备战2019年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题
- 格式:doc
- 大小:748.54 KB
- 文档页数:10
专题75 不等式选讲【热点聚焦与扩展】不等式选讲是高考选考内容之一,在知识上往往与绝对值分段函数结合,考查数学式子变形能力、运算求解能力、数形结合思想、逻辑推理能力等. 将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.题目难度不大,但需要学生能够快速熟练的解决问题.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明. (一)不等式的形式与常见不等式: 1、不等式的基本性质: (1)a b b a >⇔<(2),a b b c a c >>⇒>(不等式的传递性)注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立 (3)a b a c b c >⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒< (5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>⇒>≥∈2、绝对值不等式:a b a b a b -≤+≤+ (1)a b a b +≤+等号成立条件当且仅当0ab ≥ (2)a b a b -≤+等号成立条件当且仅当0ab ≤(3)a b b c a c -+-≥-:此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当()()0a b b c --≥3、均值不等式(1)涉及的几个平均数: ① 调和平均数:12111n nnH a a a =+++②几何平均数:n G=③ 代数平均数:12nn a a a A n+++=④平方平均数:n Q=(2)均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===(3)三项均值不等式:①a b c ++≥2223a b c abc ++≥② 33a b c abc ++⎛⎫≤ ⎪⎝⎭③a b c ++≤4、柯西不等式:()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++等号成立条件当且仅当1212nna a ab b b ===或120n b b b ====(1)二元柯西不等式:()()()22222a bc d ac bd ++≥+,等号成立当且仅当ad bc =(2)柯西不等式的几个常用变形 ① 柯西不等式的三角公式:()()()222222121122n n n b b b a b a b a b ++++≥±+±++±②()222212121212n nn na a a a a ab b b b b b ++++++≥+++()()222212121212nn n n a a a b b b a a a b b b ⎛⎫⇔++++++≥+++ ⎪⎝⎭②式体现的是当各项22212,,,na a a 系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充.③ ()21212121122n n n n na a a a aab b b a b a b a b ++++++≥+++ 5、排序不等式:设1212,n n a a a b b b ≤≤≤≤≤≤为两组实数,12,,,n c c c 是12,,,n b b b 的任一排列,则有:121111221122n n n n n n n a b a b a b a c a c a c a b a b a b -+++≤+++≤+++即“反序和≤乱序和≤顺序和” (二)不等式选讲的考察内容:1、利用不等式的变形与常见不等式证明不等式成立2、利用常见不等式(均值不等式,柯西不等式)求表达式的最值,要注意求最值的思路与利用基本不等式求最值的思路相似,即“寻找合适的模型→将式子向定值放缩(消元)→验证等号成立条件”3、解不等式----含有绝对值不等式的解法:(1)定义法.利用绝对值不等式的几何意义求解,体现了数形结合的思想;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式,体现了分类讨论的思想; (3)平方法:通常适用于两端均为非负实数时(比如|f(x)|<|g(x)|);(4)图象法或数形结合法. 利用绝对值不等式的几何意义求解,体现了数形结合的思想;通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【经典例题】例1.【2018年江苏卷】若x ,y ,z 为实数,且x +2y +2z =6,求的最小值.例2.【2017课标II 】已知330,0,2a b a b >>+=.证明: (1)55()()4a b a b ++≥; (2)2a b +≤.例3.【2018年新课标I 卷】已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.例4.【2018年全国卷Ⅲ】设函数. (1)画出的图像; (2)当,,求的最小值.例5.【2018年全国卷II】设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.例6.【2018届黑龙江省哈尔滨师范大学附属中学三模】已知函数.(I)若.解不等式(Ⅱ)若不等式对任意的实数恒成立,求的取值范围例7.【2018届山东、湖北部分重点中学模拟(二)】设.(Ⅰ)当时,求的最小值;(Ⅱ)若为奇函数,且,当时,.若有无数多个零点,作出图象并根据图象写出的值(不要求证明).例8.【陕西省咸阳市2018年高考5月】已知函数.(1)解不等式;(2)设函数的最小值为,且,求的范围.例9.【2018届山东省潍坊市青州市三模】已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围例10.【2018届福建省三明市第一中学适应性练习(一)】已知函数.(1)若,求不等式的解集;(2)若的解集为,求的取值范围.【精选精练】1.【2017江苏,21】已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤ 2.【2018年辽宁省葫芦岛市二模】已知函数.(1)求不等式的解集;(2)若不等式的解集非空,求的取值范围.3.【2018届江西省临川一中高三模拟】 已知函数 (Ⅰ)若求函数的最小值;(Ⅱ)如果关于的不等式的解集不是空集,求实数的取值范围.4.【2018届山东省肥城市高三适应性训练】已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.5.【2018届四川省双流中学考前二模】已知函数,的解集为.(1)求实数的值; (2)若关于的不等式对恒成立,求实数的取值范围.6.【2018届江苏省盐城中学全仿真】已知,且.(I)试利用基本不等式求的最小值; (Ⅱ)若实数满足,求证:.7.【2018届河北省石家庄二中三模】已知函数(1)求不等式的解集; (2)若对于恒成立,求的取值范围.8.【2018届吉林省吉大附中四模】已知函数.(I)当时,解不等式;(Ⅱ)若关于的不等式的解集为,求证: .9.【2018届河北省衡水中学三轮复习七】已知函数.(1)当时,求不等式的解集;(2)若函数的图像与轴没有交点,求实数的取值范围.10.【2018届湖南省长沙市长郡中学高考模拟卷(二)】已知函数,关于的不等式的解集记为.(1)求;(2)已知,,求证:.11.【2018届安徽省淮南市二模】已知函数(1)解不等式.(2)若关于的不等式的解集为,求实数的取值范围.12.【2018届河南省南阳市第一中学第十八次考】已知函数,. (1)当时,求不等式的解集;(2),,求的取值范围.。
专题64 统计初步 【热点聚焦与扩展】纵观近几年的高考试题,统计是高考热点之一,往往以实际问题为背景,考查统计相关概念的计算,考查识图用图能力、数据处理能力以及分析问题解决问题的能力.小题、大题均有独立考查,大题也易于和概率一同考查.难度控制在中等以下.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明. (一)随机抽样:1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤: (1)先将总体的N 个个体编号(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n= (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +-,直至完成样本 注:(1)若Nn不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样.例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样 (2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本.分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到 (二)频率分布直方图: 1、频数与频率(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数. (2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数 (3)各试验结果的频率之和等于12、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出 (1)极差:一组数据中最大值与最小值的差(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所以有组距=极差/组数(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图 (4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距” (5)频率分布直方图的特点:② 因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1(三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数.并按末位数之前的数位进行分类排列,相同的数据需在茎叶图中体现多次(四)统计数据中的数字特征:1、众数:一组数据中出现次数最多的数值,叫做众数2、中位数:将一组数据从小到大排列,位于中间位置的数称为中位数,其中若数据的总数为奇数个,则为中间的数;若数据的总数为偶数个,则为中间两个数的平均值. ,,n x ,则有:nx ++,,n x ,其平均数为(n x x ++-越小,说明数据越集中5、标准差:也代表数据分布的分散程度,为方差的算术平方根【经典例题】例1.【2018年理新课标I 卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.例2.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为,故平均数为.点睛:的平均数为.例3.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样例4.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B例5.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】例6.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A例7.【2017江苏,3】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.【答案】18例8. 某校从参加高三年级期末考试的学生中随机抽取100名学生,将其数学成绩分成五段:[)[)[)[)130,150,它的频率分布直方图如图所示,则该批学生中成绩不低50,70,70,90,90,110,110,130,[]于90分的人数是_____.【答案】65例9.【2017北京,文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)32.【解析】试题分析:(Ⅰ)根据频率分布直方图,表示分数大于等于70的概率,就求后两个矩形的面积;(Ⅱ)根据公式频数等于100 频率求解;(Ⅲ)首先计算分数大于等于70分的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100-男生人数就是女生人数.试题解析:(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=,所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=.例10. 【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析.(2) 0.48.(3).结果.详解:(1)该家庭使用了节水龙头后50天日用水量的平均数为.估计使用节水龙头后,一年可节省水.点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.【精选精练】1.【2018,如果将它们改变为则下列结论正确的是()A. 平均数不变,方差变B. 平均数与方差均发生变化C. 平均数与方差均不变D. 平均数变,方差保持不变【答案】D【解析】分析:先根据平均数的公式变化前后的平均数,再根据方差公式进行计算变化前后的方差,从而可得结果.点睛:本题考查了平均数和方差的公式,平均数是所有数据的和除以数据的个数,2.【2018届湖北省黄冈中学5月三模】下图是某企业产值在2008年~2017年的年增量(即当年产值比前一年产值增加的量)统计图(单位:万元),下列说法正确的是()A. 2009年产值比2008年产值少B. 从2011年到2015年,产值年增量逐年减少C. 产值年增量的增量最大的是2017年D. 2016年的产值年增长率可能比2012年的产值年增长率低【答案】D【解析】分析:读懂题意,理解“年增量”量的含义,逐一分析选项中的说法,即可的结果.2009年产值比20082011年到20152017年,故因为增长率等于增长量除以上一年产值,由于上一年产值不确定,所以2016年的产值年增长率可能比2012 D.3.某校高二(16)班共有50人,如图是该班在四校联考中数学成绩的频率分布直方图,则成绩在内的学生人数为( )A. 36B. 25C. 22D. 11【答案】B点睛:本题主要考查了用样本估计总体,独立性检验的应用,其中对于用样本估计总体主要注意以下两个方面:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观;2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.4.【2018届山东省肥城市适应性训练】某学校高一学生有720人,现从高一、高二、高三这三个年级学生中采用分层抽样方法,抽取180人进行英语水平测试,已知抽取高一学生人数是抽取高二学生人数和高三学生人数的等差中项,且高二年级抽取65人,则该校高三年级学生人数是__________.【答案】660【解析】分析:求出高三年级抽取的人数,再根据比例关系求出高三学生人数.详解:根据题意,设高三年级抽取x人,则高一抽取(180-x-65)人,2(180-x-65)=x+65,x=55;高一学生有720人,则高三学生有故答案为:660.5.【2018届江苏省苏州市测试(三)】从某小区抽取 100 户居民进行月用电量调查,发现其用电量都在 50度到 350__________.【答案】22点睛:明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.6.某中学采用系统抽样方法,从该校高二年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到80016个数中取的数是35,则在第1________.【解析】分析:根据系统抽样的定义进行求解即可.16个数字中取到的数字为中随机抽取的数字为7 4.若要使该总体的方差最小,.当时,最小,此时,点睛:本题主要考查了统计知识的综合应用,其中解答中熟记统计数据中的中位数、平均数、方差的计算公式是解答的关键,着重考查了推理与运算能力.8.【2018届江苏省南京师大附中高考考前模拟】某公司生产甲、乙、丙三种不同型号的轿车,产量分别为1400辆、5600辆、2000辆.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取45辆进行检验,则应从丙种型号的产品中抽取______件.【答案】10【解析】分析:根据题意求出抽样比例,再计算应从丙种型号的产品中抽取的样本数据.故答案为:10.9.【广东省东莞市2018_______.【答案】810.【2018届四川省梓潼中学校高考模拟(二)】“日行一万步,健康你一生”的养生观念已经深入人心,制了如下尚不完整的茎叶图(单位:千步).(1(2.【答案】【解析】分析:(1.(2.详解:(1,解得点睛:本题主要考查了统计知识的综合应用,其中解答中涉及到茎叶图数据的读取,平均数的计算公式等知识点的运用,着重考查了分析问题和解答问题的能力.11.【2018届宁夏回族自治区银川一中考前训练】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.(1)分别求甲乙两个小组成绩的平均数与方差;(2)分析比较甲乙两个小组的成绩;(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.【答案】(1(2)甲乙两个小组成绩相当; 乙组成绩比甲组成绩更稳定.(3记甲乙成绩的的方差分别为,,则(2(3)由茎叶图知,甲组高于70分的同学共4名,有2名在[70,80),记为2名在[80,90)记为任取两名同学的基本事件有6个:,,,,,.恰好有一名同学的得分在[80,90)的基本事件数共4个:,,,.所以恰好有一名同学的得分在[80,9012.某校600名文科学生参加了4月25日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002, (599)12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 7655 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 3016 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);(2)抽出的100名学生的数学、外语成绩如下表:若数学成绩优秀率为35%,求m ,n 的值;(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率. 【答案】(1) 最先抽出的5人的编号依次为:544,354,378,520,384. .【解析】分析:(1)根据简单的随机抽样的定义,即可得到结论; (2可(3)由题意m+n=35,且m≥12,n≥10,∴满足条件的(m ,n )有:(12,23),(13,22),(14,21),(15,20),(16,19),(17,18),(18,17),(19,16),(20,15),(21,14),(22,13),(23,12),(24,11),(25,10),共14种,且每种出现都是等可能的,记“数学成绩优比良的人数少”为事件M,则事件M包含的基本事件有:(12,23),(13,22),(14,21),(15,20),(16,19),(17,18),共6种,。
2019年高考数学一轮复习:函数模型及其应用函数模型及其应用2.审题 建模 解模 还原(教材改编题)下列函数中,随x (x >0)的增大,y 的增长速度越来越快,并会超过其他三个的是( )A .y =e xB .y =100ln xC .y =x 100D .y =2x 解:“指数爆炸”,又e >2.故选A .(2016·湖北天门模拟)某部门为实现当地菜价稳定,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解:运输效率(单位时间的运输量)逐步提高,即对应曲线上的点的切线斜率逐渐增大,只有B 项符合要求.故选B .(2015·北京)某辆汽车每次加油都把油箱加注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 解:因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升.故选B .要制作一个容积为16 m 3,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.解:设长方体底面矩形的长、宽分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×1×10+20xy=20⎝⎛⎭⎫x +16x +20×16,由基本不等式得,z =20⎝⎛⎭⎫x +16x +20×16≥40x ·16x +320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.故填480.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.解:由题意,⎩⎪⎨⎪⎧192=e b,48=e 22k +b 得⎩⎪⎨⎪⎧192=e b,12=e 11k, 于是当x =33时,y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123×192=24(小时).故填24.类型一 幂型函数模型为了保护环境,发展低碳经济,某单位在当地科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为400元.则该单位每月能否获利?解:设该单位每月获利为S 元, 则S =400x -y=400x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+600x -80 000=-12(x -600)2+100 000,因为400≤x ≤600,所以当x =400时,S 有最小值80 000.故该单位每月能获利.【点拨】①列函数关系式时,注意自变量的取值范围;②求最值这里运用了配方法,通常换元法、导数法、均值不等式法也是解这类题比较常用的方法.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台 解:设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000(0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,所以生产者不亏本时的最低产量是150台. 故选C.类型二 指数型函数模型一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到原面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到2017年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到2017年为止,该森林已砍伐了多少年? (3)从2017年起,还能砍伐多少年? 解:(1)设每年降低的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝⎛⎭⎫12110.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即⎝⎛⎭⎫12m 10=⎝⎛⎭⎫1212,即m 10=12,解得m =5. 故到2017年为止,该森林已砍伐了5年. (3)设从2017年起还能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令2a 2(1-x )n ≥14a ,即(1-x )n ≥24,所以⎝⎛⎭⎫12n 10≥⎝⎛⎭⎫1232,解得n ≤15. 故从2017年起还能砍伐15年.【点拨】此类增长率问题,在实际问题中常可以用指数型函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂型函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.已知某工厂生产某种产品的月产量y (单位:万件)与月份x 之间满足关系y =a ·0.5x +b ,现已知该产品1月、2月的产量分别为1万件、1.5万件,则该产品3月份的产量为________万件.解:由已知得⎩⎪⎨⎪⎧0.5a +b =1,(0.5)2a +b =1.5, 解得⎩⎪⎨⎪⎧a =-2,b =2, 故当x =3时,y =-2×0.53+2=1.75.故填1.75.类型三 对数型函数模型有一片树林现在的木材储蓄量为7 100m 3,要力争使木材储蓄量20年后翻两番,即达到28 400 m 3,则平均每年木材储蓄量的增长率是________.(参考数据:lg2≈0.301 0,lg3≈0.477 1,lg5≈0.699 0,100.03≈1.072)解:设增长率为x ,由题意得28 400=7 100(1+x )20,所以(1+x )20=4,即20lg(1+x )=2lg2,lg(1+x )≈0.030 10,所以1+x ≈1.072,得x ≈0.072=7.2%.故填7.2%.【点拨】(1)善于利用已知条件,根据问题的实际意义列出方程(组)、不等式(组)等来解决问题.(2)解题过程中注意合理地使用对数式的运算法则进行运算.(2017·广州模拟)在某个物理实验中,测则对x ,y 最适合的拟合函数是( ) A .y =2xB .y =x 2-1C .y =ln xD .y =log 2x解:根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入各选项计算,可以排除B ;将各数据代入函数y =log 2x ,可知满足题意.故选D .类型四 分段函数模型某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系可用图①中的一条折线表示;西红柿的种植成本与上市时间的关系可用图②中的抛物线段表示.(1)写出图①表示的市场售价与上市时间的函数关系P =f (t ),写出图②表示的种植成本与上市时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/公斤,时间单位:天)解:(1)由题图①可得市场售价与时间的函数关系为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300.由题图②可得种植成本与上市时间的函数关系为g (t )=1200(t -150)2+100,0≤t ≤300.(2)设上市时间为t 的西红柿纯收益为h (t ), 则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎨⎧-t 2200+12t +1752,0≤t ≤200,-t 2200+72t -1 0252,200<t ≤300,当0≤t ≤200时,配方整理得h (t )=-1200(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-1200(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天上市的西红柿纯收益最大.【点拨】(1)实际问题的情况是复杂的,许多实际问题要使用分段函数模型求解.(2)解分段函数模型要注意定义域区间的分界点.(3)含有参数的实际应用题要注意分类讨论.(2017·河南省实验中学期中)国庆节期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润? 解:(1)设旅游团人数为x 人,由题得0<x ≤75,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75. 因为S =900x -15 000在区间(0,30]上为单调增函数,故当x =30时,S 取最大值12 000元, 又S =-10(x -60)2+21 000在区间(30,75]上,当x =60时,取得最大值21 000.故每团人数为60人时,旅行社可获得最大利润.1.解函数应用问题的步骤(1)审题:数学应用问题的文字叙述长,数量关系分散且难以把握,因此,要认真读题,缜密审题,准确理解题意,明确问题的实际背景,收集整理数据信息,这是解答数学问题的基础.(2)建模:在明确了问题的实际背景和收集整理数据信息的基础上进行科学的抽象概括,将自然语言转化为数学语言,将文字语言转化为符号语言,合理引入自变量,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式(也叫目标函数),将实际问题转化为数学问题,即实际问题数学化,建立数学模型.(3)解模:利用数学的方法将得到的常规数学问题(即数学模型或目标函数)予以解答,求得结果.(4)还原:将求解数学模型所得的结果还原为实际问题的意义,回答数学应用题提出的问题.以上过程可以用示意图表示为:模拟函数的过程可以用下面框图表示:2.函数模型的选择解题过程中选用哪种函数模型,要根据题目具体要求进行抽象和概括,灵活地选取和建立数学模型.一般来说:如果实际问题的增长特点为直线上升,则选择直线模型;若增长的特点是随着自变量的增大,函数值增大的速度越来越快(指数爆炸),则选择指数型函数模型;若增长的特点是随着自变量的增大,函数值的增大速度越来越慢,则选择对数型函数模型;如果实际问题中变量间的关系,不能用同一个关系式表示,则选择分段函数模型等.另外,常见的出租车计费问题、税收问题、商品销售等问题,通常用分段函数模型;面积问题、利润问题、产量问题常选择幂型函数模型,特别是二次函数模型;而对于利率、细胞分裂、物质衰变,则常选择指数型函数模型.1.(2015·湖北模拟)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,经过x (x ∈R ,x ≥0)年可增长到原来的y 倍,则函数y =f (x )的图象大致为()解:由题意可得y =(1+10.4%)x .故选D . 2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲、乙两车的速度曲线分别为v 甲和v 乙,如图所示,那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面解:由图象可知,曲线v 甲比v 乙在0~t 0,0~t 1与t 轴所围成的图形面积大,则在t 0,t 1时刻,甲车均在乙车前面.故选A .3.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10 解:因为5 min 后甲桶和乙桶的水量相等,所以函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,所以f (t )=a ·⎝⎛⎭⎫12t 5, 因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝⎛⎭⎫12k 5=14a ,即⎝⎛⎭⎫12k5=14, 所以k =10,由题可知m =k -5=5.故选A . 4.(2016·辽宁五校联考)一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t 秒内的路程为s =12t 2米,那么,此人( )A .可在7秒内追上汽车B .可在9秒内追上汽车C .不能追上汽车,但期间离汽车的最近距离为14米D .不能追上汽车,但期间离汽车的最近距离为7米解:已知s =12t 2,车与人的间距d =(s +25)-6t=12t 2-6t +25=12(t -6)2+7.当t =6时,d 取得最小值7.故选D .5.(2015·北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油解:对于A 选项,从图中可以看出当乙的行驶速度不小于40 km/h 时燃油效率大于5 km/L ,A 错误.对于B 选项,由图可知甲车消耗汽油最少,B 错.对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,C 错.对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,D 正确.故选D .6.某地兴修水利要挖一条渠道,渠道的横截面为等腰梯形,如图所示,腰与水平线的夹角为60°,要求横截面的周长(实线部分)为定值m ,则流量(横截面的面积)最大时,渠深h =()A.14mB.13mC.34mD.36m 解:由题知,等腰梯形的腰为233h ,周长为m ,下底为m -433h ,上底为m -433h +233h =m -233h ,得等腰梯形的面积S =12⎝⎛⎭⎫2m -633h h =-3h 2+mh =-3⎝⎛⎭⎫h -3m 62+312m 2⎝⎛⎭⎫0<h <34m ,当h =36m 时,S max =312m 2,此时流量最大.故选D .7.某公司租地建仓库,已知仓库每月的占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10公里处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________km 处.解:设仓库建在离车站x km 处,y 1=k 1x ,y 2=k 2x ,根据给出的初始数据可得k 1=20,k 2=45,则两项费用之和y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立.故填5.8.(2016·北京朝阳区二模)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min后发现容器内还有一半的沙子,再经过________ min ,容器中的沙子只有开始时的八分之一.解:依题意有a ·e -b ×8=12a ,所以b =ln28,所以y =a ·e -ln28·t.若容器中只有开始时的八分之一,则有a ·e -ln28·t =18a .解得t =24,所以经过的时间为24-8=16 min.故填16.9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热屋,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥2(6x +10)·8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.10.(2017·山东实验中学月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元、0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x .由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品为20-x 万元,则投资股票类产品为x 万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20).所以x =2,即x =4时,收益最大,y max =3万元. 故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.11.(2017·山东实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1m/s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1, 得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q 10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.(2015·山东德州模拟)某公司研发甲、乙两种新产品,根据市场调查预测,甲产品的利润与投资金额x (单位:万元)满足:f (x )=a ln x -bx +3(a ,b ∈R ,a ,b 为常数),且曲线y =f (x )与直线y =kx 在点(1,3)处相切;乙产品的利润与投资金额的算术平方根成正比,且其图象经过点(4,4).(1)分别求甲、乙两种产品的利润与投资金额间的函数关系式;(2)已知该公司已筹集到40万元资金,并将全部投入甲、乙两种产品的研发,每种产品投资金额均不少于10万元.问怎样分配这40万元,才能使该公司获得最大利润?其最大利润约为多少万元?(参考数据:ln10=2.303,ln15=2.708,ln20=2.996,ln25=3.219,ln30=3.401)解:(1)函数f (x )的定义域为(0,+∞)且f ′(x )=ax -b ,因为点(1,3)在直线y =kx 上,故有k =3,又曲线y =f (x )与直线y =3x 在点(1,3)处相切,故有⎩⎪⎨⎪⎧f ′(1)=a -b =3,f (1)=-b +3=3,得⎩⎪⎨⎪⎧a =3,b =0. 则甲产品的利润与投资金额间的函数关系式为f (x )=3ln x +3(x >0).由题意得乙产品投资金额与利润的关系式为:g (x )=m x ,将点(4,4)代入上式,可得m =2,所以乙产品的利润与投资金额间的关系式为g (x )=2x (x >0).(2)设甲产品投资x 万元,则乙产品投资(40-x )万元,且x ∈[10,30],则公司所得利润为y =3ln x +3+240-x ,故有y ′=3x -140-x ,令y ′>0,解得10≤x<15,令y ′<0,解得15<x ≤30,所以x =15为函数的极大值点,也是函数的最大值点.y max =3ln15+3+240-15=3×2.708+13=21.124万元.所以当甲产品投资15万元,乙产品投资25万元时,公司获得最大利润为21.124万元.2019年高考数学一轮复习第8 页共8 页。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题06 函数的图象高考对函数图象的考查,形式多样,命题形式主要有,由函数的性质及解析式选图;由函数的图象来研究函数的性质、图象的变换、数形结合解决问题等,其重点是基本初等函数的图象以及函数的性质在图象上的直观体现.常常与导数结合考查. (一)基础知识1、描点法作函数图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。
在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图象形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图象更好体现函数的性质,有一些信息点也要在图象中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点:(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线. 特点:两点确定一条直线. 信息点:与坐标轴的交点.(2)二次函数:()2y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图象,另一侧由对称性可得.函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图象更为精确. 特点:对称性信息点:对称轴,极值点,坐标轴交点. (3)反比例函数:1y x=,其定义域为()(),00,-∞+∞,是奇函数,只需做出正版轴图象即可(负半轴依靠对称做出),坐标轴为函数的渐近线.特点:奇函数(图象关于原点中心对称),渐近线. 信息点:渐近线 注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。
—————————— 新学期 新成绩 新目标 新方向 ——————————专题12 函数的极(最)值问题【热点聚焦与扩展】从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.导数是研究函数性质的重要工具,它的突出作用是用于研究函数的单调性、极值与最值、函数的零点等.从题型看,往往有一道选择题或填空题,有一道解答题.其中解答题难度较大,常与不等式、方程等结合考查.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.(一)函数的极值问题 1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点,极大值与极小值统称为极值 2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点4、()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点⇒()0'0f x = 说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③上述结论告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()'0fx =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点 6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程.7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题.但要注意检验零点能否成为极值点. 8、极值点与函数奇偶性的联系:(1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点 (2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 (二)函数的最值问题 1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值.例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln4,但就是达不到.()f x 没有最大值.) (5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个.2.“最值”与“极值”的区别和联系如图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点.5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点 (2)极小值点不会是最大值点,极大值点也不会是最小值点 8、最值点的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤-.【经典例题】例1【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1【答案】A【解析】例2【2019届湖北省黄冈、黄石等八市高三3月联考】已知函数(1)当时,求的极值;(2)若有两个不同的极值点,求的取值范围;【答案】(1)极小值(2)故在处有极小值;(2)依题意可得,有两个不同的实根.设,则有两个不同的实根,,若,则,此时为增函数,故至多有1个实根,不符合要求;若,则当时,,当时,,故此时在上单调递增,在上单调递减,的最大值为,故为的极小值点,为的极大值点, 符合要求.综上所述:的取值范围为.(分离变量的方法也可以)点睛:本题考查了函数极值点问题,利用导数知识对其求导,当遇到含有参量的时候可以采用分离参量的方法,也可以带着参量一起运算,分离参量后求出直线与曲线的交点问题即可,本题没有分离参量,进行的对参量的分类讨论,本题有一定难度例3【2019届江苏省淮安市等四市高三上一模】已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.【答案】(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.试题解析:(1)函数的定义域为当时,,所以所以当时,,当时,,所以函数在区间单调递减,在区间单调递增,所以,代入得:设,则不妨设则当时,,当时,所以在区间上单调递减,在区间上单调递增,代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时,又当时因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同.又由得:所以单调递减,因此所以实数的取值范围是.例4【2019届福建省厦门市高三下第一次检查(3月)】已知函数,其中为自然对数的底数.(1)当时,证明:;(2)讨论函数极值点的个数.【答案】(1)详见解析;(2)详见解析.试题解析:(1)依题意,,故原不等式可化为,因为,只要证.记,则.当时,,单调递减;当时,,单调递增.∴,即,原不等式成立.(2).记(ⅰ)当时,,在上单调递增,,.∴存在唯一,且当时,;当.①若,即时,对任意,此时在上单调递增,无极值点;②若,即时,此时当或时,.即在上单调递增;当时,,即在上单调递减;此时有一个极大值点和一个极小值点;(ⅲ)当时,由(1)可知,对任意,从而,而对任意.∴对任意.此时令,得;令,得.∴在单调递减;在上单调递增;此时有一个极小值点,无极大值点.(ⅳ)当时,由(1)可知,对任意,当且仅当时取等号.此时令,得;令得.点睛:求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值;(5)如果只有一个极值点,则在该处即是极值也是最值.例5【2017北京,理19】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-. 【解析】所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 例6【2019届北京市人大附高三十月月考】已知a 是实数,函数()()2f x x x a =-(Ⅰ)若()13,f '=求a 的值及曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)求()f x 在区间[]0,2上的最小值. 【答案】(1) 0.a = 320.x y --= (2)见解析.【解析】试题分析:(I )首先根据导数()13f '=求a ,再根据切线方程()()()111y f f x '-=-求切线方程;(Ⅱ)首先求函数的极值点, 1220,3x x a ==,比较23a 与区间端点的大小,从而得到函数的最小值.试题解析:(Ⅰ) ()232f x x ax '=-因为()1323,f a =-=所以0.a = 当0a =时, ()()11,13,f f '==所以曲线()y f x =在点()()1,1f 处的切线方程为320.x y --= (Ⅱ)由(Ⅰ)可知, ()232f x x ax '=-.令()0,f x '=解得1220,.3ax x == 当20,3a≤即0,a ≤ ()f x 在[]0,2上单调递增,从而()min 00.f f == 当22,3a ≥即3,a ≥ ()f x 在[]0,2上单调递减,从而()min 284.f f a ==-当202,3a <<即03,a << ()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而3min 24.327a a f f ⎛⎫==- ⎪⎝⎭ 综上所述, 3min0,04{,0 3 2784,3a a f a a a ≤=-<<-≥.例7【2019届北京市城六区高三一模】.已知函数(I)当时,求函数的单调递增区间;(Ⅱ)当时,若函数的最大值为,求的值.【答案】(Ⅰ)(Ⅱ).试题解析:(Ⅰ)当时,故令,得故的单调递增区间为(Ⅱ)方法1:令则由,故存在,故当时,;当时,故故,解得故的值为.(Ⅱ)方法2:的最大值为的充要条件为对任意的,且存在,使得,等价于对任意的,且存在,使得,等价于的最大值为.,令,得.故的最大值为,即.例8【2019届北京市清华附中高三十月月考】已知()()320f x ax bx cx a =++≠在1x =±时取得极值,且()11f =-.(Ⅰ)试求常数a , b , c 的值;(Ⅱ)求函数()f x 在[]0,2x ∈上的最大值. 【答案】(1)13,0,22a b c ===-(2)当1x =-时, ()f x 有极大值,当1x =时, ()f x 有极小值.再由()11f =-, 所以1a b c ++=-,③联立①②③解得13,0,22a b c ===-; (Ⅱ)()31322f x x x =-,()()()233311222f x x x x =-=+-',当1x <-或1x >时, ()0f x '>, 当11x -<<时, ()0f x '<,所以,当1x =-时, ()f x 有极大值,当1x =时, ()f x 有极小值. 例9【2019届北京市首师大附高三十月月考】已知函数()()()322111.32f x x x x a x x a R ⎛⎫=-++--∈ ⎪⎝⎭(Ⅰ)若1x =是()f x 的极小值点,求实数a 的取值范围及函数()f x 的极值; (Ⅱ)当1a ≥时,求函数()f x 在区间[]0,2上的最大值. 【答案】(1)1,a <极小值为()11126f a =-,极大值为()321162f a a a =-+.(2)见解析 【解析】试题分析:(1)根据极小值定义求实数a 的取值范围,根据导函数符号变化规律确定函数极值,(2)根据a 与2大小讨论导函数零点,再列表分析导函数符号变化规律确定函数最大值取法,最后小结结论. 试题解析:解: ()()()()()221111f x x x a x x x a =-++--=--'(Ⅰ)若1x =是()f x 的极小值,则1,a <列表分析如下:所以最大值可能为()11126f a =-或()22;3f = ①当513a ≤<时,最大值为()22;3f =②当523a ≤<时,最大值为()11126f a =-综上所述,当513a ≤<时,最大值为()22;3f =当53a ≥时,最大值为()11126f a =-例10【2019届陕西省榆林市二模】已知函数,.(1)若时,求函数的最小值;(2)若函数既有极大值又有极小值,求实数的取值范围. 【答案】(1);(2). 【解析】试题分析:(1)代入,得,求导,利用导函数判定函数的单调性,即可求得函数的最小值;(2)现求导数,函数既有极大值又有极小值,等价于有两个零点,可分和两种情况分类讨论,得到函数的单调性和极值,得到函数有极大值和极小值的条件,即可求解实数的取值范围. 试题解析:列表:所以,函数的最小值为.(2),定义域为,.记,,,①当时,,在上单调递增,故在上至多有一个零点,此时,函数在上至多存在一个极小值,不存在极大值,不符题意;②当时,令,可得,列表:若,即,,即,且当时,,函数在上单调递减;当时,,函数在上单调递增,函数在处取极小值.由于,且 (事实上,令,,故在上单调递增,所以).点睛:本题主要考查导数在函数中的应用,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、圆等知识联系; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (4)考查数形结合思想的应用.【精选精练】1.【2019届安徽省安庆市2019届高三二模】已知函数()()2ln xf x ef e x e'=-(e 是自然对数的底数), 则f (x )的极大值为( ) A. 2e-1 B. 1e -C. 1D. 2ln2【答案】D 【解析】()()()()()22111,ef e ef e f x f e f e x e e e e=-∴=-''''=', ()210,2f x x e x e∴=-=='∴ ()f x 的极大值为()22ln222ln2f e e ∴=-=,选D. 2.【2019届福建省三明市第一中学高三下开学】函数在的最小值是( )A. B. 1 C. 0 D.【答案】B【解析】,令得,或,令得,,所以在,单调递增,在单调递减,,.本题选择B选项.3.【2019届广东省茂名市五大联盟学校高三3月联考】已知函数 (其中,为自然对数的底数)在处取得极大值,则实数的取值范围是()A. B. C. D.【答案】D由,可得f(x)在区间,上单调递增;由,可得f(x)在区间上单调递减,故f(x)在x=1处取得极大值,所以若函数f(x)在x=1处取得极大值,则实数a的取值范围是.本题选择D选项.【名师点睛】反思这类型题型,首先先利用导函数的解析式,判断得出极值点存在并且只有一个并得出极值点的范围.由于极值点与参数有关,因此就需要假设,假设后,再代进行化简消元最终求得参数的取值范围.4.【2019届海南省高三第二次联考】若1x =是函数()()ln x f x e a x =+的极值点,则实数a =__________. 【答案】e -【解析】因为()1ln +x x f x e x e a x='+⋅(),且1x =是函数()()ln x f x e a x =+的极值点,所以()10f e a '=+=,解得a e =-.5.【2019届北京市北京19中高三十月月考】已知函数()y f x =的导函数有且仅有两个零点,其图像如图所示,则函数()y f x =在x =______________处取得极值.【答案】-1【点睛】本题考查函数的极值的判定.本题的易错点是将2看成一个极值点,要注意()00f x '=是可导函数()f x 在0x x =处取得极值的必要不充分条件,而本题中函数()f x 在2x =附近单调递增. 6.【2019届东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高三一模】已知函数,是函数的极值点,给出以下几个命题:①;②;③;④;其中正确的命题是______________.(填出所有正确命题的序号) 【答案】①③【名师点睛】此题主要考查了导数在研究函数的极值、最值、以及单调性等中的应用,主要涉及函数求导的计算公式、法则,还有函数极值点和最值的应用等方面的知识和技能,属于中高档题型,也是常考考点.首先利用导数判断函数的单调性,由函数值大小的比较,来确定其自变量的大小,从而解决问题①②. 7【2019届北京市清华附中高三十月月考】设函数()ln f x x a x =-(其中a R ∈). (Ⅰ)当1a =时,求函数()f x 在1x =时的切线方程; (Ⅱ)求函数()f x 的极值.【答案】(1)1y =(2)当0a ≤时,函数()f x 无极值,当0a >时,函数()f x 在x a =处取得极小值ln a a a -,无极大值.【解析】试题分析: ()1将1a =代入,算出1x =时的切线方程()2求导,讨论当0a ≤时、当0a >时的极值情况解析:(Ⅰ)定义域为()0,+∞,1a =时, ()ln f x x x =-,()11f x x'=-,()11101f =-=',()11ln11f =-=,所以切线方程为1y =; (Ⅱ)()1a x af x x x'-=-=,定义域为()0,+∞, ①当0a ≤时, ()0f x '>,函数()f x 在()0,+∞上为增函数,此时函数()f x 无极值;②当0a >时,令()0f x '=,解得x a =,当()0,x a ∈时, ()0f x '<,当(),x a ∈+∞时, ()0f x '>,所以函数()f x 在x a =处取得极小值,且极小值为()ln f a a a a =-,无极大值, 综上,当0a ≤时,函数()f x 无极值,当0a >时,函数()f x 在x a =处取得极小值ln a a a -,无极大值.8.【2019届北京市丰台区高三一模】已知函数()()()=e ln 1xf x a x a R -+∈.(Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若函数()y f x =在1,12⎛⎫⎪⎝⎭上有极值,求a 的取值范围.【答案】(1) ()e y a x =-;(2) ⎫⎪⎪⎝⎭.【解析】试题分析:(1)由题意()e x af x x='-,因为()1e f a =-, ()1e f a '=-,利用点斜式方程即可求解切线的方程; (Ⅱ)由()e x af x x='-,分0a ≤和0a >讨论,即可得出函数单调性,求得函数有极值的条件,求得实数a 的取值范围. 试题解析:(Ⅱ)()e x a f x x='-. (ⅰ)当0a ≤时,对于任意1,12x ⎛⎫∈⎪⎝⎭,都有()0f x '>,所以函数()f x 在1,12⎛⎫⎪⎝⎭上为增函数,没有极值,不合题意. (ⅱ)当0a >时,令()e x a g x x =-,则()2e 0x ag x x=+>'.9.【2019届江西省上饶市高三下二模】设函数()22ln x e kf x k x x x=++(k 为常数, 2.71828e =为自然对数的底数).(1)当0k ≥时,求函数()f x 的单调区间;(2)若函数()f x 在()0,3内存在三个极值点,求实数k 的取值范围.【答案】(1) ()f x 的单调递减区间为()0,2,单调递增区间为()2,.+∞(2)322,,322e e e e ⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭.【解析】试题分析:(1)第(1)问,直接求导,再求函数的单调区间. (2)第(2)问,对k 进行分类讨论,求出每一种情况下函数的单调性,再分析函数()f x 在()0,3内存在三个极值点的条件从而得到实数k 的取值范围. 试题解析:(1) 函数()f x 的定义域为()0,+∞.()()()2423222xx x x e kxx e xe k k f x x x x x -+-=-'+=. 由0,0k x ≥>可得0xe kx +>,所以当()0,2x ∈时, ()0f x '<;当()2,x ∈+∞时, ()0f x '>.故()f x 的单调递减区间为()0,2,单调递增区间为()2,.+∞(2)由(1)知,当0k ≥时,函数()f x 在()0,2内单调递减,在()2,3内单调递增,故()f x 在()0,3内仅存在一个极值点2x =;当0k <时,令0x xe e kx k x +=⇒-=, ()x e g x x =,依题函数y k =-与函数()xe g x x=, ()0,3x ∈的图象有两个横坐标不等于2的交点.()()21x e x g x x ='-,当()0,1x ∈时, ()0g x '<,则()g x 在()0,1上单调递减,当()1,3x ∈时, ()0g x '>,则()g x 在()1,3上单调递增;而()()()231,2,3.23e e g e g g ===和极大值点2x .综上,函数()f x 在()0,3内存在三个极值点时,实数k 的取值范围为322,,322e e e e ⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭.【名师点睛】本题的难点在第(2)问,主要是对函数xy e kx =+的分析,把它的图像和性质分析清楚了,原命题自然分析清楚了.解答数学问题,要善于抓住主要问题,再突破. 10.【2019届北京市城六区高三一模】已知函数()1e ln x f x a x x ⎛⎫=⋅++ ⎪⎝⎭,其中a R ∈. (Ⅰ)若曲线()y f x =在1x =处的切线与直线exy =-垂直,求a 的值; (Ⅱ)当()0,ln2a ∈时,证明: ()f x 存在极小值. 【答案】(Ⅰ)0a =.(Ⅱ)见解析.【解析】试题分析:(Ⅰ) ()f x 的导函数为()221e ln xf x a x x x ⎛⎫=⋅++'- ⎪⎝⎭. 依题意()()1e 1e f a =⋅+=',解得0a =.(Ⅱ) 由()221e ln x f x a x x x ⎛⎫=⋅++'- ⎪⎝⎭.令()221ln g x a x x x =+-+, ()()223311220x x x g x x x -+-+==>'恒成立,故()g x 在()0,+∞单调递增.因为()0,ln2a ∈, ()110g a =+>, 11ln 022g a ⎛⎫=+<⎪⎝⎭,故存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =.可得f(x)在01,2x ⎛⎫⎪⎝⎭减,令()221ln g x a x x x=+-+, 则 ()()22331122x x x g x x x-='+-+=. 所以对任意()0,x ∈+∞,有()0g x '>,故()g x 在()0,+∞单调递增.因为()0,ln2a ∈,所以()110g a =+>, 11ln 022g a ⎛⎫=+<⎪⎝⎭, 故存在01,12x ⎛⎫∈⎪⎝⎭,使得()00g x =. ()f x 与()f x '在区间1,12⎛⎫⎪⎝⎭上的情况如下:所以()f x 在区间01,2x ⎛⎫⎪⎝⎭上单调递减,在区间()0,1x 上单调递增. 所以()f x 存在极小值()0f x .11【2019届北京师范大学附中高三下二模】已知函数,其中,为自然对数底数.(1)求函数的单调区间; (2)已知,若函数对任意都成立,求的最大值.【答案】(1)函数的单调递增区间为,单调递减区间为.(2).【解析】【试题分析】(1)求导后令导数等于零,求得极值点后写出单调区间.(2)结合(1)求得函数的最小值,由此得到的取值范围.再利用导数求得 的取值范围.【试题解析】 (1)因为,因为,由得,所以当时,,单调递减;当时,单调递增.综上可得,函数的单调递增区间为,单调递减区间为.(2)因为,由函数对任意都成立,得,因为,所以.所以,设,所以,即的最大值为,此时,.【名师点睛】本小题主要考查函数导数与函数的单调区间,考查利用导数求解不等式的问题.求函数单调区间的基本步骤是:首先求函数的定义域,其次对函数求导,求导后一般需要对导函数进行通分和因式分解,然后求得导函数的零点,即原函数的极值点,结合图象判断函数的单调区间.12.【2019届新疆维吾尔自治区高三二模】已知函数()1xf x e ax =++(a R ∈).若0x =是()f x 的极值点.(I )求a ,并求()f x 在[]2,1-上的最小值;(II )若不等式()'1xkf x xe <+对任意0x >都成立,其中k 为整数, ()'f x 为()f x 的导函数,求k 的最大值.【答案】(I )1a =-,最下值2;(II )2.【解析】试题分析:(1)第(1)问,先根据0x =是()f x 的极值点得到1a =-,再利用导数求函数的单调区间,求函数()f x 在[]2,1-上的最小值.(2)第(2)问,先分离参数得到11x x xe k e +<-,再求函数()11x x xe g x e +=-(0x >)的最小值,即得到k 的最大值. 试题解析:(I )()'xf x e a =+,由0x =是()f x 的极值点,得()'00f =,∴1a =-.易知()f x 在[]2,0-上单调递减,在[]0,1上单调递增, 所有当0x =时, ()f x 在[]2,1-上取得最小值2. (II )由(I )知1a =-,此时()'1xf x e =-,∴()()'111x x x kf x xe k e xe <+⇔-<+∵0x >,∴10xe ->,∴11x x xe k e +<-令()11x x xe g x e +=-(0x >),∴()min k g x <()()2'1x x x e e x g x e --=-(0x >)【名师点睛】本题的难点在求出()()2'1x x x e e x g x e --=-(0x >)后,求函数的单调区间不方便,此时需要二次求导.所以需要再构造函数()2xh x e x =--,研究函数h(x)的单调性和值域,从而研究出函数g(x)的性质得解. 当我们一次求导后,如果()'()0x ><不方便解出,一般要考虑二次求导.。
—————————— 新学期 新成绩 新目标 新方向 ——————————专题01 利用数轴解决集合运算问题【热点聚焦与扩展】数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题.在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本专题以一些题目为例,来介绍如何使用数轴快速的进行集合的交集、并集及补集等运算. 1、集合运算在数轴中的体现::A B 在数轴上表示为,A B 表示区域的公共部分. :AB 在数轴上表示为,A B 表示区域的总和.:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到).2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系.(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域.(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域.交集即为公共部分,而并集为覆盖的所有区域.(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可. 3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察.(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意.【经典例题】例1【2017课标1,理1】已知集合A={x|x<1},B={x|31x<},则( )A .{|0}AB x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A 【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以,结合数轴得{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.例2【2019届河北省衡水中学高三上学期七调】 设集合{|2}A x x =<, {}B x x a =,全集U R =,若U A B ⊆ð,则有( )A. 0a =B. 2a ≤C. 2a ≥D. 2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,结合数轴得2a ≤,故选C.例3【2019届河北省武邑中学高三下学期开学】设常数a R ∈,集合()(){}|120A x x x =--≥, {}|B x x a =≥,若A B R ⋃=,则a 的取值范围为( )A. (),1-∞B. (],1-∞C. ()2,+∞D. [)2,+∞ 【答案】B【解析】由题得{|21}A x x x =≥≤或,因为A B R ⋃=,所以通过画数轴分析得到1a ≤,(注意一定要取等),故选B.【名师点睛】:(1)含有参数的问题时,可考虑参数所起到的作用,在本题中参数决定区间的端点; (2)含有参数的问题作图时可先考虑做出常系数集合的图象,再按要求放置含参的集合; (3)注意考虑端点处是否可以重合.例4【2019届河北省衡水中学高三上学期九模】已知集合{}A x x a =<, {}2320B x x x =-+<,若A B B ⋂=,则实数a 的取值范围是( )A. 1a <B. 1a ≤C. 2a >D. 2a ≥ 【答案】D例5.已知函数()221,02()1,,20x x g x ax f x x x ⎧-≤≤⎪=+=⎨--≤<⎪⎩,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()12g x f x =成立,则实数a 的取值范围是__________ 【答案】【解析】思路:任取[]12,2x ∈-,则()1g x 取到()g x 值域中的每一个元素,依题意,存在2x 使得()()12g x f x =,意味着()g x 值域中的每一个元素都在()f x 的值域中,即()g x 的值域为()f x 的值域的子集,分别求出两个函数值域,再利用子集关系求出a 的范围解:[]20,2x ∈时,()[]20,3f x ∈ [)22,0x ∈-时,()[)24,0f x ∈-()[]24,3f x ∴∈-[)1,0a ∴∈-综上所述:[]1,1a ∈- 答案:[]1,1a ∈-.例6.已知集合{}{}|21,|A x x x B x a x b =><-=≤≤或,若(],2,4A B R A B ==,则ba=________ 【答案】4-【解析】本题主要考察如何根据所给条件,在数轴上标好集合B 的范围.从而确定出,a b 的值, 1,4a b =-=,所以4ba=-.例7. 已知集合{}{}0)12(,31122<+++-=≤++-=m m x m x x B x x x A ,若A B ≠∅,则实数m 的取值范围为 【答案】53(,)22-【解析】先解出,A B 的解集,A B ⋂≠∅意味着,A B 有公共部分,利用数轴可标注集合B 两端点的位置,进而求出m 的范围22(21)0x m x m m -+++<()()()10x m x m ∴-+-< 1m x m ∴<<+ A B ≠∅312m ∴+>-且32m <53,22m ⎛⎫∴∈- ⎪⎝⎭.例8:在R 上定义运算:2xx y y⊗⊗=-,若关于x 的不等式(1)0x x a ⊗+->的解集是{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是( )A .22a -≤≤B .12a -≤≤C .31a -≤<-或11a -<≤D .31a -≤≤ 【答案】D【解析】首先将(1)0x x a ⊗+->变为传统不等式:()()1001xx x a x a ⊗+->⇒<-+,不等式含有参数a ,考虑根据条件对a 进行分类讨论。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题57 排列组合中的常见模型纵观近几年的高考试题,排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力.除了以选择、填空的形式考查,也往往在解答题中与古典概型概率计算相结合进行考查.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明排列组合中的常见模型的解法.(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素. 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列.(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列.例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子.7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可.【经典例题】例1.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列33A 即可,由乘法原理,不同的安排方式共有234336C A ⨯=种方法. 故选D.例2.【重庆市2018届三模】山城农业科学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田里,则不同的试种方法数为 ( )A. 12B. 24C. 36D. 48【答案】B(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 例3.【2018年理新课标I 卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.例4.【2017浙江卷16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答)【答案】660【解析】由题意可得:总的选择方法为411843C C C ⨯⨯种方法,其中不满足题意的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.例5.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 例6.【2017天津,理14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】 1080【解析】413454541080A C C A +=【名师点睛】计数原理包含分类计数原理(加法)和分步计数原理(乘法),组成四位数至多有一个数字是偶数,包括四位数字有一个是偶数和四位数字全部是奇数两类,利用加法原理计数.例7.【2018届浙江省教育绿色评价联盟5月考试】有7个球,其中红色球2个(同色不加区分),白色,黄色,蓝色,紫色,灰色球各1个,将它们排成一行,要求最左边不排白色,2个红色排一起,黄色和红色不相邻,则有______种不同的排法(用数字回答).【答案】408【解析】分析:把红色球看做一个处理,利用分类计数原理结合分步计数原理,由左至右逐一排放,然后求和即可.详解:,故答案为点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.例8.【2018届安徽省合肥市三模】如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有A. 24B. 48C. 96D. 120【答案】C例9.【2018届四川省成都市第七中学三诊】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有()A. 240种B. 360种C. 480种D. 600种【答案】C【解析】分析:本题属于有限制条件的排列问题,解题时可按照领导丙的位置分为6类,求出每一类的排法后再根据分类加法计数原理求解总的排法.详解:用分类讨论的方法解决.如图中的6个位置,①当领导丙在位置1②当领导丙在位置2③当领导丙在位置3④当领导丙在位置4⑤当领导丙在位置5⑥当领导丙在位置1由分类加法计数原理可得不同的排法共有480种.故选C.例10.【2018届甘肃省西北师范大学附属中学冲刺诊断】第十九届西北医疗器械展览将于2018年5月18至20日在兰州举行,现将5名志愿者分配到3个不同的展馆参加接待工作,每个展馆至少分配一名志愿者的分配方案种数为()A. 540B. 300C. 180D. 150【答案】DD.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.【精选精练】1.【2018届湖南省长沙市长郡中学模拟卷(二)】《中国诗词大会》亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.因为前四场播出后反响很好,所以节目组决定《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A. 144种B. 48种C. 36种D. 72种【答案】C【解析】分析:采取“捆绑法”、“插空法”,利用分步计数乘法原理可得结果.C.2.【2018数,能组成()个没有重复数字的两位数?A. 52B. 58C. 64D. 70【答案】B【解析】分析:分别从集合A,B取一个数字,再全排列,根据分步计数原理即可得到答案.故选:B.3.【山东省烟台市2018有()B.【答案】DD.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.4.【2018届浙江省宁波市5月模拟】若用红、黄、蓝、绿四种颜色填涂如图方格,要求有公共顶点的两个格子颜色不同,则不同的涂色方案数有C.【答案】C【解析】分析:直接按照乘法分步原理解答.详解:点睛:(1)本题主要考查排列组合计数原理的应用,意在考查学生的逻辑思维能力和排列组合的基本运算能力.解答排列组合时,要思路清晰,排组分清.(2)解答本题时,要注意审题,“有公共顶点的两个格子颜色不同”,如C和D有公共的顶点,所以颜色不能相同.5.【2018届福建省泉州市5月检查】李雷和韩梅梅两人都计划在国庆节的7天假期中,到“东亚文化之都--泉州”“二日游”,若他们不同一天出现在泉州,则他们出游的不同方案共有A. 16种B. 18种C. 20种D. 24种【答案】C【解析】分析:根据分类计数原理,“东亚文化之都﹣﹣泉州”“二日游”,任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,分两种情况讨论即可.详情:任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,若李雷选①②或⑥⑦,则韩梅梅有4种选择,选若李雷选②③或③④或④⑤或⑤⑥,则韩梅梅有3种选择,故他们不同一天出现在泉州,则他们出游的不同方案共有2×(4+6)=20,故答案为:C.6.【腾远2018北京两会期间,有甲、乙、丙、丁、戊,其中甲和乙要求不再同一分会场,甲和丙必须在同一分会场,则不同的安排方案共有__________种(用数字作答).【答案】30”和“点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.7.【2018届湖南省益阳市5月18日统考】现有8本杂志,其中有3本是完全相同的文学杂志,还有5本是互不相同的数学杂志,从这8本里选取3本,则不同选法的种数为__________.【答案】26【解析】分析:从选取的数学杂志的本数入手讨论即可.详解:若选取的三本书没有数学杂志,有1种选法若选取的三本书有1若选取的三本书有2若选取的三本书有1故不同选法的种数为26.8.【2018届浙江省杭州市第二次检测】盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).【答案】329.2018年6月份上合峰会在青岛召开,面向高校招募志愿者,中国海洋大学海洋环境学院的8名同学符合招募条件并审核通过,其中大一、大二、大三、大四每个年级各2名.若将这8名同学分成甲乙两个小组,每组4名同学,其中大一的两名同学必须分到同一组,则分到乙组的4名同学中恰有2名同学是来自于同一年级的分组方式共有__________种.【答案】24【解析】分析:首先要明确该题应该分类讨论,第一类是大一的两名同学在乙组,第二类是大一的两名同学不在乙组,利用组合知识,求得相应的数,之后应用分类加法计数原理,求得结果,问题得以解决.详解:根据题意,第一类:大一的两名同学在乙组,乙组剩下的两个来自不同的年级,从三个年级中选两种,然后分别从选择的年级中再选择一个学生为.10.【2018届山东省烟台市高考适应性练习(一)】上合组织峰会将于2018年6月在青岛召开,组委会预备.每组至少2人,则不同分配方法的种数为__________.【答案】8.【解析】分析:AB捆绑在一起,分两类,一类是A、B两人在一组,另三人在一组,一类是A、B再加另一人在一组,另一组只有2人,还要注意有两个地点是不同的.故答案为8.11.【2018届天津市河东区二模】一共有5名同学参加《我的中国梦》演讲比赛,3名女生和2名男生,如果男生不排第一个演讲,同时两名男生不能相邻演讲,则排序方式有_______种.(用数字作答)【答案】36.12.【2018届天津市部分区质量调查(二)】天津大学某学院欲安排4实习,要求每个部门至少安排1人,其中甲大学生不能安排到_______种(用数字作答). 【答案】24【解析】分析:根据题意,设4名毕业生为甲、2详解:根据题意,设42种情况讨论:2种情况,22组全排列,分配到其他2。
专题58 巧选数学模型解排列组合问题【热点聚焦与扩展】纵观近几年的高考试题,排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力.除了以选择、填空的形式考查,也往往在解答题中与古典概型概率计算相结合进行考查.有一些问题如果直接从题目入手,处理起来比较繁琐.但若找到解决问题的合适模型,或将问题进行等价的转化.便可巧妙的解决问题.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明. (一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素. 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列.(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列.例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子.7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可.【经典例题】例1.【2019届湖北省黄冈中学5月三模】对33000分解质因数得,则的正偶数因数的个数是( )A. 48B. 72C. 64D. 96 【答案】A由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个,即的正偶数因数的个数是,故选A.例2.【2019届贵州省凯里市第一中学四模】集合,从集合中各取一个数,能组成( )个没有重复数字的两位数? A. 52 B. 58 C. 64 D. 70 【答案】B【解析】分析:分别从集合A ,B 取一个数字,再全排列,根据分步计数原理即可得到答案. 详解:故选:B例3.【2019届四川省 “联测促改”】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种.例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为( )A. 48B. 60C. 96D. 120 【答案】C对于()2,2,4,组合出的可能的算筹为:()()()()()()2,2,4,6,6,4,2,2,8,6,6,8,2,6,4,2,6,8共6种,可以组成的三位数的个数为: 3!23!42⨯+⨯种, 同理()2,3,3可以组成的三位数的个数为: 3!23!42⨯+⨯种, 利用加法原理可得:8根算筹可以表示三位数的个数(算筹不能剩余)为3!123!8163!962⨯+⨯=⨯=. 本题选择C 选项. 例4.已知集合(){}22,|1,,A x y xy x y Z =+≤∈, (){},|2,2,,B x y x y x y Z =≤≤∈,定义集合()()(){}12121122,|,,,A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素个数为( )A. 77B. 49C. 45D. 30 【答案】C例5.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有( )A. 192种B. 128种C. 96种D. 12种 【答案】C【解析】试题分析:根据题意,先分析A 、B 两个方格,由于其大小有序,则可以在l 、2、3、4中的任选2个,大的放进A 方格,小的放进B 方格,由组合数公式计算可得其填法数目,对于C 、D 两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得答案.根据题意,对于A 、B 两个方格,可在l 、2、3、4中的任选2个,大的放进A 方格,小的放进B 方格,有246C =种情况,对于C 、D 两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种, 故选C .例6.【2019届黑龙江省牡丹江市第一高级中学高三上期末】将数字1,2,3,4,填入右侧的表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有( )种A. 432B. 576C. 720D. 864 【答案】B【解析】对符合题意的一种填法如图,行交换共有4424A =种,列交换共有4424A =种,所以根据分步计数原理得到不同的填表方式共有2424=576⨯种,故选B.例7. 设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130 【答案】D例8.已知{}1,2,3,,40S =,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190 【答案】C【解析】思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140-中寻找同奇同偶数的情况.,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种.例9.【2019届云南省昆明市第二次统考】定义“有增有减”数列{}n a 如下: *t N ∃∈,满足1t t a a +<,且*s N ∃∈,满足1S S a a +>.已知“有增有减”数列{}n a 共4项,若{}(),,1,2,3,4i a x y z i ∈=,且x y z <<,则数列{}n a 共有( )A. 64个B. 57个C. 56个D. 54个 【答案】D例10:方程10x y z w +++=的正整数解有多少组?非负整数解有多少组? 【答案】正整数解有84种,非负整数解有286种【解析】思路:本题可将10理解为10个1相加,而,,,x y z w相当于四个盒子,每个盒子里装入了多少个1,则这个变量的值就为多少.从而将问题转化为相同元素分组的模型,可以使用挡板法得:3984C=种;非负整数解相当于允许盒子里为空,而挡板法适用于盒子非空的情况,所以考虑进行化归:()()()()10111114x y z w x y z w+++=⇒+++++++=,则1,1,1,1x y z w++++这四个盒子非空即可.所以使用挡板法得:313286C=种【精选精练】1.【2019届山东省潍坊市二模】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有()A. 种B. 种C. 种D. 种【答案】A【解析】分析:该题属于有限制条件的排列问题,在解题的过程中,需要分情况讨论,因为“数”必须排在前三节,这个就是不动的,就剩下了五个不同的元素,所以需要对“数”的位置分三种情况,对于相邻元素应用捆绑法来解决即可.详解:当“数”排在第一节时有排法,当“数”排在第二节时有种排法,当“数”排在第三节时,当“射”和“御”两门课程排在第一、二节时有种排法,当“射”和“御”两门课程排在后三节的时候有种排法,所以满足条件的共有种排法,故选A.点睛:在解决问题时一是注意对“数”的位置分三种情况,二是在“数”排在第三节时,要对两个相邻元素的位置分类讨论,再者还要注意“数”排在第二节时,两个相邻元只能排在后四节.2.【2019届北京师范大学附中二模】若自然数使得作竖式加法均不产生进位现象,则称为“开心数”.例如:32是“开心数”.因不产生进位现象;23不是“开心数”,因产生进位现象,那么,小于100的“开心数”的个数为()A. 9B. 10C. 11D. 12【答案】D3.【2019届广东省广州市第一次调研】某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种B. 24种C. 22种D. 20种 【答案】B【解析】第一类:男生分为1,1,1,女生全排,男生全排得323212A A ⋅=,第二类:男生分为2,1,所以男生两堆全排后女生全排22232212C A A ⋅=,不同的推荐方法共有121224+= ,故选B.4. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8S =,则S 的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( ) A. 6 B. 15 C. 20 D. 25 【答案】C【解析】思路:首先要理解“k A ∈,则1k A -∉且1k A +∉”,意味着“独立元”不含相邻的数,元素均为独立元,则说明3个元素彼此不相邻,从而将问题转化为不相邻取元素问题,利用插空法可得:3620C =种5.一个含有10项的数列{}n a 满足:11010,5,1,(1,2,,9)k k a a a a k +==-==,则符合这样条件的数列{}n a 有( )个A. 30B. 35C. 36D. 40 【答案】36种6.【2019届浙江省金丽衢十二校第二次联考】用0,1,2,3,4可以组成的无重复数字的能被3整除的三位数的个数是( )A. 20B. 24C. 36D. 48【答案】A【解析】分析:先根据能被3整除的三位数字组成为012,024,123,234四种情况,再分类讨论排列数,最后相加得结果.详解:因为能被3整除的三位数字组成为012,024,123,234四种情况,所以对应排列数分别为因此一共有,选A.7.【2019届上海市松江、闵行区二模】13.设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.8.【2019届天津市十二重点中学联考(一)】用0,1,2,3,4组成没有重复数字的五位偶数,要求奇数不相邻,且0不与另外两个偶数相邻,这样的五位数一共有_______个.(用数字作答)【答案】169.对于各数互不相等的整数数组(是不小于的正整数),对于任意的,当时有,则称是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组中的逆序数为___________;若数组中的逆序数为,则数组中的逆序数为___________.【答案】 310.已知集合,集合的所有非空子集依次记为:,设分别是上述每一个子集内元素的乘积.(如果的子集中只有一个元素,规定其积等于该元素本身),那么__________.【答案】5【解析】所有子集的“乘积”之和即展开式中所有项的系数之和T-1,令,则故答案为511.【2019届浙江省嵊州市高三上期末】9某学校要安排2位数学老师、2位英语老师和1位化学老师分别担任高三年级中5个不同班级的班主任,每个班级安排1个班主任.由于某种原因,数学老师不担任A班的班主任,英语老师不担任B班的班主任,化学老师不担C班和D班的班主任,则共有__________种不同的安排方法.(用数字作答).【答案】32【解析】若数学老师分到,B C两班,共有212222=8A A A种分法,若数学老师分到,B D两班,共有212222=8A A A种分法,若数学老师分到,B E两班,共有2222=4A A种分法,若数学老师分到,C D两班,共有2222=4A A种分法,若数学老师分到,C E两班,共有2222=4A A种分法,若数学老师分到,D E两班,共有2222=4A A种分法,共有8+8+4+4+4+4=32种安排方法,故答案为32 .12.圆周上有20个点,过任意两点连接一条弦,这些弦在圆内的交点最多有多少个【答案】4845个。
第十节函数模型及其应用[知识能否忆起]1.几种常见的函数模型[小题能否全取]1.(教材习题改编)f (x )=x 2,g (x )=2x,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )答案:选B 由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ). 2.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( )解析:选B 由题意h =20-5t,0≤t ≤4.结合图象知应选B.3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取最大利润,该企业一个月应生产该商品数量为( )A .36万件B .18万件C .22万件D .9万件解析:选B 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.一种产品的成本原为a 元,在今后的m 年内,计划使成本平均每年比上一年降低p %,成本y是经过年数x (0<x ≤m )的函数,其关系式y =f (x )可写成___________________________.解析:依题意有y =a (1-p %)x(0<x ≤m ). 答案:y =a (1-p %)x(0<x ≤m )5.有一批材料可以建成200 m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形最大面积为______________.(围墙厚度不计)解析:设矩形的长为x m ,宽为200-x 4 m ,则S =x ·200-x 4=14(-x 2+200x ).当x =100时,S max =2 500 m 2.答案:2 500 m21.解答函数应用题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:2.解函数应用题常见的错误(1)不会将实际问题抽象转化为函数模型或转化不全面; (2)在求解过程中忽视实际问题对变量参数的限制条件.典题导入[例1] 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?[自主解答] 设该单位每月获利为S , 则S =100x -y=100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.由题悟法1.在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),对一次函数模型,主要是利用一次函数的图象与单调性求解.2.有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.对二次函数模型,一般是利用配方法并结合二次函数图象与单调性解决.3.在解决一次函数、二次函数的应用问题时,一定要注意定义域.以题试法1.(2012·抚州质检)一块形状为直角三角形的铁皮,直角边长分别为40 cm 与60 cm ,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角.问怎样剪,才能使剩下的残料最少?解:如图,剪出的矩形为CDEF , 设CD =x ,CF =y , 则AF =40-y .∵△AFE ∽△ACB ,∴AF AC =FEBC, 即40-y 40=x60. ∴y =40-23x .剩下的残料面积为S =12×60×40-x ·y =23x 2-40x +1 200=23(x -30)2+600. ∵0<x <60,∴当x =30时,S 取得最小值为600,这时y =20.∴在边长60 cm 的直角边CB 上截CD =30 cm ,在边长为40 cm 的直角边AC 上截CF =20 cm 时,能使所剩残料最少.典题导入[例2] (2012·孝感统考)某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝ ⎛⎭⎪⎫0.05t -120 000t 2万元.(1)该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x );(2)当该公司的年产量为多少件时,当年所获得的利润最大? [自主解答] (1)当0<x ≤500时,f (x )=0.05x -120 000x 2-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=-x 220 000+19400x -12, 当x >500时,f (x )=0.05×500-120 000×5002-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=12-1400x ,故f (x )=⎩⎪⎨⎪⎧-120 000x 2+19400x -12,0<x ≤500,12-1400x ,x >500.(2)当0<x ≤500时,f (x )=-x 220 000+19400x -12=-120 000(x -475)2+34532, 故当x =475时,f (x )max =34532.当x >500时,f (x )=12-1400x <12-54=34432<34532, 故当该公司的年产量为475件时,当年获得的利润最大.由题悟法1.很多实际问题中变量间的关系,不能用同一个关系式给出,而是由几个不同的关系式构成分段函数,如出租车票价与路程之间的关系,就是分段函数.2.分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段变量的范围,特别是端点值.以题试法2.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x,3x (吨).(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解:(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4,且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x ,0≤x ≤45,20.4x -4.8,45<x ≤43,24x -9.6,x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4; 当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4, 解得x =1.5.所以甲户用水量为5x =5×1.5=7.5吨, 付费S 1=4×1.8+3.5×3=17.70元; 乙户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70元.典题导入[例3] (2012·广州模拟)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[自主解答] (1)设每年降低的百分比为x (0<x <1).则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年剩余面积为原来的22,则 a (1-x )m =22a ,即⎝ ⎛⎭⎪⎫12m 10=⎝ ⎛⎭⎪⎫1212,m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, ⎝ ⎛⎭⎪⎫12n 10≥⎝ ⎛⎭⎪⎫1232,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.由题悟法增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算和开方运算,要注意用已知给定的值对应求解.以题试法3.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1 690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,2013年预计经营总收入为________万元.解析:设年增长率为x ,则有40040%×(1+x )2=1 690,1+x =1310,因此2013年预计经营总收入为40040%×1310=1 300(万元).答案:1 3001.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D 注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.2.(2012·湖北三校联考)某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( )A .[4,8]B .[6,10]C .[4%,8%]D .[6%,100%]解析:选A 根据题意得,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R %≥128,整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].3.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,现在价格为8 100元的计算机经过15年的价格应降为( )A .2 000元B .2 400元C .2 800元D .3 000元解析:选B 设经过3个5年,产品价格为y 元,则y =8 100×⎝ ⎛⎭⎪⎫1-133=2 400.4.(2013·温州月考)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D.403元解析:选A 依题意可设s A (t )=20+kt ,s B (t )=mt ,又s A (100)=s B (100),∴100k +20=100m ,得k -m =-0.2.于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10,即两种方式电话费相差10元.5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 6.(2013·长春联合测试)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析:选B 设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n,经历n 次跌停后的价格为a ×1.1n×(1-10%)n=a ×1.1n×0.9n=a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损.7.(2012·河南调研)为了在“十一”黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不予优惠;②如果超过200元,但不超过500元,则按标价给予9折优惠;③如果超过500元,其中500元按第②条给予优惠,超过500元的部分给予7拆优惠.辛云和她母亲两次去购物,分别付款168元和423元,假设她们一次性购买上述同样的商品,则应付款额为______.解析:依题意,价值为x 元商品和实际付款数f (x )之间的函数关系式为f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤200,0.9x ,200<x ≤500,500×0.9+x -500×0.7,x >500.当f (x )=168时,由168÷0.9≈187<200,故此时x =168;当f (x )=423时,由423÷0.9=470∈(200,500],故此时x =470.所以两次共购得价值为470+168=638元的商品,又500×0.9+(638-500)×0.7=546.6元,即若一次性购买上述商品,应付款额为546.6元.答案:546.6元8.(2012·镇江模拟)如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析:设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486.答案:30 cm,20 cm9.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.解析:七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,则一月份到十月份的销售总额是3 860+500+2 [500(1+x %)+500(1+x %)2],根据题意有3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000, 即25(1+x %)+25(1+x %)2≥66, 令t =1+x %,则25t 2+25t -66≥0, 解得t ≥65或者t ≤-115(舍去),故1+x %≥65,解得x ≥20.答案:2010.(2012·湖南十二校联考)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过收益的20%.请分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因.解:对于函数模型y =f (x )=x150+2, 当x ∈[10,1 000]时,f (x )为增函数,f (x )max =f (1 000)=1 000150+2=203+2<9, 所以f (x )≤9恒成立.但当x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立.故函数模型y =x150+2不符合公司要求.11.高新开发区某公司生产一种品牌笔记本电脑的投入成本是4 500元/台.当笔记本电脑销售价为6 000元/台时,月销售量为a 台.市场分析的结果表明,如果笔记本电脑的销售价提高的百分率为x (0<x <1),那么月销售量减少的百分率为x 2.记销售价提高的百分率为x 时,电脑企业的月利润是y 元.(1)写出月利润y 与x 的函数关系式;(2)如何确定这种笔记本电脑的销售价,使得该公司的月利润最大.解:(1)依题意,销售价提高后变为6 000(1+x )元/台,月销售量为a (1-x 2)台,则y =a (1-x 2)[6 000(1+x )-4 500].即y =1 500a (-4x 3-x 2+4x +1)(0<x <1). (2)由(1)知y ′=1 500a (-12x 2-2x +4), 令y ′=0,得6x 2+x -2=0, 解得x =12或x =-23(舍去).当0<x <12时,y ′>0;当12<x <1时,y ′<0.故当x =12时,y 取得最大值.此时销售价为6 000×32=9 000(元).故笔记本电脑的销售价为9 000元时,该公司的月利润最大. 12.如图,已知矩形油画的长为a ,宽为b .在该矩形油画的四边镶金箔,四个角(图中斜线区域)装饰矩形木雕,制成一幅矩形壁画.设壁画的左右两边金箔的宽为x ,上下两边金箔的宽为y ,壁画的总面积为S .(1)用x ,y ,a ,b 表示S ;(2)若S 为定值,为节约金箔用量,应使四个矩形木雕的总面积最大.求四个矩形木雕总面积的最大值及对应的x ,y 的值.解:(1)由题意可得S =2bx +2ay +4xy +ab ,其中x >0,y >0. (2)依题意,要求四个矩形木雕总面积的最大值即求4xy 的最大值.因为a ,b ,x ,y 均大于0,所以2bx +2ay ≥22bx ·2ay ,从而S ≥4abxy +4xy +ab ,当且仅当bx =ay 时等号成立.令t =xy ,则t >0,上述不等式可化为4t 2+4ab ·t +ab -S ≤0, 解得-S -ab 2≤t ≤S -ab 2.因为t >0,所以0<t ≤S -ab2,从而xy ≤ab +S -2abS4.由⎩⎪⎨⎪⎧bx =ay ,S =2bx +2ay +4xy +ab ,得⎩⎪⎨⎪⎧x =abS -ab2b ,y =abS -ab2a.所以当x =abS -ab 2b ,y =abS -ab2a时,四个矩形木雕的总面积最大,最大值为ab +S -2abS .1.某地2011年底人口为500万,人均住房面积为6 m 2,如果该城市人口平均每年增长率为1%.问为使2021年底该城市人均住房面积增加到7 m 2,平均每年新增住房面积至少为(1.0110≈1.104 6)( )A .90万m 2B .87万m 2C .85万m 2D .80万m 2解析:选B 由题意500×1+1%10×7-500×610≈86.6(万m 2)≈87(万m 2).2.一高为H ,满缸水量为V 的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h )的大致图象可能是图中的________.解析:当h =0时,v =0可排除①、③;由于鱼缸中间粗两头细,∴当h 在H2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H2时,增加越来越慢.答案:②3.(2011·湖北高考)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解:(1)由题意,当0≤x ≤20时,v (x )=60; 当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13200-x ,20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x 200-x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20≤x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +200-x 22=10 0003,当且仅当x =200-x , 即x =100时,等号成立.所以当x =100时,f (x )在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.(2012·浙江金华阶段性检测)某民营企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资x (万元)的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.解:(1)当投资为x 万元,设A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题意可设f (x )=k 1x ,g (x )=k 2x .由图知f (1)=14,故k 1=14.又g (4)=52,故k 2=54.从而f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元, 则B 产品投入(10-x )万元, 设企业利润为y 万元.y =f (x )+g (10-x )=14x +5410-x (0≤x ≤10). 令t =10-x ,则y =10-t 24+54t =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10).当t =52时,y max =6516,此时x =3.75,10-x =6.25.即当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润为6516万元.。
2019年高考数学(理)一轮复习精品资料1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.1.几类函数模型及其增长差异 (1)几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a 、b 为常数,a ≠0) 反比例函数模型f (x )=kx +b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)(2)三种函数模型的性质2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:【疑点清源】1.要注意实际问题的自变量的取值范围,合理确定函数的定义域. 2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质. (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题. (3)解模:用数学知识和方法解决转化出的数学问题. (4)还原:回到题目本身,检验结果的实际意义,给出结论.高频考点一、用函数图象刻画变化过程例1、[2017·全国卷Ⅲ]某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案 A【变式探究】(1)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )答案(1)D (2)B解析(1)y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C;又因为小王在乙地休息10分钟,故排除B,故选D.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故选B.【感悟提升】判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【变式探究】已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )答案 D解析依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知,选D.高频考点二已知函数模型的实际问题例2、候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q10(其中a、b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a、b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?【感悟提升】求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.【变式探究】某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为kg.答案19解析由图象可求得一次函数的解析式为y=30x-570,令30x-570=0,解得x=19.高频考点三构造函数模型的实际问题例3、某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A.10.5万元B.11万元C.43万元D.43.025万元答案 C【变式探究】(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg2≈0.3010,100.0075≈1.017)()A.1.5%B.1.6%C.1.7%D.1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利B.略有亏损C.没有盈利也没有亏损D .无法判断盈亏情况 答案 (1)C (2)B解析 (1)设每年人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg2,所以lg(1+x )=lg240≈0.0075,所以100.0075=1+x ,得1+x ≈1.017,所以x ≈1.7%.(2)设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n元,经历n 次跌停后的价格为a ×1. 1n×(1-10%)n=a ×1.1n×0.9n=a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损.【举一反三】某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了km.答案 9【变式探究】 (1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过小时才能开车.(精确到1小时)(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21 答案 (1)5 (2)A解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)设该企业需要更新设备的年数为x , 设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1), 所以x 年的平均费用为y =100+0.5x +x x +x=x +100x+1.5,由基本不等式得y =x +100x +1.5≥2x ·100x+1.5=21. 5,当且仅当x =100x,即x =10时取等号,所以选A. 高频考点四、函数应用问题例4、已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7400x-40000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.(2)①当0<x ≤40时,W =-6(x -32)2+6104, 所以W max =W (32)=6104;②当x >40时,W =-40000x-16x +7360,由于40000x+16x ≥240000x×16x =1600,当且仅当40000x=16x ,即x =50∈(40,+∞)时,取等号,所以W取最大值为5760.综合①②知,当x=32时,W取得最大值6104万元。
专题58 巧选数学模型解排列组合问题【热点聚焦与扩展】纵观近几年的高考试题,排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力.除了以选择、填空的形式考查,也往往在解答题中与古典概型概率计算相结合进行考查.有一些问题如果直接从题目入手,处理起来比较繁琐.但若找到解决问题的合适模型,或将问题进行等价的转化.便可巧妙的解决问题.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明. (一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素. 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列. (二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列.例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子.7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可.【经典例题】例1.【2019届湖北省黄冈中学5月三模】对33000分解质因数得,则的正偶数因数的个数是( ) A. 48 B. 72 C. 64 D. 96 【答案】A由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个, 即的正偶数因数的个数是,故选A.例2.【2019届贵州省凯里市第一中学四模】集合,从集合中各取一个数,能组成( )个没有重复数字的两位数? A. 52 B. 58 C. 64 D. 70 【答案】B【解析】分析:分别从集合A ,B 取一个数字,再全排列,根据分步计数原理即可得到答案. 详解:例3.【2019届四川省 “联测促改”】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种.例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为( )A. 48B. 60C. 96D. 120 【答案】C对于()2,2,4,组合出的可能的算筹为:()()()()()()2,2,4,6,6,4,2,2,8,6,6,8,2,6,4,2,6,8共6种,可以组成的三位数的个数为: 3!23!42⨯+⨯种, 同理()2,3,3可以组成的三位数的个数为: 3!23!42⨯+⨯种, 利用加法原理可得:8根算筹可以表示三位数的个数(算筹不能剩余)为3!123!8163!962⨯+⨯=⨯=. 本题选择C 选项. 例4.已知集合(){}22,|1,,A x y xy x y Z =+≤∈, (){},|2,2,,B x y x y x y Z =≤≤∈,定义集合()()(){}12121122,|,,,A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素个数为( )A. 77B. 49C. 45D. 30例5.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有()A. 192种B. 128种C. 96种D. 12种【答案】C【解析】试题分析:根据题意,先分析A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,由组合数公式计算可得其填法数目,对于C、D两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得答案.根据题意,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有2 46C=种情况,对于C、D两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种,故选C.例6.【2019届黑龙江省牡丹江市第一高级中学高三上期末】将数字1,2,3,4,填入右侧的表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有()种A. 432B. 576C. 720D. 864【答案】B【解析】对符合题意的一种填法如图,行交换共有4424A=种,列交换共有4424A=种,所以根据分步计数原理得到不同的填表方式共有2424=576⨯种,故选B.例7. 设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130 【答案】D例8.已知{}1,2,3,,40S =L ,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190 【答案】C【解析】思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140-中寻找同奇同偶数的情况.,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种.例9.【2019届云南省昆明市第二次统考】定义“有增有减”数列{}n a 如下: *t N ∃∈,满足1t t a a +<,且*s N ∃∈,满足1S S a a +>.已知“有增有减”数列{}n a 共4项,若{}(),,1,2,3,4i a x y z i ∈=,且x y z <<,则数列{}n a 共有( )A. 64个B. 57个C. 56个D. 54个 【答案】D例10:方程10x y z w +++=的正整数解有多少组?非负整数解有多少组? 【答案】正整数解有84种,非负整数解有286种【解析】思路:本题可将10理解为10个1相加,而,,,x y z w 相当于四个盒子,每个盒子里装入了多少个1,则这个变量的值就为多少.从而将问题转化为相同元素分组的模型,可以使用挡板法得:3984C =种;非负整数解相当于允许盒子里为空,而挡板法适用于盒子非空的情况,所以考虑进行化归:()()()()10111114x y z w x y z w +++=⇒+++++++=,则1,1,1,1x y z w ++++这四个盒子非空即可.所以使用挡板法得:313286C =种【精选精练】1.【2019届山东省潍坊市二模】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( ) A.种 B.种 C.种 D.种【答案】A【解析】分析:该题属于有限制条件的排列问题,在解题的过程中,需要分情况讨论,因为“数”必须排在前三节,这个就是不动的,就剩下了五个不同的元素,所以需要对“数”的位置分三种情况,对于相邻元素应用捆绑法来解决即可.详解:当“数”排在第一节时有排法,当“数”排在第二节时有种排法,当“数”排在第三节时,当“射”和“御”两门课程排在第一、二节时有种排法,当“射”和“御”两门课程排在后三节的时候有种排法,所以满足条件的共有种排法,故选A.点睛:在解决问题时一是注意对“数”的位置分三种情况,二是在“数”排在第三节时,要对两个相邻元素的位置分类讨论,再者还要注意“数”排在第二节时,两个相邻元只能排在后四节. 2.【2019届北京师范大学附中二模】若自然数使得作竖式加法均不产生进位现象,则称为“开心数”.例如:32是“开心数”.因不产生进位现象;23不是“开心数”,因产生进位现象,那么,小于100的“开心数”的个数为( ) A. 9 B. 10 C. 11 D. 12 【答案】D3.【2019届广东省广州市第一次调研】某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种B. 24种C. 22种D. 20种 【答案】B【解析】第一类:男生分为1,1,1,女生全排,男生全排得323212A A ⋅=,第二类:男生分为2,1,所以男生两堆全排后女生全排22232212C A A ⋅=,不同的推荐方法共有121224+= ,故选B.4. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8S =,则S 的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( )A. 6B. 15C. 20D. 25 【答案】C【解析】思路:首先要理解“k A ∈,则1k A -∉且1k A +∉”,意味着“独立元”不含相邻的数,元素均为独立元,则说明3个元素彼此不相邻,从而将问题转化为不相邻取元素问题,利用插空法可得:3620C =种5.一个含有10项的数列{}n a 满足:11010,5,1,(1,2,,9)k k a a a a k +==-==L ,则符合这样条件的数列{}n a 有( )个A. 30B. 35C. 36D. 40 【答案】36种6.【2019届浙江省金丽衢十二校第二次联考】用0,1,2,3,4可以组成的无重复数字的能被3整除的三位数的个数是()A. 20B. 24C. 36D. 48【答案】A【解析】分析:先根据能被3整除的三位数字组成为012,024,123,234四种情况,再分类讨论排列数,最后相加得结果.详解:因为能被3整除的三位数字组成为012,024,123,234四种情况,所以对应排列数分别为因此一共有,选A.7.【2019届上海市松江、闵行区二模】13.设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.8.【2019届天津市十二重点中学联考(一)】用0,1,2,3,4组成没有重复数字的五位偶数,要求奇数不相邻,且0不与另外两个偶数相邻,这样的五位数一共有_______个.(用数字作答)【答案】169.对于各数互不相等的整数数组(是不小于的正整数),对于任意的,当时有,则称是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组中的逆序数为___________;若数组中的逆序数为,则数组中的逆序数为___________.【答案】 310.已知集合,集合的所有非空子集依次记为:,设分别是上述每一个子集内元素的乘积.(如果的子集中只有一个元素,规定其积等于该元素本身),那么__________.【答案】5【解析】所有子集的“乘积”之和即展开式中所有项的系数之和T-1,令,则故答案为511.【2019届浙江省嵊州市高三上期末】9某学校要安排2位数学老师、2位英语老师和1位化学老师分别担任高三年级中5个不同班级的班主任,每个班级安排1个班主任.由于某种原因,数学老师不担任A班的班主任,英语老师不担任B班的班主任,化学老师不担C班和D班的班主任,则共有__________种不同的安排方法.(用数字作答).【答案】32【解析】若数学老师分到,B C两班,共有212222=8A A A种分法,若数学老师分到,B D两班,共有212222=8A A A种分法,若数学老师分到,B E两班,共有2222=4A A种分法,若数学老师分到,C D两班,共有2222=4A A种分法,若数学老师分到,C E两班,共有2222=4A A种分法,若数学老师分到,D E两班,共有2222=4A A种分法,共有8+8+4+4+4+4=32种安排方法,故答案为32 .12.圆周上有20个点,过任意两点连接一条弦,这些弦在圆内的交点最多有多少个【答案】4845个。