2﹣4k(k﹣3)>0,k<3,∵k为非负整数,∴k只能是1,即k=1,代入方程kx2+2(k﹣3)x+(k﹣3)=0得:方程为x2﹣4x﹣2=0,∵a,b是关于x的一元二次方程kx2+2(k﹣3)x+(k﹣3)=0的两个根,∴a+b=4,ab=﹣2,∵(a,b)是一次函数y=(k﹣2)x+m与反比例函数图象的交点,∴ab=n,b=﹣a+m,即a+b=m,∴n=﹣2,m=4,∴一次函数的解析表达式是y=﹣x+4,反比例函数的解析表达式是y=﹣.25.(7分)当a是什么整数时,ax2﹣8x+7=0与x2﹣4ax+4a2﹣4a﹣5=0的根都是整数?【解答】解:∵关于x的一元二次方程ax2﹣8x+7=0与x2﹣4ax+4a2﹣4a﹣5=0有解,则a≠0,∴△≥0ax2﹣8x+7=0,∴△=64﹣28a≥0,即a≤;x2﹣4ax+4a2﹣4a﹣5=0,△=16a2﹣16a2+16a+20≥0,∴4a+5≥0,a≥﹣;∴﹣≤a≤,而a是整数,∴a=﹣1,a=0(舍去),a=1,a=2,①当a=﹣1时,方程ax2﹣8x+7=0为x2﹣8x+7=0,方程的解是x1=7,x2=1;x2﹣4ax+4a2﹣4a﹣5=0即x2+4x+3=0,方程的解是x1=﹣3,x2=﹣1;②当a=1时,方程ax2﹣8x+7=0为x2﹣8x+7=0,方程的解是x1=7,x2=1;x2﹣4ax+4a2﹣4a﹣5=0即x2﹣4x﹣5=0,方程的解是x1=﹣1,x2=5;③当a=2时,方程ax2﹣8x+7=0为2x2﹣8x+7=0,此时方程的解不为整数,故a=2舍去;综合上述:当a是﹣1或1时,ax2﹣8x+7=0与x2﹣4ax+4a2﹣4a﹣5=0的根都是整数.26.(7分)如图,AC∥BD,AD、BC相交于E,EF∥BD,求证:+=.【解答】证明:∵AC∥BD,EF∥BD,∴,,∴==1,∴+=.27.(7分)如图,AD为△ABC的角平分线,BF⊥AD的延长线于点F,AM⊥AD 于A交BC的延长线于M,FC的延长线交AM于E.求证:AE=EM.【解答】解:如图,分别延长BF、AC交于点N;∵AD为△ABC的角平分线,∴∠BAF=∠NAF;在△ABF与△ANF中,,∴△ABF≌△ANF(ASA),∴BF=NF;∵BN⊥AF,AM⊥AF,∴BN∥AM,∴△BCF∽△MCE,①;同理可证:②,③,由①②③知:,而BF=NF,∴AE=EM.。