(2份)小学数学总复习专项训练___平面图形
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
六年级平面图形练习题3.一个平行四边形的底是14厘米,高是9厘米,它的面积是;与它等底等高的三角形面积是.5.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有根。
6.一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是。
7.一个三角形的面积是4.5平方分米,底是5分米,高是分米。
8.一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是平方厘米。
二、判定题1.两个面积相等的三角形,一定能拼成一个平行四边形.2.平行四边形的面积等于一个三角形面积的2倍.3.两个完全一样的梯形,能拼成一个平行四边形.4.把一个长方形的框架挤压成一个平行四边形,面积减少了.5.两个三角形面积相等,底和高也一定相等。
三、选择题1.等边三角形一定是 _______ 三角形.[ ]A.锐角;B.直角;C.钝角2.两个完全一样的锐角三角形,可以拼成一个________[ ]A.长方形; B.正方形; C.平行四边形; D.梯形3.把一个平行四边形任意分割成两个梯形,这两个梯形中 ________总是相等的.[ ]A.高; B.面积; C.上下两底的和、填空。
1.在推导平行四边形面积计算公式时,可把平行四边形通过割补平移转化为形去推导,推导三角形面积计算公式时,可把两个完全一样的三角形拼成一个形去推导,推导梯形面积计算公式时,可把两个完全一样的梯形拼成一个形进行推导。
4.直角三角形的两条直角边长分别为3厘米和4厘米,这个直角三角形面积是平方厘米。
7.一个三角形的底边长扩大2倍,高不变,扩大后的三角形面积比原来三角形面积扩大倍。
三、判断题。
1.平行四边形面积等于长方形面积。
2.等底等高的三角形可拼成一个平行四边形。
4.只要知道梯形的两底之和的长度和它的高,就可以求出它的面积。
5.两个周长相等的等边三角形,面积必相等。
一、填空。
1.一个三角形的面积是25平方厘米,和它等底等高的平行四边形的面积是平方厘米。
专项训练8·平面图形一、填空题。
(每小題2分,共24分)1.下图中一共有( )条直线,( )条射线,( )条线段。
2.如图,∠1=75°,那么∠3=( ),如果∠2:∠4=3:2,那么∠2=( );∠4=( )。
第1题图第2题图3.一个平行四边形的面积是12 2cm,与它等底等高的三角形的面积是( )4.一个三角形的三个内角的度数比是1:6:5,则最大的一个内角是( )度,按角分,它是一个( )角三角形。
5.一个直角三角形的三条边分别为6厘米、8厘米、10厘米,它的周长是( )厘米,面积是( )平方厘米。
6.在一个周长为25.12厘米的圆内,画一个最大的正方形,正方形的面积是( )平方厘米。
7.将一个长方形的长和宽都增加6cm,这个长方形的面积就增加1142cm,原来长方形的周长是( )cm。
8.如图,7个完全相同的小长方形刚好拼成1个大长方形,小长方形的长与宽的比是( ),大长方形的长与宽的比是( )。
第8题图第9题图9.右图中长方形的周长是24cm,一个圆的周长是( )cm。
10.一个梯形上底与下底的比是4:9,把下底减少15 cm,就变成一个正方形,这个正方形的面积与原来梯形的面积比是( )。
11.如图,阴影部分的面积是( )平方厘米。
12.如图,平行四边形ABCD的底边BC长5 cm,直角三角形BCE的直角边EC长4cm,已知两块阴影部分的面积和比△EFG的面积大52cm,则CF=( )cm。
第11题图第12题图二、判断题。
(对的画”√”,错的画“×”)(6分)1.角的大小与它的边的长短没有关系。
( )2.在同一平面内,不相交的两条直线一定平行。
( )3.用12.56厘米的铁丝分别鵬成长方形、正方形、圆,面积最大的是正方形。
( )4.一个等腰三角形的一个底角是45°,这个三角形一定是等腰直角三角形。
( )5.一个长方形的长和宽都增加5厘米,它的面积增加25平方厘米。
平面图形面积练习题一、矩形1. 已知一个矩形的长为7米,宽为5米,求其面积。
答:这个矩形的面积可以通过长乘以宽来计算,即7米 × 5米 = 35平方米。
二、正方形2. 一个正方形的边长为9米,求其面积。
答:由于正方形的四条边长度相等,可以直接将边长乘以边长来计算面积,即9米 × 9米 = 81平方米。
三、三角形3. 已知一个三角形的底边长为12米,高为8米,求其面积。
答:三角形的面积可以通过底边乘以高再除以2来计算,即(12米 ×8米) ÷ 2 = 48平方米。
四、梯形4. 已知一个梯形的上底长为6米,下底长为10米,高为4米,求其面积。
答:梯形的面积可以通过上底与下底的和再乘以高再除以2来计算,即[(6米 + 10米) × 4米] ÷ 2 = 32平方米。
五、圆形5. 已知一个圆形的半径为5米,求其面积。
答:圆形的面积可以通过半径的平方再乘以π(取近似值3.14)来计算,即5米 × 5米× 3.14 ≈ 78.5平方米。
六、椭圆6. 已知一个椭圆的长轴长为6米,短轴长为4米,求其面积。
答:椭圆的面积可以通过长轴与短轴的乘积再乘以π来计算,即(6米 × 4米) × 3.14 ≈ 75.36平方米。
总结:在计算平面图形的面积时,可以根据图形的不同形状应用相应的公式来求解。
对于矩形和正方形,可以直接进行边长的计算;对于三角形和梯形,需要使用底边和高来计算;对于圆形和椭圆,需要使用半径或者长轴、短轴来计算。
在计算过程中,需要注意单位的统一,并且按照指定的格式进行结果的展示。
以上就是平面图形面积的练习题。
通过这些练习,我们可以加深对不同图形面积计算方法的理解,提升解决实际问题的能力。
希望这些练习题对你有所帮助!。
小升初重点专题:平面图形的周长与面积(专项训练)-小学数学六年级下册苏教版一、单选题1.一个长方形的面积是x平方厘米,它的宽是20厘米,周长是()厘米。
A.2(x÷20+20)B.2(x÷20+x)C.2(20÷x+5)D.2(20÷x+20)2.如图两个完全相同的长方形中,阴影部分的面积相比,甲()乙。
A.大于B.小于C.等于D.无法确定3.如图是少先队中队旗。
下面四个选项是计算中队旗面积的不同方法。
其中图()的方法的算式是“80×60﹣60×20÷2”。
A.B.C.D.4.半径为1厘米的小圆在半径为5厘米的固定的大圆外滚动一周,小圆滚了()圈。
A.4B.5C.6D.75.圆的半径由4厘米减少到3厘米,圆的面积减少了()平方厘米。
A.3.14B.12.56C.21.98D.31.46.如果把个平行四边形的底和高都除以2,它的面积就()。
A.缩小了2倍B.扩大2倍C.扩大4倍D.缩小4倍二、判断题7.如果两个梯形可以拼成一个平行四边形,那这两个梯形的高一定相等。
()8.一个三角形的底和高都扩大到原来的3倍,它的面积就扩大到原来的6倍。
()9.三角形的面积是等底等高平行四边形面积的一半。
()10.梯形的高不变,上底减少1.2cm,下底增加1.2cm,梯形的面积不变。
()11.用圆规画圆时两脚之间的距离是2cm,画出的圆的直径是2cm。
()三、填空题12.一个梯形的面积是54平方厘米,下底是4.6厘米,高是18厘米,上底是厘米。
13.如果一个等边三角形的周长是21米,那么以一边为底,高是6米的三角形的面积是平方米。
14.如图,把一个平行四边形剪成一个三角形和一个梯形,如果平行四边形的高是0.6分米,那么三角形的面积是平方分米,梯形的面积是平方分米。
15.一个挂钟,钟面上的时针长5厘米,经过-昼夜时针的针尖走过厘米。
16.转化是重要的数学思想,如在推导圆的面积公式时,把直径10厘米的圆平均分成32份,拼成的图形近似于长方形(如图)。
小升初毕业总复习模块五:平面图形平面图形的认识考点一:线考点二:角考点三:三角形1.三角形的定义:由三条线段首尾顺次相接围成的封闭图形。
2.三角形各部分的名称:围成三角形的三条线段叫三角形的边,每两条边的交点叫三角形的顶点,每两条边所形成的角叫三角形的内角。
从三角形的一个顶点向它对边作垂线,由顶点到垂足之间的线段叫做三角形的高,这条边叫三角形的底。
3.三角形的内角和是180°。
4.三角形任意两边之和大于第三边。
5.三角形具有稳定性。
考点四:四边形1.四边形的定义:在同一平面内,由任意两条都不在同一条直线上的四条线段首尾顺次相接组成的封闭图形叫四边形。
2.四边形之间的关系考点五:圆1.圆的定义:在同一平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫圆。
2.圆各部分的名称:圆的中心点叫圆心,一般用字母O 表示;圆心到圆上任意一点的线段叫半径,一般用字母r 表示;通过圆心并且两端都在圆上的线段叫做直径,一般用字母d 表示。
3.圆的特征:圆是轴对称图形;在同圆或等圆中,所有的半径都相等,所有的直径都相等,直径等于半径的2倍即d=2r 或r=21d 。
4.圆环:半径不等的同心圆之间的部分叫做圆环。
5.圆心角的定义:圆上任意两点的部分叫做弧,这两点叫做弧的端点。
弧的两个端点与圆心连接所得两条半径的夹角,叫做圆心角。
由圆心角的两条半径和圆心角所对的图形叫做扇形。
圆心角的大小决定了扇形的大小。
例题精讲例1、(1)下图中有()条线段,()条射线,()条直线。
(2)下图中有()个锐角,()个直角,()个钝角,共有()个角(平角除外)。
1、(1)通过一点可以画()条直线,通过两点可以画()条直线。
(2)线段有()个端点,射线有()个端点,直线()端点。
2.下图中有()条线段,()条射线。
3.下图有几个()锐角,()个直角,()个钝角,共有()个角。
例2、一个三角形的三个内角分别为∠1、∠2、∠3,已知∠2的度数是∠1的两倍,∠3的度数是∠1的3倍,这是一个什么三角形?针对训练1、三角形的一个内角正好等于其余两个内角的和,这是一个()三角形。
更多精品文档六年级数学平面图形的周长和面积专项训练题(一)一、填空(每空1分,共37分)1、( )叫做物体的面积,计算面积用( )单位。
2、( )叫物体的周长,计算周长用( )单位。
3、一个长8厘米,宽3.5厘米的长方形的周长是( )厘米,面积是( )平方厘米。
4、如果一个正方形的边长是4厘米,那么它的周长是( )厘米,面积是( )平方厘米。
5、用长5分米、宽4分米的长方形硬纸板剪成一个最大的正方形,剪去部分的面积是( )平方分米。
6、一个三角形的底是8厘米,高是底的43,这个三角形的面积是( )平方厘米,与它等底等高的平行四边形的面积是( )平方厘米。
7、一个平行四边形的面积是18平方分米,与它等底等高的三角形面积是( )平方厘米8、一张长10分米,宽6分米的长方形纸片,最多能剪( )个直径为2分米的圆片。
9、用3个边长是10厘米的正方形拼成一个长方形,长方形的面积是( )平方厘米,周长是( )厘米。
10、圆的半径扩大5倍,它的直径扩大( )倍,周长扩大( )倍,面积扩大( )倍。
11、一个半圆直径是4厘米,它的周长是( )厘米,面积是( )平方厘米。
12、 一张正方形纸上下对折,再左右对折,得到的图形是( )形,它的面积是原正方形的()() ,它的周长是原正方形的 ()()。
13、一个梯形的下底是18厘米,如果下底比上底少8厘米,高是10厘米,这个梯形的面积是( )厘米。
14、平行四边形相邻两边各增加20% ,所得的平行四边形的面积比原来增加了( )%。
15、一张长方形纸的周长是28厘米,长方形长与宽的比是5 :2,从这张纸上剪下一个最大的圆,这个圆的面积是( )平方厘米。
16、大圆周长是小圆周长的2倍,小圆半径是大圆半径的 ()();大圆面积是小圆面积的( )倍。
17、圆可以剪拼成一个近似的长方形,这个长方形的长相当于圆( ),宽相当于圆的( )。
圆心决定圆的( ),半径决定圆的( )。
平面图形的周长与面积图形计算(专项训练)-小学数学六年级下册人教版一、图形计算1.求阴影部分面积。
(单位:cm)2.求涂色部分的面积。
3.看图计算:求下图阴影部分的面积。
4.计算下边图形阴影部分的面积(单位:厘米)。
5.如图正方形的面积是40平方厘米,求阴影部分的面积。
6.求下图中阴影部分的面积。
(单位:厘米)7.求如图中阴影部分的周长。
(单位:厘米)8.求下图阴影部分的面积和周长。
9.计算下面黑色部分的面积。
10.求下图阴影部分的面积(单位:厘米)。
11.计算涂色部分的面积。
12.求下图中阴影部分的面积。
13.求阴影部分的面积。
(单位:厘米)14.求阴影部分的面积。
(单位:厘米)15.计算下图的周长和面积(单位:m)16.求阴影部分的面积。
17.计算下图的面积(单位:dm)。
18.求下图中阴影部分的面积。
19.计算下图中阴影部分的面积。
20.求阴影部分的周长和面积。
(单位:厘米)21.如果下图中的正方形的边长是4cm,求阴影部分的面积。
22.求阴影部分面积。
参考答案:1.9.42cm2【解析】【分析】根据图形的特点,可以通过平移转化为半径是2cm的圆面积减去直径是2cm的圆的面积,根据圆的面积公式:S=πr2,把数据代入公式解答。
【详解】3.14×22-3.14×(2÷2)2=3.14×4-3.14×1=12.56-3.14=9.42(cm2)2.15.44cm2【解析】【分析】根据梯形的面积公式:(上底+下底)×高÷2,上底为4cm,下底为10cm,高为4cm,代入求出梯形的面积,再利用圆的面积公式:S=2πr,求出14个圆的面积,用梯形的面积减去14个圆的面积即是阴影部分的面积。
【详解】(4+10)×4÷2-14×3.14×42=14×4÷2-14×16×3.14=56÷2-4×3.14=28-12.56=15.44(cm2)3.20.3m2【解析】【分析】根据正方形的边长计算出小圆的直径,进而算出半径,用正方形面积减去5个小圆的面积即可得到阴影部分的面积。
小升初复习试卷:平面图形的周长和面积(2)一.填一填1. 一个直角三角形,它的三条边的长度分别是6厘米、8厘米和10厘米。
那么这个直角三角形最长边上的高是________厘米。
2. 一张正方形纸边长是5厘米,至少用这样的正方形纸________张,才能拼成一个大一些的正方形。
拼成的正方形周长是________,面积是________.3. 将一个圆沿半径分成若干等份,拼成一个近似长方形,这个近似长方形的长是宽的________倍。
4. 一个直角梯形上、下底之和是15厘米,两条腰分别长4厘米、5厘米。
这个梯形的面积是________.5. 半圆形纸片的周长是10.28分米,它的半径是________.6. 将一个圆平均分成若干份,拼成一近似长方形,长方形的面积与圆的面积________,长方形的宽是圆的________,长方形的长是圆的________.7. 圆心决定圆的________,半径决定圆的________.8. 一个时钟的时针长10厘米,12小时时针走过的面积是________平方厘米。
9. 一圆形水池,直径为20米,沿着池边每隔5米栽一棵树,最多能栽________ 棵。
10. 把一平行四边形的框架拉成一长方形,面积________,周长________.把一平行四边形通过剪、移、拼的方法拼成一长方形,面积________,周长________.二.判断半径为2厘米的圆的周长和面积相等。
________(判断对错)两端都在圆上的线段中,直径最长。
________.(判断对错)大圆的圆周率大于小圆的圆周率。
________.(判断对错)边长为4米的正方形,其周长与面积相等。
________.(判断对错)三角形的面积是平行四边形面积的一半。
________.(判断对错)把一个平行四边形活动框架(四根木条钉成的)拉成一个长方形,那么原来平行四边三.选择用一根长2米的绳子将一只羊拴在一根木桩上,这只羊最多能吃到()平方米的草。
第十一讲平面图形(必做与选做)1.在一张长12厘米、宽6厘米的长方形纸上剪下一个最大的半圆,这个半圆的周长是多少厘米?A. 24.84B. 30.84C. 43.68D. 49.68解析:最大的半圆以长方形长为直径,宽为半径。
这个半圆的周长C=3.14×6+12=30.84(厘米)。
所以选B。
2.在一张长12厘米、宽5厘米的长方形纸上剪下一个最大的半圆,这个半圆的周长是多少厘米?A. 20.7B. 25.7C. 27.5D. 41.4解析:最大的半圆以长方形的宽为半径,宽的两倍为直径。
这个半圆的周长C=3.14×5+5×2=25.7(厘米)。
所以选B。
3.在一张长12厘米、宽7厘米的长方形纸上剪下一个最大的半圆,剩下纸的周长是多少厘米?A. 32.84B. 30.84C. 44.84D. 63.68解析:最大的半圆是以长方形的长为直径,长的一半为半径。
剩下的纸的周长C=12+7×2+3.14×(12÷2)=44.84(厘米)。
所以选C。
4.有2根直径都是3分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,至少需要绳子多少分米?(接头处不计)A. 15.42B. 24.84C. 30.84D. 49.68解析:需计算两部分的长度,一部分是两条线段的长度,都是直径的长度;另一部分是两段圆弧的长度,一共是一个圆的周长。
因此一共需要绳子:(3.14×3+3×2)×2=30.84(分米)。
所以选C。
5.有3根直径都是5分米的圆柱体木头,现用绳子分别在三处把它们捆在一起,至少需要绳子多少分米?(接头处不计)A. 30.7B. 61.4C. 77.1D. 92.1解析:需计算两部分的长度,一部分是三条线段的长度,都是直径的长度;另一部分是三段圆弧的长度,一共是一个圆的周长。
因此一共需要绳子:(3.14×5+5×3)×3=92.1(分米)。
小学数学总复习专项训练(平面图形)
一、填空姓名:
1. 270平方厘米=()平方分米 1.4公顷=()平方米
2.过一点能画()条直线,过两点能画()条直线。
3.平行四边形有()条高,梯形有()条高,三角形有()条高。
4.把一张正方形纸对折两次,形成的折痕可能互相(),也可能互相()。
5.一个等腰三角形,它的顶角是72º,它的底角是()度。
6.用圆规画一个周长是12 .56厘米的圆,圆规两脚间的距离应是()厘米。
7. 一个平行四边形的底是9分米,高是底的2倍,它的面积是( )平方分米。
与它等底等高的三角形的面积是()
平方厘米。
8. 一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()。
9. 一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了(),指针扫过的面积是()。
10.经过1小时,钟面上分针转过的角度与时针转过的角度相差()。
11.用4个边长是2厘米的小正方形拼成一个大长方形,长方形的周长可能是()厘米,也可能是()厘米。
12.把一个平行四边形的框架拉成一个长方形,面积(),周长()。
把一个平行四边形,通过剪、移、
拼的方法拼成一个长方形,面积(),周长()。
13.一个等腰三角形的两条边分别是5厘米和8厘米,那么它的周长最多是()厘米,最少是()厘米。
(第三条边为整厘米数)
14. 从一张长3厘米、宽2.5厘米的长方形纸片上剪下一个最大的正方形,这个正方形的周长是()。
15.将一个圆沿半径分成若干等份,拼成一个近似长方形,这个近似长方形的长是宽的()倍。
16.一堆钢管,横截面近似于梯形,最上层4根,最下层8根,每相邻两层相差一根,这堆钢管共有()根。
17. 一个长方形,如果长增加4米,面积就增加20平方米;如果原长方形宽增加4米,面积就增加32平方米。
原长
方形的面积是()平方米。
18.有一个等腰三角形,顶角与一个底角的度数比是2:1,这个三角形的三条边分别是1分米,1分米,1.42分米,这个三角形的面积是()。
二、判断
1.在同一平内两条直线不平行就垂直。
()
2.如果两条直线都和第三条直线平行,那么这两条直线也一互相平行。
()
3.如果用一个5倍的放大镜看一个12°的角,那么这个角度数是60°。
()
4.一个平角减去一个锐角,得到的一定是一个钝角。
()
5.如果长方形、正方形、圆它们周长相等,那么圆的面积最大。
()
三、选择
1.用一副三角尺不能拼成()的角。
A、120 度 B、105 度 C、150度
2.人们常用三角形的()性生产自行车大梁,运用平行四边形的()性应用电动大门。
A.稳定性 B.易变形 C.平衡性
3.等边三角形是()三角形。
A.锐角 B.直角 C.钝角
4.两个完全相同的()可以拼成一个长方形。
A.梯形 B.等腰梯形 C.直角梯形
五、解决实际问题
1.在一个边长为20厘米的正方形内剪一个最大的圆,圆的面积占正方形的几分之几?
2.一个直角三角形的三条边长度分别是6厘米、8厘米、10厘米。
最长边上的高是多少厘米?
3.在一个半径5米的圆形花坛周围修一条宽2米的走道,走道的面积是多少平方米?
4.用一长20厘米的铁丝正好围一个长方形(长、宽都是整厘米数)围成的长方形面积最大是多少?(画表列举)
5.小方从家到学校的距离约有2千米。
一辆自行车轮胎的外直径约50厘米,小方骑这辆自行车,如果轮胎每分种转100周,他从家到学校约需几分种?(得数保留整数)
6.把一个圆平均分成若干等份,拼成一个近似的长方形,已知长方形的长是12.56厘米,那么这个圆的面积是多少平方厘米?。