2014年中考数学真题及答案-广西北海数学【学科网】
- 格式:docx
- 大小:912.30 KB
- 文档页数:9
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前广西南宁市2014年初中毕业升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高3m 时水位变化记作3m +,那么水位下降3m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下列图形中,是轴对称图形的是( )ABCD3.南宁东高铁火车站位于南宁市青秀区凤岭北路,火车站总建筑面积约为267 000平方米,其中数据267 000用科学记数法表示为( )A .426.710⨯ B .42.6710⨯ C .52.6710⨯D .60.26710⨯4.要使二次根式2x +在实数范围内有意义,则实数x 的取值范围是( )A .2x >B .2x ≥C .2x ->D .2x ≥- 5.下列运算正确的是( )A .236aa a =B .236()x x =C .623m m m ÷=D .642a a -=6.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图所示,若油面的宽160cm AB =,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm7.数据1,2,4,0,5,3,5的中位数和众数分别是( )A .3和2B .3和3C .0和5D .3和58.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角AOB ∠三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形9.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打6折,设购买种子数量为x 千克,付款金额y 元,则y 与x 的函数关系的图象大致是( )ABCD10.如图,已知二次函数22y x x =-+,当1x a -<<时,y 随x 的增大而增大,则实数a 的取值范围是( )A .1a >B .11a -<≤ C .0a > D .12a -<<11.如图,在□ABCD 中,点E 是AD 的中点,延长BC 到点F ,使:1:2CF BC =,连接DF ,EC .若5AB =,8AD =,4sin 5B =,则DF 的长等于( )A .10B .15C .17D .2512.已知点A 在双曲线2y x=-上,点B 在直线4y x =-上,且A ,B 两点关于y 轴对称,设点A 的坐标为(,)m n ,则m nn m+的值是 ( )A .10-B .8-C .6D .4毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.比较大小:5- 3(填“>”“<”或“=”). 14.如图,已知直线a b ∥,1120∠=,则2∠的度数是︒.15.因式分解:226a a -= .16.第45届世界体操锦标赛将于2014年10月3日至12日在南宁市隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是 .17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30的方向,则海岛C 到航线AB 的距离CD 等于 海里.18.如图,ABC △是等腰直角三角形,AC BC a ==,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切于点E ,F ,与AB 分别交于点G ,H ,且EH 的延长线和CB 的延长线交于点D ,则CD 的长为 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:2(1)4sin 45|3|--+-20.(本小题满分6分) 解方程:22124x x x -=--.21.(本小题满分8分)如图,ABC △三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C . (1)请画出ABC △向左平移5个单位长度后得到111A B C △;(2)请画出ABC △关于原点对称的222A B C △;(3)在x 轴上求作一点P ,使PAB △的周长最小,请画出PAB △,并直接写出点P 的坐标.22.(本小题满分8分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:图1图2(1)这次抽样调查中,一共抽查了多少名学生? (2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”的减压方式的人数.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)23.(本小题满分8分)如图,AB FC ∥,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G .(1)求证:ADE CFE △≌△; (2)若2GB =,4BC =,求AB 的长.24.(本小题满分10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1 200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?25.(本小题满分10分)如图1,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,90AEF ∠=,AE EF =,过点F 作射线BC 的垂线,垂足为H ,连接AC .图1图2(1)试判断BE 与FH 的数量关系,并说明理由; (2)求证:90ACF ∠=;(3)连接AF ,过A ,E ,F 三点作圆,如图2.若4EC =,15CEF ∠=,求AE 的长.26.(本小题满分10分)在平面直角坐标系中,抛物线2(1)y x k x k =+--与直线1y kx =+交于A ,B 两点,点A 在点B 的左侧.图1图2(1)如图1,当1k =时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出ABP △面积的最大值及此时点P 的坐标;(3)如图2,抛物线()21(0)y x k x k k =+-->与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线1y kx =+上是否存在唯一一点Q ,使得90OQC ∠=?若存在,请求出此时k 的值;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页)数学试卷 第8页(共28页)广西南宁市2014年初中毕业升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】水位下降3m 记作3m -,故选A. 【考点】用相反数表示相反意义的量. 2.【答案】D【解析】图形沿某条直线折叠后,直线两旁的部分能够重合的图形为轴对称图形,只有D 选项中的图案存在这样的直线,故选D. 【考点】对称轴图形的概念. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数.其中a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n 的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).此题5267000 2.6710=⨯,故选C.【考点】科学记数法表示较大的数. 4.【答案】D【解析】二次根式有意义的条件是被开方数为非负数,所以20x +≥,解得2x -≥,故选D. 【考点】二次根式的意义.【提醒】本题易犯的错误是认为被开方数大于0,而丢掉等号. 5.【答案】B【解析】A 为同底数幂相乘,指数应当相加,故错误;B 为幂的乘方,指数相乘,故正确;C 为同底数幂相除,底数不变指数相减,故错误;D 为合并同类项,字母及其指数不变,系数相加减,故错误,故选B. 【考点】整式的计算. 6.【答案】A【解析】作OC AB ⊥于C ,则80CB =,100OB =,由勾股定理得60OC =,所以油的最大深度为1006040cm -=,故选A.5 / 14【考点】圆的相关计算. 7.【答案】D【解析】将数据从小到大排列为0,1,2,3,4,5,5共7个数,位于最中间的一个数是3,所以中位数为3;数据5出现了两次,出现的次数最多,为众数,故选D. 【考点】中位数与众数的概念. 8.【答案】A【解析】方法一:对一般同学来说既快又准确的方法,是按照题目所规定的操作方法对矩形纸片进行折叠,剪切,展开后观察图形的形状与所给的选项进行对照,确定正确选项为A ; 方法二:空间想象能力好的同学可以通过空间想象得到选项A ,故选A. 【考点】动手操作能力,空间想象能力. 9.【答案】B【解析】一次购买2千克以内,5元/千克,表现在图象上为从原点出发的一条线段;超过2千克的种子价格打6折,为3元/千克,表现在图象上为此前二段图象的斜率减小,符合条件的图象为B ,故选B. 【考点】实际问题中的函数图象. 10.【答案】B【解析】此二次函数的开口向下,在对称轴左侧y 随x 的增大而增大;在对称轴右侧y 随x 的增大而减小.由图象及自变量取值范围判断a 的范围应在1-和1之间,故选B. 【考点】二次函数的增减性. 11.【答案】C【解析】由于四边形ABCD 为平行四边形,所以AD BC ∥,AD BC =,因为:1:2CF BC =,E 为AD 中点,所以ECFD 为平行四边形,所以4CF ED ==.作AH BC ⊥于点H ,做DM BC ⊥于点M ,由5AB =,4sin 5B =,知4AH =,3BH =,所以4DM =.由ABH DCM △≌△知3CM BH ==,所以1M F =,根据勾股定理得DF = C.【考点】平行四边形的性质,三角函数. 12.【答案】A数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】因为点(,)A m n 在双曲线2y x=-上,所以2mn =-;由于A ,B 关于y 轴对称,所以点B 坐标为(,)m n -,因为点B 在直线4y x =-上,所以44m m n --=+=-. 22()2(4)2(2)102m n m n mn m m mn +---⨯-+===--,故选A. 【考点】函数的意义,关于y 轴对称的点的坐标特征.第Ⅱ卷二、填空题 13.【答案】<【解析】有理数比较大小的方法:(1)根据正负性进行比较,正数0>>负数;(2)根据在数轴上的位置比较大小,在数轴上,左边的数一定小于右边的数;(3)根据绝对值的大小判断.此题53-<,故填<. 【考点】有理数大小的比较. 14.【答案】60【解析】由题意及图形知1∠的同位角与2∠互补,所以2=180120=60∠︒-︒︒ 【考点】平行线的性质. 15.【答案】2(3)a a -【解析】因式分解问题应首先考虑是否能提公因式,找公因式应从系数、字母和字母的指数三个方面考虑没有公因式或提公因式后,再根据项数考虑公式法,两项则判断是否可用平方差公式,三项则判断是否可用完全平方公式,三项以上则应考虑使用分组分解法.此题2262(3)a a a a -=-.【考点】因式分解. 16.【答案】23【解析】从3名同学(2男1女)中任选2名前往,列树形图如图,通过树形图可得选择两人共有6种可能情况,其中一男一女的情况有4种,所以选出的2名同学恰好是一男一女的概率是4263=.【考点】概率的计算. 17.【答案】7 / 14【解析】设CD 的长为x 海里,由题意知60CBD ∠=︒,30CAB ∠=︒,根据三角函数得AD =,BD =,20+=,解得x = 【考点】解直角三角形. 18.【解析】易得O 为AB 的中点,由圆周角及圆心角关系知1222.5∠=∠=︒,所以22.5DHB ∠=︒,又因为45ABC ∠=︒,22.5D DHB ∠=∠=︒,所以DB BH =(也可由OE BD ∥,OH OE =证得),根据圆及等腰直角三角形对称性知BH AG =,12OE OG a ==,由勾股定理知AB ,12AG DB a ===-,如图,所以1)2CD BC BD a a =+=+-.【考点】等腰直角三角形,圆中的相关角进行计算. 三、解答题19.【答案】解:1432134=-⨯++=++=原式【考点】实数的相关计算. 20.【答案】1x =- 【解析】解:数学试卷 第15页(共28页)数学试卷 第16页(共28页)2221,2(2)(2)(2)2(2)(2),224,22,1.x x x x x x x x x x x x x -=-+-+-=+-+-=-=-=-检验:1x =-时(2)(2)0x x +-≠,故1x =-是原分式方程的解. 【考点】分式方程的解法.21.【答案】(1)平移后的图形如图所示: (每画对一个点给1分)(2)关于原点对称的图形如图所示: (每画对一个点给1分) (3)如图,点(2,0)P 为所求.【考点】平移,中心对称,轴对称的作图.22.【答案】解:(1)抽查的学生人数为510%50÷=(人). (2)“体育活动”的人数为5030%15⨯=(人). 补全条形统计图如图所示:9 / 14(3)“享受美食”所对应扇形的圆心角的度数为103607250︒⨯=︒. (4)全校九年级采用“听音乐”的减压方式的人数约为1250012050⨯=(人). 【考点】扇形统计图,条形统计图的意义与应用,用样本估计总体的思想方法. 23.【答案】(1)证明:,.AB FC A ECF ∴∠=∠∥又,AED CEF ∠=∠且,.DE FE ADE CFE △≌△=∴ (2)解法一:,AB FC GBD GCF ∥△∽△,∴,GB BDGC CF ∴= 21=3.24CF CF∴=∴+, 由(1)得.ADE CFE △≌△3,AD CF ∴==31 4.AB AD DB ∴=+=+=解法二:取BC 的中点H ,连接,,ADE CFE AE CE △≌△,∴=∴EH 是ABC △的中位线, ∴EH AB ∥,且12EH AB =,.GBD GCF △∽△∴ .DB GB EH GH ∴= 12, 2.22EH EH ∴=∴=+ 2 4.AB EH ∴==【考点】三角形全等的证明,相似三角形的判定及性质.24.【答案】(1)设A 型公交车每辆x 万元,B 型公交车每辆y 万元,则2400,2350,x y x y +=⎧⎨+=⎩解得100,150.x y =⎧⎨=⎩ ∴A 型公交车每辆100万元,B 型公交车每辆150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10)a -辆,依题意得数学试卷 第19页(共28页)数学试卷 第20页(共28页)100150(10)1200,60100(10)680,a a a a +-⎧⎨+-⎩≤≥ 解得68a ≤≤.a 为整数, a ∴=6,7,8.∴该公司有三种购车方案.方案一:购买A 型公交车6辆,B 型公交车4辆; 方案二:购买A 型公交车7辆,B 型公交车3辆; 方案三:购买A 型公交车8辆,B 型公交车2辆.解法一:设购车总费用为W 万元,则100150(10)W a a =+-,即501500(68W a a =-+≤≤,且a 是整数). 此时W 随着a 的增大而减小.∴当8a =时,方案三的购车总费用最少,即5081500=1100W =-⨯+最小(万元).解法二:方案一的总费用为61004150=1200⨯+⨯(万元); 方案二的总费用为71003150=1150⨯+⨯(万元); 方案三的总费用为81002150=1100⨯+⨯(万元).因为110011501200,<< 所以,方案三的购车总费用最少. 购车最少总费用是1100万元.【考点】二元一次方程组,一元一次不等式组,一次函数性质的应用. 25.【答案】(1)BE FH =理由是:在正方形ABCD 中,90B ∠=︒,90BAE AEB ∴∠+∠=︒90,90,AEF FEC AEB ∠=︒∴∠+∠=︒BAE FEC ∴∠+∠,90.FH BC B FHE ⊥∴∠=∠=︒又AE EF =,,ABE EHF △≌△∴BE FH ∴=(2)证明:四边形ABCD 是正方形,45,.ACB AB BC ∠=︒=,,ABE EHF AB EH BC △≌△∴==,.BC EC EH EC BE CH ∴-=-∴=,.BE FH FH CH =∴=90,45.FHB FCH ∠=︒∴∠=︒180ACF ACB FCH ∴∠=︒-∠-∠180454590=︒-︒-︒=︒.(3)解法一:90,AEF AF ∠=︒∴是O 的直径,∴AF 的中点即为圆心O .连接OE ,则OE AF ⊥,OE 平分AEF ∠,90,45,AOE OEF ∴∠=︒∠=︒=4515=60.OEC OEF FEH ∴∠=∠+∠︒+︒︒连接OC ,由(2)知,90,ACF ∴∠=︒1,2OC AF OF OE OEC ∴===∴△是等边三角形. 4OE EC ∴==,即O 的半径为4.AE ∴长9042π.180π==解法二:90,AEF AF ∠=︒∴是O 的直径,∴AF 的中点即为圆心O .连接OE ,90.AOE FOE ∴∠=∠=︒190,,2ACF OC AF OF OE ∠=︒∴=== ∴点C 在O 上. 15,30.FEC COF ∠=︒∴∠=︒180180903060,EOC AOE COF ∴∠=︒-∠-∠=︒-︒-︒=︒OEC ∴△是等边三角形.4OE EC ∴==,即O 的半径为4.数学试卷 第23页(共28页)AE ∴长9042.180ππ== 【解析】正方形的性质,全等三角形的判定及性质,等腰直角三角形的性质,圆的相关性质,弧长的计算.26.【答案】(1)(1,0),2,3.A B-() (2)过点P 作PE x ⊥轴,交直线AB 于点E ,交x 轴于点F .过点B 作BG PE ⊥于点G .由(1)可知,当1k =时,抛物线的解析式为21,y x =-直线的解析式为 1.y x =+设点2(,1),P x x -则(,1),E x x +2211 2.PE x x x x =+-+=-++由(1)可知3,AF BG +=PAB PAE PBE S S S =+△△△1122AF PE BG PE =+ 1()2AF BG PE =+ 213(2)2x x =⨯⨯-++ 23=(2)2x x --++ 23127=()(12),228x x --+-<< ∴当12x =时,ABP △面积取得最大值为278. 此时,点P 坐标是13(,)24-. (3)解法一:假设在直线1y kx =+上存在唯一一点Q ,能得90.OQC ∠=︒过点Q 作QH x ⊥轴于点H ,设(,0),H x由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-0,(,0),k C k ∴->222222(1)()QC HC QH x kx k ∴=+=++=-.化简得22(1)310.k x kx +++=存在唯一一点Q ,∴该方程有唯一解,即22(3)4(1)10k k ∆=-+⨯=解得k =.0,5k k ∴=> 解法二:假设在直线1y x =+上存在唯一一点Q ,使得90.OQC ∠=︒过点Q 作QH x ⊥轴于点H ,设(,0),H x 由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-0,(,0),k C k ∴->, 1.CH x k QH kx ∴=+=+90,OQC ∠=︒90.CQH HQO ∴∠+∠=︒又90CQH HQO ∠+∠=︒,.CQH QOH ∴∠=∠90CH QHO ∠∠=︒Q=,.QHC OHQ ∴~△△2,.CH QH QH CH HO QH HO∴=∴= 2(1)(),kx x k x ∴+=+化简得22(1)310.k x kx +++=解法三:假设在直线1y x =+上存在唯一一点Q ,使得90.OQC ∠=︒过点Q 作QH x ⊥轴于点H ,设(,0),H x 由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-数学试卷 第27页(共28页)0,(,0),k C k >∴-设OC 的中点为M ,则M (,0)2k-, 190,.2OQC QM OC ∠=︒∴= 又(,QM OC k ==- 2221()(1)(),24k x kx k ∴+++=- 化简得22(1)310.k x kx +++=【考点】待定系数法求函数解析式,一次函数、二次函数的性质,勾股定理,一元二次方程,相似三角形的判定及性质等.。
广西玉林市、防城港市2014年中考数学真题试题一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选B.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.(3分)(2014•玉林)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.4.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.5.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:分别找出图形从正面、左面、和上面看所得到的图形即可.解答:解:从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的上面看可得有2列小正方形,左面有2个小正方形,右上角有1个小正方形;故选:C.点评:本题考查了三视图的知识,注意所有的看到的棱都应表现在三视图中.6.(3分)(2014•玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.8.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选A.点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.10.(3分)(2014•玉林)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm考点:等腰三角形的性质;解一元一次不等式组;三角形三边关系.分析:设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.解答:解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=xcm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.11.(3分)(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个考点:正多边形和圆.分析:根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.解答:解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有2个位置,即有2个直角三角形,综上所述,△ABC是直角三角形的个数有6+2=8个.故选C.点评:本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.12.(3分)(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)(2014•玉林)在平面直角坐标系中,点(﹣4,4)在第二象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(﹣4,4)在第二象限.故答案为:二.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.(3分)(2014•玉林)下表是我市某一天在不同时段测得的气温情况0:00 4:00 8:00 12:00 16:00 20:0025℃27℃29℃32℃34℃30℃则这一天气温的极差是9 ℃.考点:极差.分析:根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.解答:解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.考点:切线的性质;等边三角形的判定与性质;特殊角的三角函数值.专题:计算题.分析:连结OM,OM的反向延长线交EF与C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MF,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.解答:解:连结OM,OM的反向延长线交EF与C,如图,∵直线MN与⊙O相切于点M,∴OM⊥MF,∵EF∥MN,∴MC⊥EF,∴CE=CF,∴ME=MF,而ME=EF,∴ME=EF=MF,∴△MEF为等边三角形,∴∠E=60°,∴cos∠E=cos60°=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.17.(3分)(2014•玉林)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是7+.考点:直角梯形.分析:根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.解答:解:过点A作AE⊥BD于点E,∵AD∥BC,∠A=120°,∴∠ABC=60°,∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABE=∠ADE=30°,∴AB=AD,∴AE=AD=1,∴DE=,则BD=2,∵∠C=90°,∠DBC=30°,∴DC=BD=,∴BC===3,∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+.故答案为:7+.点评:此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.18.(3分)(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).考点:反比例函数综合题.专题:综合题.分析:作AE⊥y轴于E,CF⊥y轴于F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有=;由S△AOM=|k1|,S△CO N=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1﹣k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=﹣k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.解答:解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,所以①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),所以②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,所以③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,所以④正确.故答案为①④.点评:本题考查了反比例函数的综合题:熟练掌握反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质.三、解答题(共8小题,满分66分。
广西桂林市2014年中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 2014的倒数是( ) A .12014 B.-12014C.|2014|D.-2014考点:倒数.分析:根据倒数的定义求解. 解答:解:2014的倒数是.故选:A .点评:本题主要考查了倒数的定义,解题的关键是熟记定义. 2.如图。
已知AB ∥CD ,∠1=56°,则∠2的度数是( ) A.34° B.56° C.65° D.124°考点:平行线的性质. 分析:根据两直线平行,同位角相等解答即可. 解答:解:∵AB ∥CD ,∠1=56°, ∴∠2=∠1=56°. 故选:B .点评:本题考查了平行线的性质,熟记性质是解题的关键. 3.下列各式中,与2a 是同类项的是( ) A .3a B .2ab C .-3a 2 D .a 2b 考点:同类项.分析:本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a ,a 的指数为1,解答:解:2a 中的字母是a ,a 的指数为1,A 、3a 中的字母是a ,a 的指数为1,故A 选项正确;B 、2ab 中字母为a 、b ,故B 选项错误;C 、中字母a 的指数为2,故C 选项错误;D 、字母与字母指数都不同,故D 选项错误, 故选:A .点评:考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )DA B C考点:简单几何体的三视图.21A B C D 第2题图分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有看到的棱都应表现在三视图中5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为()A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.点评:此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.6.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=3考点:一次函数图象上点的坐标特征.分析:直接把点(2,0),(0,3)代入一次函数y=kx+b(k≠0),求出k,b的值即可.解答:解:∵由函数图象可知函数图象过点(2,0),(0,3),∴,解得.故选:D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似考点:命题与定理;相似三角形的判定.分析:利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.点评:本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.8.两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选:A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.9.下列图形中,既是轴对称图形又是中心对称图形的是()考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,是轴对称图形,故A选项错误;B、此图形是中心对称图形,不是轴对称图形,故B选项错误;C、此图形是中心对称图形,也是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。
广西百色市2014年中考数学真题试题一、单项选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•百色)化简得()A.100 B.10 C.D.±10考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.2.(3分)(2014•百色)下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:本题根据中心对称图形的概念求解.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014•百色)如图,已知AB∥CD,∠1=62°,则∠2的度数是()A.28°B.62°C.108°D.118°考点:平行线的性质.分析:利用“两直线平行,同位角相等”进行解答.解答:解:如图,AB∥CD,∠1=62°,∴∠2=∠1=62°.故选:B.点评:本题考查了平行线的性质.平行线性质定理是:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.(3分)(2014•百色)在3月份,某县某一周七天的最高气温(单位:℃)分别为:12,9,10,6,11,12,17,则这组数据的极差是()A.6B.11 C.12 D.17考点:极差.分析:根据极差的定义即可求解.解答:解:这组数据的极差=17﹣6=11.故选B.点评:本题考查了极差的知识,极差反映了一组数据变化范围的大小,解答本题的关键是掌握求极差的方法:用一组数据中的最大值减去最小值.5.(3分)(2014•百色)下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2考点:完全平方公式.分析:根据整式乘法中完全平方公式(a±b)2=a2±2ab+b2,即可作出选择.解答:解:A.(a﹣b)2=a2﹣2ab+b2,故A选项正确;B.(a﹣b)2=a2﹣b2,故B选项错误;C.(a﹣b)2=a2+2ab+b2,故C选项错误;D.(a﹣b)2=a2﹣ab+b2,故D选项错误;故选A.点评:本题考查了完全平方公式,关键是要了解(x﹣y)2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.6.(3分)(2014•百色)下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球考点:简单几何体的三视图.分析:根据主视图是物体从前往后看得到的视图,俯视图是物体从上往下看得到的视图,逐一判断即可.解答:解:A、圆柱的主视图是矩形,俯视图是矩形,主视图与俯视图相同,故本选项错误;B、正方体的主视图是正方形,俯视图是正方形,主视图与俯视图相同,故本选项错误;C、圆锥的主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故本选项正确;D、球的主视图是圆,俯视图是圆,主视图与俯视图相同,故本选项错误.故选C.点评:本题考查了简单几何体的三视图及空间想象能力,比较简单.7.(3分)(2014•百色)已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2B.0C.0或2 D.0或﹣2考点:一元二次方程的解.分析:直接把x=2代入已知方程就得到关于m的方程,再解此方程即可.解答:解:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.把求未知系数的问题转化为方程求解的问题.8.(3分)(2014•百色)下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选D.点评:本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.(3分)(2014•百色)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,20考点:中位数;众数.分析:根据众数的定义即可得到捐款金额的众数是15;在12个数据中,第6个数和第7个数分别是15元,20元,然后根据中位数的定义求解.解答:解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10.(3分)(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,A B=6m,∴BC=6m,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6m,∴DC=CB+BD=6+6(m).故选A.点评:本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.11.(3分)(2014•百色)在下列叙述中:①一组对边相等的四边形是平行四边形;②函数y=中,y随x的增大而减小;③有一组邻边相等的平行四边形是菱形;④有不可能事件A发生的概率为0.0001.正确的叙述有()A.0个B.1个C.2个D.3个考点:平行四边形的判定;反比例函数的性质;菱形的判定;概率的意义.分析:分别利用平行四边形的判定以及菱形的判定和反比例函数的性质以及不可能事件等知识分别分析得出即可.解答:解:①一组对边相等的四边形不一定是平行四边形,故此选项错误;②函数y=中,y随x的增大而减小,此选项正确;③有一组邻边相等的平行四边形是菱形,此选项正确;④有不可能事件A发生的概率为0.0001,不可能是发生的概率为0,故此选项错误.故选:C.点评:此题主要考查了平行四边形的判定以及菱形的判定和反比例函数的性质等知识,正确记忆相关性质与判定是解题关键.12.(3分)(2014•百色)已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,PA的长为半径的圆的面积最小时,点P的坐标为()A.(1,﹣1)B.(0,0)C.(1,1)D.(,)考点:一次函数图象上点的坐标特征;垂线段最短;等腰直角三角形;圆的认识.分析:当PA最小时,以点P为圆心,PA的长为半径的圆的面积最小.根据垂线段最短可知,过点A作AP与直线y=x垂直,垂足为点P,此时PA最小.解答:解:如图,过点A作AP与直线y=x垂直,垂足为点P,此时PA最小,则以点P为圆心,PA的长为半径的圆的面积最小.过点P作PM与x轴垂直,垂足为点M.在直角△OAP中,∵∠OPA=90°,∠POA=45°,∴∠OAP=45°,∴PO=PA,∵PM⊥x轴于点M,∴OM=MA=OA=1,∴PM=OM=1,∴点P的坐标为(1,1).故选C.点评:本题考查了一次函数图象上点的坐标特征,垂线的性质,等腰直角三角形的判定与性质及对圆的认识,综合性较强,难度适中,得出点P的位置是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2014•百色)计算:2000﹣2015= ﹣15 .考点:有理数的减法.分析:根据有理数的减法运算进行计算即可得解.解答:解:2000﹣2015=﹣15.故答案为:﹣15.点评:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.14.(3分)(2014•百色)已知甲、乙两组抽样数据的方差:S=95.43,S=5.32,可估计总体数据比较稳定的是乙组数据.考点:方差.分析:根据方差的定义判断.方差越小数据越稳定.解答:解:∵S甲2=95.43,S乙2=5.32,∴S甲2>S乙2,∴总体数据比较稳定的是乙.故答案为乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2014•百色)如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= 25°.考点:圆周角定理.分析:直接根据圆周角定理进行解答即可.解答:解:∵AB是⊙O的直径,∠AOC=50°,∴∠ABC=∠AOC=25°.故答案为:25°.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.16.(3分)(2014•百色)方程组的解为.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则方程组的解为.故答案为:点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.(3分)(2014•百色)如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是50 °.考点:作图—基本作图;等腰三角形的性质.分析:由作图可知,MN是线段AC的垂直平分线,故可得出结论.解答:解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,故答案为:50.点评:本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.18.(3分)(2014•百色)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为(2n+1)2﹣(2n﹣1)2=8n .考点:规律型:数字的变化类.分析:通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n ﹣1)2=8n.解答:解:通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n.故答案为:(2n+1)2﹣(2n﹣1)2=8n.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(共8小题,共66分,解答题应写出文字说明、证明过程或演算步骤)19.(6分)(2014•百色)计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1﹣1+﹣1﹣3×=1﹣1+﹣1﹣=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014•百色)当a=2014时,求÷(a+)的值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.解答:解:原式=÷=•=,当a=2014时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2014•百色)如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的规律,可得出点E的坐标,再写出反比例函数的解析式,再写出答案即可.解答:解:∵点B关于x轴的对称点是点E,B(﹣2,3),∴点E坐标为(﹣2,﹣3),设过点E的反比例函数解析式为y=,∴k=6,∴过点E的反比例函数解析式为y=,∴第三象限内该反比例函数图象所经过的所有格点的坐标为(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).点评:本题考查了反比例函数图象上点的坐标特征,以及关于x、y轴对称点的坐标的特点.如(a,b)关于x轴对称点的坐标(a,﹣b),关于y轴对称点的坐标(﹣a,b).22.(8分)(2014•百色)如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.考点:全等三角形的判定与性质;矩形的判定.分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用“角角边”证明△AED和△CFB 全等即可;(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.解答:(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△C FB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.点评:本题考查了全等三角形的判定与性质,矩形的判定,平行四边形的判定以及平行四边形与矩形的联系,熟记各图形的判定方法和性质是解题的关键.23.(8分)(2014•百色)学习委员统计全班50位同学对语文、数学、英语、体育、音乐五个科目最喜欢情况,所得数据用表格与条形图描述如下:科目语文数学英语体育音乐人数10 a 15 3 2(1)表格中a的值为20 ;(2)补全条形图;(3)小李是最喜欢体育之一,小张是最喜欢音乐之一,计划从最喜欢体育、音乐的人中,每科目各选1人参加学校训练,用列表或树形图表示所有结果,并求小李、小张至少有1人被选上的概率是多少?考点:条形统计图;统计表;列表法与树状图法.分析:(1)用总人数减去语文,英语,体育,音乐的为数即可.(2)用a=20补全条形统计图.(3)根据题意,利用树形图表示.解答:解:(1)a=50﹣10﹣15﹣3﹣2=20(人)故答案为:20.(2)如图,(3)根据题意画树形图如下:共有6种情况,小李、小张至少有1人被选的有4种,小李、小张至少有1人被选上的概率==.点评:此题考查了条形统计图,统计表和列表法与树状图法的综合应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.(10分)(2014•百色)有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?考点:一次函数的应用;一元一次不等式的应用.分析:(1)首先设小组原先生产x件产品,根据“不能完成任务”“提前完成任务”列出不等式组,解不等式组,根据x是整数可得出x的值;(2)由(1)中的数值,算出策略二的费用,进一步比较得出答案即可.解答:解:(1)每条生产线原先每天最多能组装x台产品,根据题意可得,解得:15<x<17,∵x的值应是整数,∴x最大为17.答:每条生产线原先每天最多能组装17台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:520÷19×350×2≈28×350×2=19600元;所以策略一较省费用.点评:此题考查一元一次不等式组的实际运用,需要注意台数与天数的取值为整数.25.(10分)(2014•百色)如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.考点:正方形的性质;相似三角形的判定与性质;解直角三角形.分析:(1)根据线段中点定义求出EC=DF=2,再利用勾股定理列式求出DE,然后三角形的中位线平行于第三边并且等于第三边的一半求出NF,再求出DN,再根据三角形的周长的定义列式计算即可得解;利用勾股定理列式求出AF,再根据锐角的正弦等于对边比斜边列式计算即可得解;(2)利用“边角边”证明△A DF和△DCE全等,根据全等三角形对应边相等可得AF=DE,全等三角形对应角相等可得∠DAF=∠CDE,再求出AF⊥DE,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得D F=EC=2NF,然后根据∠DAF和∠CDE 的余弦列式整理即可得证.解答:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.点评:本题考查了正方形的性质,三角形的中位线平行于第三边并且等于第三边的一半的,全等三角形的判定与性质,解直角三角形,锐角三角函数的定义,(2)求出三角形全等,再根据等角的余弦相等列出等式求解更简便.26.(12分)(2014•百色)已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).考点:二次函数综合题;解一元二次方程-直接开平方法;待定系数法求二次函数解析式;等腰三角形的性质;勾股定理;切线的性质;切线长定理.专题:综合题.分析:(1)由切线的性质可得∠MPO=90°,根据勾股定理可求出PO,然后由面积法可求出PK,然后运用勾股定理可求出OK,就可得到点P的坐标.(2)可设顶点为(0,6)的抛物线的解析式为y=ax2+6,然后将点P的坐标代入就可求出抛物线的解析式.(3)直线y=m与⊙M相切有两种可能,只需对这两种情况分别讨论就可求出对应多边形的面积.解答:解:(1)如图1,∵⊙M与OP相切于点P,∴MP⊥OP,即∠MPO=90°.∵点M(0,4)即OM=4,MP=2,∴OP=2.∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,∴OQ=OP,∠POK=∠QOK.∴OK⊥PQ,QK=PK.∴PK===.∴OK==3.∴点P的坐标为(,3).(2)如图2,设顶点为(0,6)的抛物线的解析式为y=ax2+6,∵点P(,3)在抛物线y=ax2+6上,∴3a+6=3.解得:a=﹣1.则该抛物线的解析式为y=﹣x2+6.(3)当直线y=m与⊙M相切时,则有=2.解得;m1=2,m2=6.①m=2时,如图3,则有OH=2.当y=2时,解方程﹣x2+6=2得:x=±2,则点C(2,2),D(﹣2,2),CD=4.同理可得:AB=2.则S梯形ABCD=(DC+AB)•OH=(4+2)×2=4+2.②m=6时,如图4,此时点C、点D与点N重合.S△ABC=AB•OC=×2×6=6.综上所述:点A、B、C、D围成的多边形的面积为4+2或6.点评:本题考查了用待定系数法求二次函数的解析式、圆的切线的性质、切线长定理、等腰三角形的性质、勾股定理、解一元二次方程等知识,有一定的综合性,难度适中.。
2014年广西玉林市、防城港市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()3.(3分)(2014•玉林)计算(2a2)3的结果是()4.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()5.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.6.(3分)(2014•玉林)下列命题是假命题的是()7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()8.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A . B . C . D .9.(3分)(2014•玉林)x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )10.(3分)(2014•玉林)在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )11.(3分)(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC 的顶点都在格点上.设定AB 边如图所示,则△ABC 是直角三角形的个数有( )12.(3分)(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )..二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.14.(3分)(2014•玉林)在平面直角坐标系中,点(﹣4,4)在第象限.15.(3分)(2014•玉林)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是℃.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.17.(3分)(2014•玉林)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是.18.(3分)(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).三、解答题(共8小题,满分66分。
广西南宁市2014年初中毕业升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】水位下降3m 记作3m -,故选A.【考点】用相反数表示相反意义的量.2.【答案】D【解析】图形沿某条直线折叠后,直线两旁的部分能够重合的图形为轴对称图形,只有D 选项中的图案存在这样的直线,故选D.【考点】对称轴图形的概念.3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数.其中a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n 的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).此题5267000 2.6710=⨯,故选C.【考点】科学记数法表示较大的数.4.【答案】D【解析】二次根式有意义的条件是被开方数为非负数,所以20x +≥,解得2x -≥,故选D.【考点】二次根式的意义.【提醒】本题易犯的错误是认为被开方数大于0,而丢掉等号.5.【答案】B【解析】A 为同底数幂相乘,指数应当相加,故错误;B 为幂的乘方,指数相乘,故正确;C 为同底数幂相除,底数不变指数相减,故错误;D 为合并同类项,字母及其指数不变,系数相加减,故错误,故选B.【考点】整式的计算.6.【答案】A【解析】作OC AB ⊥于C ,则80CB =,100OB =,由勾股定理得60OC =,所以油的最大深度为1006040cm -=,故选A.【考点】圆的相关计算.7.【答案】D【解析】将数据从小到大排列为0,1,2,3,4,5,5共7个数,位于最中间的一个数是3,所以中位数为3;数据5出现了两次,出现的次数最多,为众数,故选D.【考点】中位数与众数的概念.8.【答案】A【解析】方法一:对一般同学来说既快又准确的方法,是按照题目所规定的操作方法对矩形纸片进行折叠,剪切,展开后观察图形的形状与所给的选项进行对照,确定正确选项为A ;方法二:空间想象能力好的同学可以通过空间想象得到选项A ,故选A.【考点】动手操作能力,空间想象能力.9.【答案】B【解析】一次购买2千克以内,5元/千克,表现在图象上为从原点出发的一条线段;超过2千克的种子价格打6折,为3元/千克,表现在图象上为此前二段图象的斜率减小,符合条件的图象为B ,故选B.【考点】实际问题中的函数图象.10.【答案】B【解析】此二次函数的开口向下,在对称轴左侧y 随x 的增大而增大;在对称轴右侧y 随x 的增大而减小.由图象及自变量取值范围判断a 的范围应在1-和1之间,故选B.【考点】二次函数的增减性.11.【答案】C【解析】由于四边形ABCD 为平行四边形,所以AD BC ∥,AD BC =,因为:1:2CF BC =,E 为AD 中点,所以ECFD 为平行四边形,所以4CF ED ==.作AH BC ⊥于点H ,做DM BC ⊥于点M ,由5AB =,4sin 5B =,知4AH =,3BH =,所以4DM =.由ABH DCM △≌△知3CM BH ==,所以1MF =,根据勾股定理得DF C.【考点】平行四边形的性质,三角函数.12.【答案】A【解析】因为点(,)A m n 在双曲线2y x=-上,所以2mn =-;由于A ,B 关于y 轴对称,所以点B 坐标为(,)m n -,因为点B 在直线4y x =-上,所以44m m n --=+=-.22()2(4)2(2)102m n m n mn m m mn +---⨯-+===--,故选A. 【考点】函数的意义,关于y 轴对称的点的坐标特征.第Ⅱ卷二、填空题13.【答案】<【解析】有理数比较大小的方法:(1)根据正负性进行比较,正数0>>负数;(2)根据在数轴上的位置比较大小,在数轴上,左边的数一定小于右边的数;(3)根据绝对值的大小判断.此题53-<,故填<.【考点】有理数大小的比较.14.【答案】60【解析】由题意及图形知1∠的同位角与2∠互补,所以2=180120=60∠︒-︒︒【考点】平行线的性质.15.【答案】2(3)a a -【解析】因式分解问题应首先考虑是否能提公因式,找公因式应从系数、字母和字母的指数三个方面考虑没有公因式或提公因式后,再根据项数考虑公式法,两项则判断是否可用平方差公式,三项则判断是否可用完全平方公式,三项以上则应考虑使用分组分解法.此题2262(3)a a a a -=-.【考点】因式分解.16.【答案】23【解析】从3名同学(2男1女)中任选2名前往,列树形图如图,通过树形图可得选择两人共有6种可能情况,其中一男一女的情况有4种,所以选出的2名同学恰好是一男一女的概率是4263=.【考点】概率的计算.17.【答案】【解析】设CD 的长为x 海里,由题意知60CBD ∠=︒,30CAB ∠=︒,根据三角函数得AD =,BD =,20x +,解得x =【考点】解直角三角形.18.【解析】易得O 为AB 的中点,由圆周角及圆心角关系知1222.5∠=∠=︒,所以22.5DHB ∠=︒,又因为45ABC ∠=︒,22.5D DHB ∠=∠=︒,所以DB BH =(也可由OE BD ∥,OH OE =证得),根据圆及等腰直角三角形对称性知BH AG =,12OE OG a ==,由勾股定理知AB =,12AG DB a ===-,如图,所以1)2CD BC BD a a =+=+-=.【考点】等腰直角三角形,圆中的相关角进行计算.三、解答题19.【答案】解:14321324=-⨯++=-++=原式 【考点】实数的相关计算.20.【答案】1x =-【解析】解:2221,2(2)(2)(2)2(2)(2),224,22,1.x x x x x x x x x x x x x -=-+-+-=+-+-=-=-=-检验:1x =-时(2)(2)0x x +-≠,故1x =-是原分式方程的解.【考点】分式方程的解法.21.【答案】(1)平移后的图形如图所示:(每画对一个点给1分)(2)关于原点对称的图形如图所示:(每画对一个点给1分)(3)如图,点(2,0)P 为所求.【考点】平移,中心对称,轴对称的作图.22.【答案】解:(1)抽查的学生人数为510%50÷=(人).(2)“体育活动”的人数为5030%15⨯=(人).补全条形统计图如图所示:(3)“享受美食”所对应扇形的圆心角的度数为103607250︒⨯=︒.(4)全校九年级采用“听音乐”的减压方式的人数约为1250012050⨯=(人). 【考点】扇形统计图,条形统计图的意义与应用,用样本估计总体的思想方法.23.【答案】(1)证明:,.AB FC A ECF ∴∠=∠∥ 又,AED CEF ∠=∠且,.DE FE ADE CFE △≌△=∴(2)解法一:,AB FC GBD GCF ∥△∽△,∴,GB BD GC CF∴= 21=3.24CF CF∴=∴+, 由(1)得.ADE CFE △≌△3,AD CF ∴==31 4.AB AD DB ∴=+=+=解法二:取BC 的中点H ,连接,,ADE CFE AE CE △≌△,∴=∴EH 是ABC △的中位线,∴EH AB ∥,且12EH AB =, .GBD GCF △∽△∴.DB GB EH GH∴= 12, 2.22EH EH ∴=∴=+ 2 4.AB EH ∴==【考点】三角形全等的证明,相似三角形的判定及性质.24.【答案】(1)设A 型公交车每辆x 万元,B 型公交车每辆y 万元,则2400,2350,x y x y +=⎧⎨+=⎩解得100,150.x y =⎧⎨=⎩∴A 型公交车每辆100万元,B 型公交车每辆150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10)a -辆,依题意得100150(10)1200,60100(10)680,a a a a +-⎧⎨+-⎩≤≥ 解得68a ≤≤. a 为整数,a ∴=6,7,8.∴该公司有三种购车方案.方案一:购买A 型公交车6辆,B 型公交车4辆;方案二:购买A 型公交车7辆,B 型公交车3辆;方案三:购买A 型公交车8辆,B 型公交车2辆.解法一:设购车总费用为W 万元,则100150(10)W a a =+-,即501500(68W a a =-+≤≤,且a 是整数). 此时W 随着a 的增大而减小.∴当8a =时,方案三的购车总费用最少,即5081500=1100W =-⨯+最小(万元).解法二:方案一的总费用为61004150=1200⨯+⨯(万元);方案二的总费用为71003150=1150⨯+⨯(万元);方案三的总费用为81002150=1100⨯+⨯(万元).因为110011501200,<< 所以,方案三的购车总费用最少.购车最少总费用是1100万元.【考点】二元一次方程组,一元一次不等式组,一次函数性质的应用.25.【答案】(1)BE FH =理由是:在正方形ABCD 中,90B ∠=︒,90BAE AEB ∴∠+∠=︒90,90,AEF FEC AEB ∠=︒∴∠+∠=︒BAE FEC ∴∠+∠,90.FH BC B FHE ⊥∴∠=∠=︒又AE EF =,,ABE EHF △≌△∴BE FH ∴=(2)证明:四边形ABCD 是正方形,45,.ACB AB BC ∠=︒=,,ABE EHF AB EH BC △≌△∴==,.BC EC EH EC BE CH ∴-=-∴=,.BE FH FH CH =∴=90,45.FHB FCH ∠=︒∴∠=︒180ACF ACB FCH ∴∠=︒-∠-∠180454590=︒-︒-︒=︒.(3)解法一:90,AEF AF ∠=︒∴是O 的直径,∴AF 的中点即为圆心O .连接OE ,则OE AF ⊥,OE 平分AEF ∠,90,45,AOE OEF ∴∠=︒∠=︒=4515=60.OEC OEF FEH ∴∠=∠+∠︒+︒︒连接OC ,由(2)知,90,ACF ∴∠=︒1,2OC AF OF OE OEC ∴===∴△是等边三角形. 4OE EC ∴==,即O 的半径为4.AE ∴长9042π.180π==解法二:90,AEF AF ∠=︒∴是O 的直径,∴AF 的中点即为圆心O .连接OE ,90.AOE FOE ∴∠=∠=︒190,,2ACF OC AF OF OE ∠=︒∴=== ∴点C 在O 上.15,30.FEC COF ∠=︒∴∠=︒180180903060,EOC AOE COF ∴∠=︒-∠-∠=︒-︒-︒=︒OEC ∴△是等边三角形.4OE EC ∴==,即O 的半径为4.AE ∴长9042.180ππ== 【解析】正方形的性质,全等三角形的判定及性质,等腰直角三角形的性质,圆的相关性质,弧长的计算.26.【答案】(1)(1,0),2,3.A B-() (2)过点P 作PE x ⊥轴,交直线AB 于点E ,交x 轴于点F .过点B 作BG PE ⊥于点G .由(1)可知,当1k =时,抛物线的解析式为21,y x =-直线的解析式为 1.y x =+设点2(,1),P x x -则(,1),E x x +2211 2.PE x x x x =+-+=-++由(1)可知3,AF BG +=PAB PAE PBE S S S =+△△△1122AF PE BG PE =+ 1()2AF BG PE =+ 213(2)2x x =⨯⨯-++ 23=(2)2x x --++ 23127=()(12),228x x --+-<< ∴当12x =时,ABP △面积取得最大值为278. 此时,点P 坐标是13(,)24-. (3)解法一:假设在直线1y kx =+上存在唯一一点Q ,能得90.OQC ∠=︒过点Q 作QH x ⊥轴于点H ,设(,0),H x由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-0,(,0),k C k ∴->222222(1)()QC HC QH x kx k ∴=+=++=-.化简得22(1)310.k x kx +++=存在唯一一点Q ,∴该方程有唯一解,即22(3)4(1)10k k ∆=-+⨯=解得k =.0,5k k ∴=> 解法二:假设在直线1y x =+上存在唯一一点Q ,使得90.OQC ∠=︒ 过点Q 作QH x ⊥轴于点H ,设(,0),H x 由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-0,(,0),k C k ∴->, 1.CH x k QH kx ∴=+=+90,OQC ∠=︒90.CQH HQO ∴∠+∠=︒又90CQH HQO ∠+∠=︒,.CQH QOH ∴∠=∠90CH QHO ∠∠=︒Q=,.QHC OHQ ∴~△△2,.CH QH QH CH HO QH HO∴=∴= 2(1)(),kx x k x ∴+=+化简得22(1)310.k x kx +++=解法三:假设在直线1y x =+上存在唯一一点Q ,使得90.OQC ∠=︒过点Q 作QH x ⊥轴于点H ,设(,0),H x 由已知点Q 为直线AB 上一动点,则(,1),Q x kx +令2(1)0,x k x k +--=可得121,,x x k ==-11 / 11 0,(,0),k C k >∴-设OC 的中点为M ,则M (,0)2k -, 190,.2OQC QM OC ∠=︒∴= 又(,QM OC k ==- 2221()(1)(),24k x kx k ∴+++=- 化简得22(1)310.k x kx +++=【考点】待定系数法求函数解析式,一次函数、二次函数的性质,勾股定理,一元二次方程,相似三角形的判定及性质等.。
2014年广西北海市中招考试数学考卷(word版含解析)[最新]一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知等差数列{an},a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2, 3)关于原点的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)4. 下列各式中,值不等于1的是()A. (sqrt(3))^2 / 3B. (sqrt(2))^2 / 2C. (sqrt(5))^2 / 5D. (sqrt(6))^2 / 65. 下列命题中,真命题是()A. 对任意的实数x,都有x^2 >= 0B. 对任意的实数x,都有x^2 < 0C. 对任意的实数x,都有x^2 = 0D. 对任意的实数x,都有x^2 > 0二、判断题(每题1分,共5分)1. 任何两个平行线的斜率都相等。
()2. 一元二次方程的解一定是实数。
()3. 相似三角形的面积比等于边长比的平方。
()4. 互质的两个数一定是质数。
()5. 函数y = ax^2 + bx + c(a ≠ 0)的图像一定经过原点。
()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,公差d=2,则a5=______。
2. 若直线y=2x+1与x轴的交点为A,则点A的坐标为______。
3. 在平面直角坐标系中,点P(3, 4)关于x轴的对称点坐标为______。
4. 已知一组数据的方差是9,那么这组数据的标准差是______。
5. 一次函数y=kx+b的图像经过一、二、四象限,则k的取值范围是______。
四、简答题(每题2分,共10分)1. 请简要说明一元二次方程的求根公式。
2. 什么是平行线的性质?请举例说明。
3. 简述概率的基本性质。
广西来宾市2014年中考数学真题试题一、选择题:本大题共有12小题,每小题3份,共36分.在每小题给出的四个选项中只有一项是符合题目要求.1.(3分)(2014•来宾)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、既是轴对称图形又是中心对称图形,故本选项正确;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2014•来宾)去年我市参加中考人数约17700人,这个数用科学记数法表示是()A.1.77×102B.1.77×104C.17.7×103D.1.77×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17700用科学记数法表示为:1.77×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•来宾)如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形考点:多边形内角与外角.专题:方程思想.分析:n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选C.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.(3分)(2014•来宾)数据5,8,4,5,3的众数和平均数分别是()A.8,5 B.5,4 C.5,5 D.4,5考点:众数;算术平均数.分析:根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.解答:解:∵5出现了2次,出现的次数最多,∴众数是5;这组数据的平均数是:(5+8+4+5+3)÷5=5;故选C.点评:此题考查了众数和平均数,众数是一组数据中出现次数最多的数,注意众数不止一个.5.(3分)(2014•来宾)下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a5C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4考点:幂的乘方与积的乘方.分析:根据积的乘方等于每一个因式分别乘方,再把所得的幂相乘,可得答案案.解答:解:A、B、(﹣a3)2=a6,故A、B错误;C、(﹣3a2)2=9a4,故C错误;D、(﹣3a2)2=9a4,故D正确;故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每一个因式分别乘方,再把所得的幂相乘.6.(3分)(2014•来宾)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.16考点:正方形的性质.分析:根据正方形的面积等于对角线乘积的一半列式计算即可得解.解答:解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选A.点评:本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.7.(3分)(2014•来宾)函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3 D.x≤3考点:函数自变量的取值范围.分析:根据二次根式有意义的条件,即根号下大于等于0,求出即可.解答:解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.点评:此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.8.(3分)(2014•来宾)将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4考点:解分式方程.专题:常规题型.分析:分式方程两边乘以最简公分母x(x﹣2)即可得到结果.解答:解:去分母得:x﹣2=2x,故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•来宾)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形考点:正方形的判定;三角形中位线定理;菱形的性质.分析:根据三角形的中位线定理以及菱形的性质即可证得.解答:解:∵E,F是中点,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形.又∵AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.故选B.点评:本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.10.(3分)(2014•来宾)已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=0考点:根与系数的关系.分析:首先设此一元二次方程为x2+px+q=0,由二次项系数为1,两根分别为2,﹣3,根据根与系数的关系可得p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,继而求得答案.解答:解:设此一元二次方程为x2+px+q=0,∵二次项系数为1,两根分别为﹣2,3,∴p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,∴这个方程为:x2+x﹣6=0.故选:D.点评:此题考查了根与系数的关系.此题难度不大,注意若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2.11.(3分)(2014•来宾)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得﹣3<x≤4,故选:D.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.(3分)(2014•来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)考点:关于原点对称的点的坐标;坐标与图形变化-平移.分析:首先利用平移变化规律得出P1(1,3),进而利用关于原点对称点的坐标性质得出P2的坐标.解答:解:∵点P(﹣2,3)向右平移3个单位得到点P1,∴P1(1,3),∵点P2与点P1关于原点对称,∴P2的坐标是:(﹣1,﹣3).故选;C.点评:此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.二、填空题:本大题共6小题,每小题3分,共18分13.(3分)(2014•来宾)的倒数是 2 .考点:倒数.分析:根据倒数的定义可直接解答.解答:解:∵×2=1,∴的倒数是2.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)(2014•来宾)分解因式:25﹣a2= (5﹣a)(5+a).考点:因式分解-运用公式法.分析:利用平方差公式解答即可.解答:解:25﹣a2,=52﹣a2,=(5﹣a)(5+a).点评:本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.15.(3分)(2014•来宾)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.16.(3分)(2014•来宾)某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有160 名学生.考点:用样本估计总体.分析:先求出随机抽取的40名学生中成绩达到108分以上的所占的百分比,再乘以640,即可得出答案.解答:解:∵随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达108分以上,∴九年级640名学生中这次模拟考数学成绩达108分以上的约有640×=160(名);故答案为:160.点评:此题考查了用样本估计总体,用到的知识点是总体平均数约等于样本平均数.17.(3分)(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4.考点:解直角三角形.分析:根据cosB=及特殊角的三角函数值解题.解答:解:∵cosB=,即cos30°=,∴AB===4.故答案为:4.点评:本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.18.(3分)(2014•来宾)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=40 度.考点:圆周角定理.分析:由∠C=50°求出∠AOB的度数,再根据等腰三角形的性质和三角形的内角和定理,即可求得答案.解答:解:∵∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA==40°.故答案为:40.点评:此题考查了圆周角定理,用到的知识点是圆周角定理、等腰三角形的性质、三角形的内角和定理,注意数形结合思想的应用.三、解答题:本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2014•来宾)(1)计算:(﹣1)2014﹣|﹣|+﹣(﹣π)0;(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.考点:实数的运算;整式的混合运算—化简求值;零指数幂.分析:(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可化简代数式,根据代数式求值的方法,可得答案.解答:解:(1)原式=1﹣+2﹣1=;(2)原式=4x2﹣5,把x=﹣2代入原式,得=4×(﹣2)2﹣5=11.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2014•来宾)某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70<x<90 90<x<110 110≤x<130 130≤x<150 150≤x<170人数823 16 2 1根据所给信息,回答下列问题:(1)本次调查的样本容量是50 ;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有19 人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据图表给出的数据可直接得出本次调查的样本容量;(2)把调查中每分钟跳绳次数达到110次以上(含110次)的人数加起来即可;(3)根据图表给出的数据可直接补全直方图;(4)根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.解答:解:(1)本次调查的样本容量是:8+23+16+2+1=50;故答案为:50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人数是:16+2+1=19(人);故答案为:19;(3)根据图表所给出的数据补图如下:(4)根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是=.点评:此题考查了条形统计图和频数(率)分布直方图,用到的知识点是样本容量、概率公式,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(8分)(2014•来宾)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规左图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.考点:作图—基本作图;线段垂直平分线的性质;矩形的性质.分析:(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.解答:解:(1)答题如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.点评:本题考查了基本作图及全等三角形的判定与性质,了解基本作图是解答本题的关键,难度中等.22.(8分)(2014•来宾)一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先观察函数图象得到在y轴的左侧,当x<﹣4时,一次函数图象都在反比例函数图象上方,即有y1>y2;(2)先根据一次函数解析式确定A点坐标,然后把A点坐标代入y2=可计算出k的值,从而得到反比例函数解析式.解答:解:(1)在y轴的左侧,当y1>y2时,x<﹣4;(2)把点A(﹣4,m)代入y1=﹣x﹣1得m=﹣×(﹣4)﹣1=1,则A点坐标为(﹣4,1),把A(﹣4,1)代入y2=得k=﹣4×1=﹣4,所以反比例函数的解析式为y2=﹣.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.23.(8分)(2014•来宾)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?考点:一元一次不等式的应用.专题:应用题.分析:(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.解答:解:(1)甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.点评:本题考查了一元一次不等式的知识,注意将实际问题转化为数学模型,利用不等式的知识求解.24.(10分)(2014•来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF 上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.考点:圆的综合题;角平分线的性质;等腰三角形的判定;含30度角的直角三角形;勾股定理;圆周角定理;切线的性质;相似三角形的判定.专题:综合题.分析:(1)由AB为⊙O的直径即可得到AE与BC垂直.(2)易证∠CBF=∠BAE,再结合条件∠BAF=2∠CBF就可证到∠CBF=∠CAE,易证∠CGB=∠AEC,从而证到△BCG∽△ACE.(3)由∠F=60°,GF=1可求出CG=;连接BD,容易证到∠DBC=∠CBF,根据角平分线的性质可得DC=CG=;设圆O的半径为r,易证AC=AB,∠BAD=30°,从而得到AC=2r,AD=r,由DC=AC﹣AD=可求出⊙O的半径长.解答:解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.点评:本题考查了切线的性质、圆周角定理、相似三角形的判定、角平分线的性质、30°角所对的直角边等于斜边的一半、勾股定理等知识,有一定的综合性.连接BD,证到∠DBC=∠CBF是解决第(3)题的关键.25.(12分)(2014•来宾)如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)把点A、B的坐标代入函数解析式,解方程组求出a、b的值,即可得解;(2)根据抛物线解析式求出对称轴,再根据平行四边形的对角线互相平分求出点C的横坐标,然后代入函数解析式计算求出纵坐标,即可得解;(3)设AC、EF的交点为D,根据点C的坐标写出点D的坐标,然后分①点O是直角顶点时,求出△OED和△PEO相似,根据相似三角形对应边成比例求出PE,然后写出点P的坐标即可;②点C是直角顶点时,同理求出PF,再求出PE,然后写出点P的坐标即可;③点P是直角顶点时,利用勾股定理列式求出OC,然后根据直角三角形斜边上的中线等于斜边的一半可得PD=OC,再分点P在OC的上方与下方两种情况写出点P的坐标即可.解答:解:(1)把点A(1,0)和B(4,0)代入y=ax2+bx+2得,,解得,所以,抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∵四边形OECF是平行四边形,∴点C的横坐标是×2=5,∵点C在抛物线上,∴y=×52﹣×5+2=2,∴点C的坐标为(5,2);(3)设OC、EF的交点为D,∵点C的坐标为(5,2),∴点D的坐标为(,1),①点O是直角顶点时,易得△OED∽△PEO,∴=,即=,解得PE=,所以,点P的坐标为(,﹣);②点C是直角顶点时,同理求出PF=,所以,PE=+2=,所以,点P的坐标为(,);③点P是直角顶点时,由勾股定理得,OC==,∵PD是OC边上的中线,∴PD=OC=,若点P在OC上方,则PE=PD+DE=+1,此时,点P的坐标为(,),若点P在OC的下方,则PE=PD﹣DE=﹣1,此时,点P的坐标为(,),综上所述,抛物线的对称轴上存在点P(,﹣)或(,)或(,)或(,),使△OCP是直角三角形.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,平行四边形的对角线互相平分的性质,相似三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,难点在于(3)根据直角三角形的直角顶点分情况讨论.。
2014年广西省桂林市中考数学试卷年广西省桂林市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2014广西省桂林市,1,3分)2014的倒数是(的倒数是( ) A .12014 B.-12014C.|2014|D.-2014 【答案】A 。
2.(2014广西省桂林市,2,3分)如图。
如图。
已知已知AB ∥CD ,∠1=56°,则∠2的度数是( )A.34°B.56°C.65°D.124° 【答案】B 。
3.(2014广西省桂林市,3,3分)下列各式中,与2a 是同类项的是(项的是( )A .3a B .2ab C .-3a 2D .a 2b 【答案】A 。
4.(2014广西省桂林市,4,3分)在下面的四个几何体中,同一几何体的主视图与俯视图相同的是(相同的是( )DAB C【答案】D 。
5.(2014广西省桂林市,5,3分)在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为(轴的对称点坐标为( )A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3) 【答案】B 。
6.(2014广西省桂林市,6,3分)一次函数y=kx+b (k ≠0)的图像如图所示,则下列结论正确的是(图所示,则下列结论正确的是( )A .k=2 B .k=3 C .b=2 D .b=3 【答案】D. 7.(2014广西省桂林市,7,3分)下列命题中,是真命题的是(下列命题中,是真命题的是( ) A .等腰三角形都相似.等腰三角形都相似 B .等边三角形都相似.等边三角形都相似 C .锐角三角形都相似.锐角三角形都相似 D .直角三角形都相似形都相似 【答案】B 。
8.(2014广西省桂林市,8,3分)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为(关系为( ) A.外离外离 B.外切外切 C.相交相交 D.内切内切 【答案】A 。
2014年北海市中等学校招生暨初中毕业统一考试试卷数学(考试时间:120分钟,满分120分)准考证号:姓名:座位号:注意事项:1.试卷分为试题卷和答题卡两部分,要求在答题卡上作答,在本试题卷上作答........无效...2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试题卷和答题卡........一并交回.一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).-+-的结果是1.计算(2)(3)A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A.B.C.D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:甲乙丙丁方差0.293 0.375 0.362 0.398A.甲B.乙C.丙D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切B.相交C.外切D.外离M-在5.在平面直角坐标系中,点(2,1)A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8 B.9 C.10 D.117.下列几何图形中,一定是轴对称图形的有A .1个B .2个C .3个D .4个 8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -=C .2102101.5 1.8x x +=D .2102101.5 1.8x x-=11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DEBCA等腰梯形平行四边形角圆弧12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度. 14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 . 16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数是 岁.17.下列式子按一定规律排列:357,,,,,2468a a a a 则第2014个式子是 .EDBC1yO yO 1yO 1yO 1810422468101214151617人数年龄18.如图,反比例函数(0)ky x x=>的图象交Rt △AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()216(31)3---+20.(本题满分6分)解方程组33411x y x y +=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率. 22.(本题满分8分)已知△ABC 中,∠A =25°,∠B =40°. (1)求作:,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE 的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)CDyxO B A40°25°AB24.(本题满分A 品牌手表B 品牌手表进价(元/块) 700 100售价(元/块)900160他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案? (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元? 25.(本题满分10分)如图(1),E 是正方形ABCD 的边BC 上的一个点(E 与B 、C 两点不重合),过点E 作射线EP ⊥AE ,在射线EP 上截取线段EF ,使得EF =AE ,过点F 作FG ⊥BC 交BC 的延长线于点G . (1)求证:FG =BE ; (2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC ,求sin ∠CFE 的值.(1) (2)FADPFADP26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.-2CBA yxO-2MECBA yxOD2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。
二、填空题13、137°;14、)2(y x xy -;15、9;16、10;17、40284027a ;18、8三、解答题19. 解:原式=3-4+2-1=020. 解:①+②得7x=14, ∴x=2,把x=2代入①得6+y=3, ∴y= -3∴原方程组的解是:⎩⎨⎧-==32y x21. 解:(1)两辆汽车所有9种可能的行驶方向如下:甲汽车乙汽车左转 右转 直行左转 (左转,左转) (右转,左转) (直行,左转) 右转 (左转,右转) (右转,右转)(直行,右转) 直行(左转,直行)(右转,直行)(直行,直行)(2)由上表知:两辆汽车都向左转的概率是:91。
22. 解:(1)作图如右图1:(2)如图2,连OC ,∵OA=OC ,∠A=25° ∴∠AOC=50°, 又∵∠C=40, ∴∠AOC+∠C=90° ∴∠OCB=90° ∴OC ⊥BC∴BC 是⊙O 的切线。
23. 解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan ∠BAE=ABBD,∴BD=A B ·tan ∠BAE, 又∵cos ∠BAE=CDCE, ∴CE= CD ·cos ∠BAE = (BD -BC) ·cos ∠BAE=( AB ·tan ∠BAE -BC) ·cos ∠BAE =(10×0.4040-0.5) ×0.9272≈3.28(m)24.解:(1)y = 140x+6000,(x ≤50)(2)令y ≥12600,则140x+6000≥12600,∴x ≥47.1,又∵x ≤50 ∴经销商有以下三种进货方案:方案 A 品牌(块)B 品牌(块)① 48 52 ② 49 51 ③5050(3)∵140>0,∴y 随x 的增大而增大,∴x=50时y 取得最大值, 又∵140×50+6000=13000∴选择方案③进货时,经销商可获利最大,最大利润是13000元。
25. 解:(1)证明:∵EP ⊥AE ,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE ,又∵FG ⊥BC ,∴∠ABE=∠EGF=90°,在△ABE 与△EGF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠EF AE GEF BAE EGFABE ,∴△ABE ≌△EGF ,∴FG=BE(2)由(1)知:BC=AB=EG ,∴BC -EC=EG -EC ,∴BE=CG ,又∵FG=BE ,∴FG=CG ,又∵∠CGF=90°,∴∠FCG=45°=21∠DCG ,∴CF 平分∠DCG 。
(3)如图,作CH ⊥EF 于H ,则△EHC ∽△EGF ,∴GF HC =EFEC∵BC BE =43,令BE=3a ,则EC=3a ,EG=4a ,FG=CG=3a , ∴EF=5a ,CF=32a ,∴a HC 3=aa5,HC=53a ,∴sin ∠CFE=CF HC=10226.解:(1)由已知有:-41)2()2(2=+-+-c,∴c=3,抛物线的解析式是:3412++-=xxy(2)①令D(x,y),(x>0,y>0),则E(x,0),M(2x,0),由(1)知C(0,3),连接MC、MD∵DE、CD与⊙O相切,∴∠CMD=90°,∴△COM∽△MED,∴MECO=EDOM,∴23x=yx2,又∵3412++-=xxy,∴x=)51(23±,又∵x>0,∴x=)51(23+,∴)53(83+=y,D点的坐标是:()51(23+,)53(83+)。
②假设存在满足条件的点G(a,b).若构成的四边形是□ACGF,(下图1)则G与C关于直线x=2对称,∴G点的坐标是:(4,3);若构成的四边形是□ACFG,(下图2)则由平行四边形的性质有b=-3,又∵-41332-=++aa,∴a=2±27,此时G点的坐标是:(2±27,-3)图1 图2。