]ABAQUS混凝土(10版规范)损伤本构本构(version1)
- 格式:xls
- 大小:113.00 KB
- 文档页数:8
第38卷第8期建 筑 结 构2008年8月ABAQUS 混凝土损伤塑性模型参数验证张 劲1 王庆扬1,2 胡守营1 王传甲2(1中国石油大学 北京102249;2中国电子工程设计院深圳市电子院设计有限公司 深圳581031)[摘要] 为了统一ABAQUS 混凝土损伤塑性模型与规范提供的混凝土本构模型,在规范提供的混凝土本构关系的基础上引入损伤因子的概念,对混凝土损伤塑性模型本构关系参数的确定方法进行了研究。
用各等级混凝土本构关系参数模拟结果与规范曲线的对比,验证CDP 模型参数的正确性;用一混凝土剪力墙试验的模拟分析,验证本构关系参数用于结构分析情况下的可靠性。
两种验证结果证明,给出的CDP 模型参数确定方法是正确的,用该方法确定的参数进行结构模拟分析所得结果是可靠的,并指出了CDP 模型的不足。
[关键词] ABAQUS ;混凝土损伤塑性模型;剪力墙试验Parameters Verification of Concrete Damaged Plastic Model of ABAQUS Zhang Jin 1,Wang Qingyang 1,2,Hu Shouying 1,Wang Chuanjia2(1China Univ .of Petroleu m ,Beijing 102249,China ;2Shenzhen Electronics Design Inst .Co .,Ltd .,Shenzhen 518031,China )A bstract :To uniform the concrete damaged plastic model provided by ABAQUS and the concrete constitutive relatiouships provided by the code for concrete structure design ,the damaged factors was introduced into the constitutive relationship provided by criterion ,and then the method used to determine the parameters of CDP model was studied .To verify the correctness of the parameters of CDP model ,the method of contrastin g the results extracted from simulation and the criterion curves is used ;and to verify the reliability applied to structure s imulation ,the method of contrasting s imulation results and experimental results is chosen .It is approved that the determined method of CDP model parameters is correct and the simulation results of structures using the parameters determined by the method is reliable .The shortage of CDP model was ind icated .Keywords :ABAQUS ;concrete damaged plastic model ;s hear wall test作者简介:张劲(1963-),男,副教授。
混凝土损伤本构曲线
混凝土损伤本构曲线描述了混凝土在受力过程中的损伤行为。
混凝土是一种复杂的材料,其力学行为包括弹性、屈服、损伤和破坏等阶段。
在弹性阶段,混凝土遵循胡克定律,即应力与应变成正比。
在超过一定应力水平后,混凝土进入了屈服阶段,此时会出现塑性变形。
在损伤阶段,混凝土受到持续的应力作用会发生损伤,这表现为应力-应变曲线的非线性行为。
损伤表征了混凝土内部的裂
纹扩展和毁坏。
混凝土的损伤行为主要受到拉应力、压应力和剪应力的影响。
混凝土损伤本构曲线通常由两个阶段组成:一是弹性-塑性阶段,二是损伤-破坏阶段。
在弹性-塑性阶段,应力-应变曲线呈现线性增长,但随着应力的超过弹性极限,混凝土会出现塑性变形。
在损伤-破坏阶段,应力-应变曲线不再呈现线性关系,
而是出现了应力-应变曲线的非线性增长。
混凝土损伤本构曲线的形状和具体参数可以根据具体的试验数据和材料特性来确定。
常用的损伤本构模型包括线性损伤模型、非线性损伤模型和损伤塑性模型等。
这些模型可以用来描述混凝土在受力过程中的损伤行为,并为工程设计和分析提供依据。
ABAQUS混凝土损伤塑性模型参数验证一、本文概述本文旨在深入探讨ABAQUS软件中混凝土损伤塑性模型的参数验证。
ABAQUS作为一款功能强大的工程模拟软件,广泛应用于各种复杂结构的力学分析。
其中,混凝土损伤塑性模型是ABAQUS用于模拟混凝土材料行为的重要工具,其参数设置的准确性对模拟结果具有决定性影响。
本文将首先介绍混凝土损伤塑性模型的基本原理和关键参数,包括损伤因子、塑性应变、弹性模量等。
随后,将通过实验数据与模拟结果的对比分析,验证模型参数的准确性和可靠性。
实验数据将来自于标准混凝土试件的力学性能测试,如抗压强度、弹性模量等。
通过对比实验数据与模拟结果,我们可以评估模型参数的有效性,并根据需要进行调整和优化。
本文还将探讨不同参数对模拟结果的影响,包括损伤因子、塑性应变等参数的变化对模拟结果的影响。
这将有助于我们更深入地理解混凝土损伤塑性模型的工作原理,并为实际工程应用提供指导。
本文将总结参数验证的结果和经验教训,并提出改进和优化模型参数的建议。
这些建议将为后续的研究和应用提供参考,有助于提高混凝土损伤塑性模型在ABAQUS软件中的模拟精度和可靠性。
二、混凝土损伤塑性模型概述混凝土作为一种广泛应用的建筑材料,其力学行为在工程设计和分析中占据着重要地位。
然而,混凝土在受力过程中的复杂行为,如开裂、压碎和塑性变形等,使得其力学模型的建立和参数确定成为研究的难点。
ABAQUS软件中的混凝土损伤塑性模型(Concrete Damaged Plasticity Model)是一种专门用于模拟混凝土在复杂应力状态下的力学行为的模型,该模型综合考虑了混凝土的损伤和塑性行为,能够较为准确地模拟混凝土在实际工程中的受力过程。
混凝土损伤塑性模型主要包括损伤和塑性两部分。
损伤部分主要模拟混凝土在受拉和受压状态下的刚度退化,而塑性部分则负责描述混凝土的塑性变形行为。
模型中还引入了损伤因子,用于描述混凝土在受力过程中的内部损伤程度,该因子随着应力的增加而逐渐增大,从而导致混凝土的刚度逐渐降低。
Abaqus混凝土材料塑性损伤模型浅析与参数设置【壹讲壹插件】欢迎转载,作者:星辰-北极星,QQ群:431603427Abaqus混凝土材料塑性损伤模型浅析与参数设置 (1)第一部分:Abaqus自带混凝土材料的塑性损伤模型 (2)1.1概要 (2)1.2学习笔记 (2)1.3 参数定义与说明 (3)1.3.1材料模型选择:Concrete Damaged Plasticity (3)1.3.2 混凝土塑性参数定义 (3)1.3.3 混凝土损伤参数定义: (4)1.3.4 损伤参数定义与输出损伤之间的关系 (4)1.3.5 输出参数: (4)第二部分:根据GB50010-2010定义材料损伤值 (5)第三部分:星辰-北极星插件介绍:POLARIS-CONCRETE (6)3.1 概要 (6)3.2 插件的主要功能 (6)3.3 插件使用方法: (6)3.3.1 插件界面: (6)3.3.2 生成结果 (7)3.4、算例: (9)3.4.1三维实体简支梁模型说明 (9)3.4.2 计算结果: (9)第一部分:Abaqus自带混凝土材料的塑性损伤模型1.1概要首先我要了解Abaqus内自带的参数模型是怎样的,了解其塑性模型,进而了解其损伤模型,其帮助文档Abaqus Theory Manual 4.5.1 An inelastic constitutive model for concrete讲述的是其非弹性本构,4.5.2 Damaged plasticity model for concrete and other quasi-brittle materials则讲述的塑性损伤模型,同时在Abaqus Analysis User's Manual 22.6 Concrete也讲述了相应的内容。
1.2学习笔记1、混凝土塑性损伤本构模型中的损伤是一标量值,数值范围为(0无损伤~1完全失效[对于混凝土塑性损伤一般不存在]);2、仅适用于脆性材料在中等围压条件(为围压小于轴抗压强度1/4);3、拉压强度可设置成不同数值;4、可实现交变载荷下的刚度恢复;默认条件下,由拉转压刚度恢复,由压转拉刚度不变;5、强度与应变率相关;6、使用的是非相关联流动法则,刚度矩阵为非对称,因此在隐式分析步设置时,需在分析定义other-》Matrix storate-》Unsymmetric。
混凝土损伤本构模型引言混凝土是一种常见的建筑材料,其在结构工程中的应用广泛。
然而,由于外界环境、荷载作用以及材料本身的缺陷等因素,混凝土结构往往会发生各种损伤。
为了预测和分析混凝土结构的性能,研究人员发展了各种混凝土损伤本构模型。
混凝土损伤本构模型是一种描述混凝土损伤与载荷响应之间关系的数学模型。
通过建立损伤本构模型,可以有效地预测混凝土结构在不同荷载下的应力应变行为,并评估结构的安全性和耐久性。
混凝土损伤机理混凝土的损伤可以表现为裂缝的形成和扩展。
主要的损伤机理包括:拉伸损伤、压缩损伤、剪切损伤和弯曲损伤等。
这些损伤机理导致混凝土的强度和刚度下降,影响结构的整体性能。
混凝土的拉伸损伤是由于应力超过其拉伸强度导致的。
拉伸损伤可分为初始裂缝的形成和裂缝扩展两个阶段。
初始裂缝形成阶段主要受到混凝土的弯曲和压力影响,而裂缝扩展阶段则受到拉伸应力集中作用。
混凝土的压缩损伤是由于应力超过其压缩强度导致的。
压缩损伤通常以体积收缩和裂缝的形式出现。
混凝土的剪切损伤是由于应力超过其剪切强度导致的。
剪切损伤主要通过剪切裂缝的形成和扩展来表现。
混凝土的弯曲损伤是由于应力超过其弯曲强度导致的。
弯曲损伤通常以裂缝的形式出现。
混凝土损伤本构模型的分类根据混凝土损伤本构模型的解析方法,可将其分为经验模型和力学模型两大类。
经验模型是基于实验数据和经验法则建立的模型,是一种常用的损伤本构模型。
经验模型通常通过试验数据拟合得到,具有一定的简化和适用范围,可用于预测混凝土在一定加载条件下的损伤演化。
力学模型是基于物理力学原理建立的模型,具有更高的准确性和适用性。
力学模型通常采用连续介质力学和断裂力学理论,考虑不同损伤机制的相互作用,能够对混凝土结构在复杂荷载下的损伤行为做出较为准确的预测。
混凝土损伤本构模型的建立方法混凝土损伤本构模型的建立方法主要包括试验法、数值模拟和解析法。
试验法是通过对混凝土试件进行拉伸、压缩、剪切、弯曲等不同加载试验,获得试验数据,然后利用数据拟合方法建立本构模型。
混凝土材料的弹粘塑性损伤本构模型研究
本文研究了混凝土材料的弹粘塑性损伤本构模型,以下是本文的主要内容:
一、损伤概念及损伤本构模型
1、什么是损伤?
损伤是指材料由于受力产生的本征变化,使材料的力学性能出现不可逆的变化从而造成的本性问题。
2、损伤本构模型是什么?
损伤本构模型是指通过根据材料受力的变形情况,以及数学方法,把材料的损伤进行建模,以及计算材料的力学性能随着损伤而变化的过程。
二、混凝土材料的弹粘塑性损伤本构模型
1、弹粘塑性损伤本构模型基本原理
弹粘塑性损伤本构模型是损伤本构模型的一种,它建立在指数型损伤守恒定律的基础上,指数型损伤守恒定律表明,材料受到的拉伸或压缩应力在非稳态加载或复杂荷载下是不断变化的,在一定的应力范围内材料的延性一定,超出这个应力范围材料的延性随着应力的增加而逐渐减少,当应力达到一定值时材料的损伤不可逆,且其开始脱粘,从而形成断裂。
2、混凝土材料的弹粘塑性损伤本构模型
混凝土材料是一种具有较高粘度的凝固体,其刚度和弹性属中等,也
是结构材料中应用最广泛的材料,其特有的弹粘塑性对它的损伤本构
模型来说非常重要。
通常混凝土损伤本构模型采用的是弹粘塑性模型,它把混凝土的损伤行为分成三个阶段:弹性阶段,粘性阶段和损伤阶段。
在弹性阶段,当受力大于某一阈值时,混凝土开始失去它的原始
弹性,进入粘性阶段。
在这个阶段,应力逐渐增长,但变形率保持不变,直到进入损伤阶段,受力过大,导致材料发生断裂。
三、结论
混凝土材料的弹粘塑性损伤本构模型是混凝土材料从数理模型的角度
去深入分析混凝土的损伤行为,计算得出材料的损伤模量,从而研究
材料的力学行为,为了让混凝土结构物更加安全可靠。
ABAQUS中的三种混凝土本构模型2010-05-12 22:19:14| 分类:ABAQUS | 标签:|字号大中小订阅资料来自SIMWE论坛shanhuimin923,特表示感谢!ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model(ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。
14 ABAQUS中的混凝土本构模型4.1 概述A wide variety of materials is encountered in stress analysis problems, and for any one of these materials a range of constitutive models is available to describe the material's behavior. For example, a component made from a standard structural steel can be modeled as an isotropic, linear elastic, material with no temperature dependence. This simple model would probably suffice for routine design, so long as the component is not in any critical situation. However, if the component might be subjected to a severe overload, it is important to determine how it might deform under that load and if it has sufficient ductility to withstand the overload without catastrophic failure. The first of these questions might be answered by modeling the material as a rate-independent elastic, perfectly plastic material, or—if the ultimate stress in a tension test of a specimen of the material is very much above the initial yield stress—isotropic work hardening might be included in the plasticity model. A nonlinear analysis (with or without consideration of geometric nonlinearity, depending on whether the analyst judges that the structure might buckle or undergo large geometry changes during the event) is then done to determine the response. But the severe overload might be applied suddenly, thus causing rapid straining of the material. In such circumstances the inelastic response of metals usually exhibits rate dependence: the flow stress increases as the strain rate increases. A ―viscoplastic‖ (rate-dependent) material model might, therefore, be required. (Arguing that it is conservative to ignore this effect because it is a strengthening effect is not necessarily acceptable—the strengthening of one part of a structure might cause load to be shed to another part, which proves to be weaker in the event.) So far the analyst can manage with relatively simple (but nonlinear) constitutive models. But if the failure is associated with localization—tearing of a sheet of material or plastic buckling—a more sophisticated material model might be required because such localizations depend on details of the constitutive behavior that are usually ignored because of their complexity (see, for example, Needleman, 1977). Or if the concern is not gross overload, but gradual failure of the component because of creep at high temperature or because of low-cycle fatigue, or perhaps a combination of these effects, then the response of the material during several cycles of loading, in each of which a small amount of inelastic deformation might occur, must be predicted: a circumstance in which we need to model much more of the detail of the material's response.So far the discussion has considered a conventional structural material. We can broadly classify the materials of interest as those that exhibit almost purely elastic response, possibly with some energy dissipation during rapid loading by viscoelastic response (the elastomers, such as rubber or solid propellant); materials that yield andexhibit considerable ductility beyond yield (such as mild steel and other commonly used metals, ice at low strain rates, and clay); materials that flow by rearrangement of particles that interact generally through some dominantly frictional mechanism (such as sand); and brittle materials (rocks, concrete, ceramics). The constitutive library provided in Abaqus contains a range of linear and nonlinear material models for all of these categories of materials. In general the library has been developed to provide those models that are most usually required for practical applications. There are several distinct models in the library; and for the more commonly encountered materials (metals, in particular), several ways of modeling the material are provided, each suitable to a particular type of analysis application. But the library is far from comprehensive: the range of physical material behavior is far too broad for this ever to be possible. The analyst must review the material definitions provided in Abaqus in the context of each particular application. If there is no model in the library that is useful for a particular case, Abaqus/Standard contains a user subroutine—UMAT—and, similarly, Abaqus/Explicit contains a user subroutine—VUMAT. In these routines the user can code a material model (or call other routines that perform that task). This ―user subroutine‖ capability is a powerful resource for the sophisticated analyst who is able to cope with the demands of programming a complex material model.Theoretical aspects of the material models that are provided in Abaqus are described in this chapter, which is intended as a definition of the details of the material models that are provided: it also provides useful guidance to analysts who might have to code their own models in UMAT or VUMAT.From a numerical viewpoint the implementation of a constitutive model involves the integration of the state of the material at an integration point over a time increment during a nonlinear analysis. (The implementation of constitutive models in Abaqus assumes that the material behavior is entirely defined by local effects, so each spatial integration point can be treated independently.) Since Abaqus/Standard is most commonly used with implicit time integration, the implementation must also provide an accurate ―material stiffness matrix‖ for use in fo rming the Jacobian of the nonlinear equilibrium equations; this is not necessary for Abaqus/Explicit.The mechanical constitutive models that are provided in Abaqus often consider elastic and inelastic response. The inelastic response is most commonly modeled with plasticity models. Several plasticity models are described in this chapter. Some of the constitutive models in Abaqus also use damage mechanics concepts, the distinction being that in plasticity theory the elasticity is not affected by the inelastic deformation (the Young's modulus of a metal specimen is not changed by loading it beyond yield, until the specimen is very close to failure), while damage models include the degradation of the elasticity caused by severe loading (such as the loss of elastic stiffness suffered by a concrete specimen after it has been subjected to large uniaxial compressive loading).2In the inelastic response models that are provided in Abaqus, the elastic and inelastic responses are distinguished by separating the deformation into recoverable (elastic) and nonrecoverable (inelastic) parts. This separation is based on the assumption that there is an additive relationship between strain rates:where is the total strain rate, is the rate of change of the elastic strain, and isthe rate of change of inelastic strain.A more general assumption is that the total deformation, , is made up of inelasticdeformation followed by purely elastic deformation (with the rigid body rotation added in at any stage in the process):In ―The additive strain rate decomposition,‖ Section 1.4.4, the circumstances are discussed under which Equation 4.1.1–1is a legitimate approximation to Equation 4.1.1–2. We conclude that, if1.the total strain rate measure used in Equation 4.1.1–1is the rate ofdeformation:where is the velocity and is the current spatial position of a material point;and2.the elastic strains are small,then the approximation is consistent. Abaqus uses the rate of deformation as the strain rate measure in finite-strain problems for this reason. (The distinction between different strain measures matters only when the strains are not negligible compared to unity; that is, in finite-strain problems.) The elastic strains always remain small for many materials of practical interest; for example, the yield stress of a metal is typically three orders of magnitude smaller than its elastic modulus, implying elasticstrains of order . However, some materials (polymers, for example) can undergo large elastic straining and also flow inelastically, in which case the additive strain rate decomposition is no longer a consistent approximation.Various elastic response models are provided in Abaqus. The simplest of these is linear elasticity:where is a matrix that may depend on temperature but does not depend on the deformation (except when such dependency is introduced in damage models). This elasticity model is intended to be used for small-strain problems or to model the elasticity in an elastic-plastic model in which the elastic strains are always small.An extension of the elastic type of behavior is the hypoelastic model:where now may depend on the deformation. In this case the elasticity may be nonlinear, but the implementation in Abaqus still assumes that the elastic strains will always be small. In porous and granular media, the elastic properties are strongly dependent on the volume strain; porous elastic behavior is described in ―Porous elasticity,‖ Section 4.4.1.The most general type of nonlinear elastic behavior is the hyperelastic model, in which we assume that there is a strain energy density potential—U—from which the stresses are defined (to within a hydrostatic stress value if the material is fully incompressible) bywhere and are any work conjugate stress and strain measures. This form of elasticity model is generally used to model elastomers: materials whose long-term response to large deformations is fully recoverable (elastic). The hyperelasticity modeling provided in Abaqus is described in ―Large-strain elasticity,‖ Section 4.6. The hyperelasticity models cannot be used with the plastic deformation models in the program, but can be combined with viscoelastic behavior, as described in ―Finite-strain viscoelasticity,‖ Section 4.8.2.The plasticity models offered in Abaqus are discussed in general terms in ―Plasticity overview,‖ Section 4.2. Both rate-independent and rate-dependent models, with and without yield surfaces, are offered. Models are included in the program that are intended for applications to metals (―Metal plasticity,‖ Section 4.3) as well as some nonmetallic materials such as soils, polymers, and crushable foams (―Pl asticity for non-metals,‖ Section 4.4). The jointed material model (―Constitutive model for jointed materials,‖ Section 4.5.4) and the concrete model (―An inelastic constitutive model for concrete,‖ Section 4.5.1) also include plasticity modeling.The constitutive routines in Abaqus exist in a library that can be accessed by any of the solid or structural elements. This access is made independently at each ―constitutive calculation point.‖ These points are the numerical integration points in the elements. Thus, the constitutive routines are concerned only with a single calculation point. The element provides an estimate of the kinematic solution to the problem at the point under consideration. These kinematic data are passed to the constitutive routines as the deformation gradient——or, more typically, as the strain and rotation increments—and . The constitutive routines obtain the state atthe point under consideration at the start of the increment from the ―material point data base.‖ The state variables include the stress and any state variables used in the constitutive models—plastic strains, for example. The constitutive routines also look up the constitutive definition. Their function then is to update the state to the end of the increment and, if the procedure uses implicit time integration and if Newton's method is being used to solve the equations, to define the material contribution to theJacobian matrix, . For material models that are defined in rate form and, therefore, require integration (such as incremental plasticity models), this Jacobian contribution depends on the model and also on the integration method used for the model. Its derivation is, therefore, discussed in some detail in the sections that define such models.Reference―Material library: overview,‖ Section 18.1.1 of the Abaqus Analysis User's Manual。
混凝土弹塑性损伤本构模型参数及其工程应用齐虎;李云贵;吕西林【摘要】为提高弹塑性损伤本构模型的工程实用性,研究各参数取值对模型损伤发展、塑性发展及材料应力应变关系的影响.拟合参数取值与混凝土材料常用指标弹性模量、单轴抗压强度及单轴抗拉强度联系之间的函数关系,提出实用的参数取值确定方法.对规范规定的各强度混凝土材料进行数值模拟,结果表明:模型及参数确定方法能够较准确地模拟混凝土材料的各种非线性本构行为.采用用户材料子程序UMAT进行本构模型在ABAQUS中的二次开发,对上海某酒店项目进行数值模拟:在结构设计软件PKPM中完成建模,将模型转换为ABAQUS模型进行计算,并将计算结果与振动台试验结果进行比较.结果表明:各振形计算自振频率相差在5%以内,顶层位移时程除个别极值外总体匹配较好,楼层位移差在10%以内,最大层间位移除个别楼层相差达到30%以外,一般楼层相差10%左右,验证了所提出的参数确定方法及本构模型是合理有效的;通过分析结构各关键时刻损伤分布云图,表明弹塑性损伤本构模型能够实时反映结构的破坏过程,便于分析者直观地把握结构破坏形态.【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2015(049)003【总页数】9页(P547-554,563)【关键词】本构模型参数;混凝土;ABAQUS;非线性时程反应;损伤分布【作者】齐虎;李云贵;吕西林【作者单位】中国建筑股份有限公司技术中心,北京101320;中国建筑股份有限公司技术中心,北京101320;同济大学结构工程与防灾研究所,上海200092【正文语种】中文【中图分类】TU313弹塑性损伤本构模型能够准确地模拟混凝土非线性本构行为[1-4].目前,学者们提出了多个理论完备、计算准确度高的混凝土弹塑性本构模型[5-7],但是多数模型的数值处理复杂,计算过程涉及多次迭代,计算效率较低、数值稳定性不好,且模型中涉及的参数较多,参数的标定是一项繁琐的工作,因此这些模型较难应用于实际工程.齐虎等[8]提出了一个计算效率高、数值稳定性好的实用弹塑性损伤本构模型,但仍然存在参数较多,实际应用困难的问题.本文对弹塑性损伤本构模型[8]中各参数取值进行系统研究,并研究各个参数对模型计算本构曲线的影响.通过比较计算结果与试验结果,给出模型参数与混凝土材料单轴抗拉强度、抗压强度和弹性模量的函数关系.从而在使用中只须给定材料抗拉强度、抗压强度和弹性模量就能方便地确定模型的参数取值,提高模型的实用性.将齐虎等[8]开发的弹塑性损伤本构模型在ABAQUS中进行二次开发,并采用本文提出的方法确定模型参数取值,对上海浦东香格里拉酒店进行数值模拟.上海浦东香格里拉酒店是由一栋41层、总高度为152.8 m的塔楼和4层裙房组成的超高层框架——剪力墙结构,结构高度超限且平面布置不规则.同济大学土木工程防灾国家重点实验室振动台试验室对其进行了震振动台试验研究,将模型分析结果与振动台试验结果进行了比较,以验证本文提出的本构模型、参数确定方法及选用分析模型的有效性和合理性.由于ABAQUS建模工作较为复杂,本文首先在PKPM 中建模,然后借助PKPM-ABAQUS转化程序[9]将模型导入到ABAQUS中进行计算.1 弹塑性损伤本构模型参数的确定1.1 控制损伤演化参数取值的确定由文献[8]可知本构模型拉、压损伤变量计算公式如下:式中:a±和b±均为控制损伤发展参数(上标“+”表示受拉参数,“-”表示受压参数);Y±为损伤能量释放率;Y±0为损伤能量释放率阈值,可通过混凝土单轴试验确定.如果没有一个实用的方法来确定上述6个参数的取值,则模型较难应用于实际工程中.图1分别给出了函数中参数a、b对损伤变量d的影响.图1(a)为当a=30,b=0.5、1.0、2.0时,d与Z的函数曲线;图1(b)为当b=1,a=30、300、10 000时,d与Z的函数曲线.从图1可以看出,变量d为Z的单调增函数参数,且d的增长速度随着a、b的增加而加快,可见式(1)中损伤变量d±的演化速度随着a±和b±的增加而加快.图1 a和b对损伤的影响Fig.1 Effect of a and b图2给出了参数和的变化对混凝土单轴受压应力-应变骨架曲线的影响.从图2可以看出,参数对模型极限受压应力影响较大,越小模型计算极限应力越小;参数主要影响曲线下降段的斜率,越小计算曲线下降段斜率越小.通过计算可得:当初始弹性模量一定(=31000 MPa)时,与混凝土强度存在指数关系,如图3和式(2)所示;当一定(fc=31.14 MPa)时,与(混凝土结构设计规范(GB50010-2010)(后文简称规范)表4.5.1范围内)[10]存在线性关系如图3和式(3)所示.图2 参数、对模型应力-应变曲线的影响Fig.2 Effect of a-and b-on model behavior图3 a-与f c、E 0 关系Fig.3 Relationship of,fc and E0综合式(2)、(3),得出a- 与混凝土抗压强度fc和初始弹性模量E0之间的关系如下:通过以上研究可知,已知fc和E0就可以由式(4)确定a- 值.采用式(4)确定a- 值,对规范中各强度混凝土材料进行模拟,计算结果与混凝土强度设计值比较如表1.表1 模型计算强度与规范设计值比较Tab.1 Comparison of calculation results and code___强度等级E0/fc/fcc(104 MPa)__MPa___________________________a-fcc/MPafc_____C15 2.20 7.2 301 7.2 1.00 C20 2.55 9.6 191 9.6 1.00 C25 2.80 11.9 134 11.8 0.99 C30 3.00 14.3 100 14.2 0.99 C35 3.15 16.7 78 16.5 0.99 C40 3.25 19.1 62 18.7 0.98 C45 3.35 21.1 53 20.5 0.97 C50 3.45 23.1 45 22.5 0.97 C55 3.55 25.3 39 24.7 0.98 C60 3.60 27.5 33 27.1 0.99 C65 3.65 29.7 28 29.5 0.99 C70 3.70 31.8 24 31.8 1.00 C75 3.75 33.8 21 34.1 1.01 C80___ 3.80________35.9____19___________________36.4_1.01从表1可以看出,对于规范规定各强度等级混凝土材料给定材料强度设计值和弹性模量,通过式(4)确定a-取值,则模型计算混凝土强度与混凝土规范值符合很好.对于b- 在单轴、双轴加载下,取=0.98[1],本文建议对于单双轴加载取为1.对于三轴受压加载,由于侧向约束作用,主轴应力-应变曲线与单、双轴加载情况下相比,曲线的下降段更平缓[3],如图4所示,由图2可知,此时的取值应小于单、双轴加载情况.在实际工程中,模型主要用来模拟混凝土材料的单轴、双轴加载情况,现阶段本文只给出单、双轴加载取值.图4 双轴、三轴加载主轴应力-应变曲线Fig.4 Principal stress-strain curves under 2D,3D loadinga+、b+控制受拉损伤演化,它们影响受拉加载曲线的下降段,如图5所示,本文参照文献[1]取a+=7 000,b+=1.1.为初始损伤阈值,当拉、压损伤能量释放率小于时材料处于受拉、受压弹性阶段,当损伤能量释放率超过后材料开始产生拉、压损伤.图5 a+和b+对模型受拉曲线的影响Fig.5 Effect of a+and b+on tensile curve of model对材料单轴受拉应力-应变曲线以及受拉损伤演化的影响如图6(a)、(b)所示.对材料单轴受压应力-应变曲线以及受压损伤演化的影响如图6(c)、(d)所示. 由图6可知,决定混凝土材料的抗拉强度,对材料受压加载应力-应变曲线存在一定的影响.可由单轴加载试验确定.对于受拉,材料在加载到极限抗拉强度前为弹性,应将取为材料单轴受拉加载到抗拉强度时的损伤能量释放率;对于受压,材料在加载到0.25倍抗压强度前为弹性,应将取为材料单轴受压加载到0.25倍抗压强度时的损伤能量释放率.和的计算公式如下:图6 和对模型的影响Fig.6 Effect of and on model式中:dε表示对ε取微分;E表示材料弹性模量;为单位有效应力张量;参数βp 为控制塑性应变大小的参数,如图7所示,对于βp各学者给出了不同的取值[3,11],本文通过研究发现βp与加载状态有关:双轴、三轴受压加载材料塑性变形比单轴受压加载大.本文建议对于单轴受压加载本文建议取βp=0.1,对于双轴受压加载βp计算如下:1.2 控制塑性应变参数βp取值确定文献[8]给出的塑性应变计算公式为式中:分别表示应力的第2、第3主应力(在双轴受压加载时第一主应力=0).当>0时,βp 与之间的关系如图8所示.图7 βp对塑性应变的影响Fig.7 Relationship ofβp on plastic strain图8 βp 与ˆσ2/ˆσ3之间的关系Fig.8 Relationship betweenβp andˆσ2/ˆσ32 试验数值分析2.1 单、双轴加载试验数值模拟分别采用本文提出的模型对Kupfer等[12-13]所做的试验进行模拟,并将计算结果与文献中的试验结果进行比较(如图9~11所示,其中图10表示在双轴加载的情况下主次方向不同比例加载时,主加载方向的应力/应变曲线).文献[12-13]中的试验模拟参数取值:E=31 000 MPa;v=0.2,fc=27.6 MPa;ft=3.5 MPa、a±、b±及的取值按照本文提出的方法确定,分别为a-=28,a+=7 000 MPa-1,b-=1,b+=1.1,βp=0.1+0.45=2.0×10-4,=7.7×10-4.Gopalaratnam试验参数取值:E=31 800 MPa,v=0.2.ft=3.4 MPa,a+=7 000 MPa-1,b+=1.1=1.8×10-4.从图9~11可以看出,本文提出的本构模型及参数取值方法能较好地描述混凝土材料的各种非线性本构行为.图9 双轴应力作用下的强度包络Fig.9 Biaxial strength envelope under action of biaxial stress图10 双轴受压加载Fig.10 2D compressive test图11 单轴受拉反复加载Fig.11 1D cyclic tensile test2.2 香格里拉酒店数值模拟上海浦东香格里拉酒店扩建工程位于上海市浦东陆家嘴经济开发区,是由一栋总高度为152.8 m的41层塔楼和一幢4层裙房组成的超高层框架——剪力墙结构.本工程设有地下室2层,地面以上37层,另加避难楼层2层(分别位于10~11层和24~25层).其中,地下一层、二层的层高分别为3.00和4.55 m;地面以上第1~6层的层高分别为6.05、5.00、5.00、6.00、5.00、5.00 m;第7~35层的层高为3.40 m;第36层的层高为5.40 m,第37层的层高为5.00 m;上下避难楼层的层高为4.50 m,工程总建筑面积为36 200 m2,结构高宽比为4.52.该工程结构的1~4层结构平面如图12(a)所示,塔楼第5层(转换层)结构平面如图12(b)所示,塔楼5层以上的楼层结构平面如图12(c)所示.本工程塔楼部分总高度为152.8 m,顶部钢桁架局部高度为180 m,结构高度超过了上海市框架——剪力墙结构体系的上限值(140 m).另外,塔楼结构下部开有宽25.6 m、高23 m的孔洞,结构平面布置不规则.图12 香格里拉酒店典型楼层平面图Fig.12 Typical floor of Shangri-La Hotel图13 单轴本构模型滞回加载曲线Fig.13 Uniaxial concrete model proposedby authors香格里拉酒店在PKPM中所建模型如图14(a)所示,然后用PKPM-ABAQUS转换程序[9]将PKPM中模型转换生成ABAQUS模型,如图14(b)所示,在ABAQUS中梁柱构件采用纤维模梁单元模拟,剪力墙构件采用4节点减缩积分壳元模拟,一维本构模型采用笔者提出的非线性弹性本构模型[14],如图13所示;二维本构模型采用作者建议的弹塑性损伤本构模型[8],参数取值按本文提出的方法确定.采用显式积分算法求解,在本构材料中考虑了刚度阻尼力,材料阻尼取其第一振型临界阻尼的3%[15],在材料中加入阻尼力的算法如下[15]:只考虑刚度阻尼,无损材料阻尼力表达式为¯σvis=βk E0∶˙ε,其中βk为刚度组合系数,˙ε为ε随时间的变化率.Cauchy黏滞阻尼应力σvis可表示为弹塑性损伤本构关系为则总应力可表示为图15给出了ABAQUS计算模型振型,表2给出了PKPM和ABAQUS的计算模型振动周期T与振动台试验结果的比较.图14 结构数值模型Fig.14 Numerical model of structure图15 香格里拉酒店振型图Fig.15 Vibration model of Shangri-La Hotel表2 结构振动周期比较Tab.2 Comparison of vibration period of structures____振型 ABAQUS_________________PKPM试验____1 3.23 3.18 3.14 2 2.78 2.68 2.82 3 2.04 2.061.95__________________40.95_______________________________0.92__0.90从表2可以看出,PKPM计算模型前4个振型周期与试验结果符合较好,说明PKPM数值模型的准确性较好;ABAQUS计算模型前4个振型周期与PKPM计算结果符合较好,证明转换程序能准确有效地将PKPM模型转换为ABAQUS模型. 为了验证本构模型在分析实际复杂工程结构时的有效性,本文对上述工程进行非线性时程反应分析.输入地震波为上海人工波SHW2,如图16所示.地震波从χ方向(见图14)输入,结构顶层位移时程计算结果与振动台试验结果比较如图17所示.图16 上海人工波SHW2时程Fig.16 Shanghai artificial wave SHW2图17 顶层x方向位移时程比较Fig.17 Comparison of roof displacement time history inχdirection从图17可以看出顶层位移时程计算结果与试验结果总体符合较好,位移峰值出现在14 s左右,且试验峰值与计算峰值十分接近,最大峰值过后试验位移迅速衰减,此后2个位移时程峰值试验结果均小于数值分析结果.图18为典型楼层位移时程曲线.图19为楼层位移包络图计算结果与试验结果的比较.从图19中可以看出,楼层最大位移包络图计算结果与试验结果符合较好,计算结果比试验值略大,结构楼层位移在第3层出现明显拐点表明结构在第3层较为薄弱.图20为最大层间位移计算结果与试验结果的比较.图18 主要楼层计算位移时程Fig.18 Displacement-time history of main floors 图19 楼层位移包络图Fig.19 Displacement envelope of floors为了研究结构的破坏形态,下面分别给出罕遇地震作用下,结构剪力墙构件在不同时刻的应力云图、受拉损伤云图及受压损伤云图.结构剪力墙构件关键时刻应力变化云图如图21所示.从图21可以看出,结构在地震波加载到12.4 s、16.0 s时顶层位移为正,结构向右偏移,结构右侧应力大于左侧应力;结构在14.0 s和35.6 s的顶层位移为负,结构向左偏移,结构左侧应力大于右侧应力.以上分析结果与结构实际受力情况一致.图20 层间位移Fig.20 Story drift图21 剪力墙结构应力分布图Fig.21 Stress distributions of shear wall图22 某剪力墙结构受拉损伤分布图Fig.22 Tnsile damage distributions of shear wall结构剪力墙构件受拉损伤云图如图22所示.从图22中可以看出,结构受拉损伤发展很快,结构在0.4 s产生明显受拉损伤,此后损伤迅速发展.受拉损伤最初集中在裙房、裙房与塔楼结合楼层以及结构右侧剪力墙构件,之后逐步蔓延至整个结构.同时受拉损伤在地震波加载前期主要在左右两侧剪力墙结构上发展,之后逐步蔓延至中间部位,在地震波作用后期,除上部少数楼层,其他部分均存在较大的受拉损伤.结构剪力墙构件受压损伤云图如图23所示.从图23可以看出,结构剪力墙构件在5.2 s时裙房和塔楼结合产生明显受压损伤,此后受压损伤迅速发展,到34.8 s结构产生较大受压损伤.同时结构在下部裙房以及裙房和塔楼结合处受压损伤较大.结构在34.8 s和44.4 s受压损伤云图比较接近,可见到34.8 s结构大部分受压损伤发展完成,此后受压损伤发展缓慢.图23 剪力墙结构受压损伤分布图Fig.23 Compressive damage distribu t ion of shear wall3 结论(1)使用本文提出的参数确定方法,实际使用中只须给定材料抗拉、抗压强度和弹性模量就能方便地确定全部参数的取值,便于在实际建筑结构的分析中使用. (2)分析结果与振动台试验结果在结构自振频率、振型形态、最大楼层位移及顶层位移时程等匹配较好,说明本文提出的本构模型及选用的构件分析模型和分析方法是有效的,适合实际复杂高层建筑结构的非线性分析.(3)在实际建筑结构的分析中,弹塑性损伤本构模型不但可以得到结构在外力作用下的应力和位移响应,而且可以同时得到不同状态下结构的损伤分布.这种损伤过程被实时地反映在结构的非线性分析过程中,便于分析者直观地把握结构的破坏形态.参考文献(References):【相关文献】[1]VOYIADJIS G Z,TAQIEDDIN Z N.Elastic plastic and damage model for concrete materials:Part I-theoretical formulation[J].International Journal of Structural Changesin Solids-Mechanics and Applications,2009,1(1):31- 59.[2]WU J Y,LIJ,FARIA R.An energy release rate-based plastic damage model for concrete[J].International Journal of Solids and Structures,2006,43(3/4):583- 612.[3]FARIA R,OLIVER J,CERVERA M.A strain-based plastic viscous-damage model for massive concrete structures[J].International Journal of Solids and Structures,1998,35(14):1533- 1558.[4]LEE,Jand FENVES,G L.A plastic-damage model for cyclic loading of concrete structures[J].Journal of Engineering Mechanics,1998,124:892- 900.[5]JU,J W.On energy-based coupled elasto-plastic damage theories:constitutive modeling and computational aspects[J].International Journal of Solids and Structures,1989,25(7):803- 833.[6]OLLER S,ONATE E,OLIVER J,et al.Finite element nonlinear analysis of concrete structures using a plastic damage model[J].Engineering Fracture Mechanics,1990,35:219- 231.[7]SHEN X,YANG L,ZHU F.A plasticity-based damage model for concrete[J],Advances in Structural Engineering,2004,7(5):461- 467.[8]齐虎,李云贵,吕西林.基于能量的弹塑性损伤实用本构模型[J].工程力学,2013,30(5):172- 180.QI Hu,LI Yun-gui,LV Xi-lin.A practical elastic plastic damage constitutive model based on energy [J].Engineering Mechanics,2013,30(5):172- 180.[9]刘慧鹏,李云贵,周新炜.PKPM与ABAQUS结构模型数据接口开发研究及应用[C]∥第二届工程建设计算机应用创新论坛论文集.上海:[s.n.],2009:487- 494.LIU Hui-peng,LIYun-gui,ZHOU Xin-wei.The development and application of PKPM and ABAQUS structure model data interface[C]∥The Second Sonstruction Engineering Computer Application Innovation Forum Proceedings.Shanghai:[s.n.],2009:487- 494.[10]GB 50010-2010混凝土结构设计规范[M].北京:中国建筑工业出版社,2010:19- 20. [11]吴建营,李杰.考虑应变率效应的混凝土动力弹塑性损伤本构模型[J].同济大学学报,2006,34(11):1427- 1430.WU Jian-ying,LI Jie.Elastoplastic damage constitutive model for concrete considering strain rate effect under dynamic loading[J].Journal of Tongji University:Natural Science Edition,2006,34(11):1427- 1430.[12]KUPFER H B,HILDORF H K,RUSCH H.Behavior of concrete under biaxial stresses [J].Journal of the Engineering Mechanics Division,1969,6(8):656- 666.[13]GOPALARATNAM V S,SHAH S P.Softening response of plain concretein direct tension[J].Journal of the American Concrete Institute,1985,82(3):310- 323. [14]齐虎,李云贵,吕西林.箍筋约束混凝土单轴滞回本构实用模型[J].工程力学,2009,28(9):95- 102.QI Hu,LI Yun-gui,LV Xi-lin.A practical confined concrete constitutivemodel under uniaxial hysteresis load[J].Engineering Mechanics,2011,28(9):95- 102.[15]LEE J,FANVES G L.A plastic-damage concrete model for earthquake analysis of dams[J].Earthquake Engineenng and Structural Dynamics,1998,27(9):937- 956.。
4.5.2 混凝土和其它準脆性材料的塑性損傷模型這部分介紹的是ABAQUS提供分析混凝土和其它準脆性材料的混凝土塑性損傷模型。
ABAQUS 材料庫中也包括分析混凝的其它模型如基于彌散裂紋方法的土本構模型。
他們分別是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的彌散裂紋模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性開裂模型。
混凝土塑性損傷模型主要是用來為分析混凝土結構在循環和動力荷載作用下的提供一個普遍分析模型。
該模型也適用于其它準脆性材料如巖石、砂漿和陶瓷的分析;本節將以混凝土的力學行為來演示本模型的一些特點。
在較低的圍壓下混凝土表現出脆性性質,主要的失效機制是拉力作用下的開裂失效和壓力作用下的壓碎。
當圍壓足夠大能夠阻止裂紋開裂時脆性就不太明顯了。
這種情況下混凝土失效主要表現為微孔洞結構的聚集和坍塌,從而導致混凝土的宏觀力學性質表現得像具有強化性質的延性材料那樣。
本節介紹的塑性損傷模型并不能有效模擬混凝土在高圍壓作用下的力學行為。
而只能模擬混凝土和其它脆性材料在與中等圍壓條件(圍壓通常小于單軸抗壓強度的四分之一或五分之一)下不可逆損傷有關的一些特性。
這些特性在宏觀上表現如下:單拉和單壓強度不同,單壓強度是單拉強度的10倍甚至更多;受拉軟化,而受壓在軟化前存在強化;在循环荷载(压)下存在刚度恢复;率敏感性,尤其是強度隨應變率增加而有較大的提高。
概論混凝土非粘性塑性損傷模型的基本要點介紹如下:應變率分解對率無關的模型附加假定應變率是可以如下分解的:是總應變率,是應變率的彈性部分,是應變率的塑性部分。
應力應變關系應力應變關系為下列彈性標量損傷關系:其中是材料的初始(無損)剛度,是有損剛度,是剛度退化變量其值在0(無損)到1(完全失效)之間變化,與失效機制(開裂和壓碎)相關的損傷導致了彈性剛度的退化。