ABAQUS中的三种混凝土本构模型(20200706140516)
- 格式:docx
- 大小:6.74 KB
- 文档页数:2
abaqus钢筋混凝土参数
Abaqus 是一款常用的有限元分析软件,常用于工程领域的结构力学
分析、流体力学分析等方面。
在使用 Abaqus 进行钢筋混凝土结构的
分析时,需要设置一些参数才能获得准确的计算结果。
1. 材料参数
钢筋和混凝土是钢筋混凝土结构中重要的材料。
在使用 Abaqus 进行
分析时,需要设置钢筋和混凝土的材料参数,例如弹性模量、泊松比、拉伸强度、压缩强度等。
这些参数是计算混凝土结构的重要基础。
2. 单元类型
在进行分析时需要选择所需的单元类型,钢筋混凝土结构中常用的单
元类型有三种:梁单元、壳单元和实体单元。
不同的单元类型适用于
不同的钢筋混凝土结构,在选择单元类型时需要根据实际情况进行选择。
3. 网格密度
网格密度是指在分析过程中将钢筋混凝土模型离散化时所采用的网格
大小。
网格密度越高,分析结果越精确,但计算时间也会相应增长。
在确定网格密度时需要权衡精确性和计算时间。
4. 荷载与边界条件
在进行分析时需要设置结构的荷载、边界条件等参数。
这些参数直接
影响到计算结果的准确性。
在设置荷载和边界条件时要考虑实际情况,确保计算结果的合理性。
总之,设置合适的参数是获得准确的钢筋混凝土结构分析结果的关键。
在进行分析时要结合实际情况,根据需要进行适当调整,确保计算结
果的准确性和可靠性。
基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟共3篇基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟1钢筋混凝土框架结构是一种常见的建筑结构形式,具有较高的承载能力和良好的抗震性能。
数值模拟是研究结构力学性能和优化设计的重要手段之一。
本文将介绍基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟方法和实现步骤。
ABAQUS是一种广泛应用于结构力学和工程分析的有限元分析软件,可以模拟不同类型的结构,包括钢筋混凝土框架结构。
在ABAQUS中,钢筋混凝土框架结构使用的是梁单元(B31)和三角形单元(C3D4)。
本文将重点介绍梁单元的应用。
首先,建立模型,包括结构几何形状、截面形状、材料特性等信息。
在ABAQUS中,可以通过建立草图、绘制型材、定义截面属性等方式来创建模型。
需要注意的是,建立的模型必须符合实际结构的几何形状和尺寸要求。
其次,定义材料特性,包括钢筋混凝土的弹性模量、泊松比、屈服强度、极限强度、裂缝韧度等参数。
这些参数对于结构的强度、刚度、稳定性等性能都有很大的影响,需要根据实际情况进行精确的定义。
然后,给结构施加荷载,包括静态荷载、动态荷载、地震荷载等。
在ABAQUS中,可以通过绘制荷载分布或者定义节点荷载、边界约束等方式来施加荷载。
需要注意的是,荷载的大小和方向必须符合实际情况。
最后,进行数值模拟,求解结构的应力、应变、变形等参数。
在ABAQUS中,可以通过指定分析步数、时间步长、求解器、后处理选项等方式来进行数值模拟。
需要注意的是,模拟结果的准确性和可靠性与模型的精度、材料参数和荷载条件等因素密切相关,需要认真评估和验证。
总的来说,基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟是一项复杂的工程计算工作,需要具备专业的结构力学知识和ABAQUS软件的使用技能。
在模拟过程中,需要考虑许多因素,如模型准确性、材料参数、荷载条件、求解器选项等。
因此,需要认真分析和解决各种问题,确保模拟结果的准确性和可靠性,为结构设计和施工提供科学依据。
.ABQUS中的三种混凝土本构模型ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE1 / 1'.。
ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇ABAQUS显式分析梁单元的混凝土、钢筋本构模型1在ABAQUS中,梁单元是一种经常用于模拟混凝土和钢筋梁的元素。
它使用线性或非线性混凝土本构模型和钢筋本构模型来描述材料的行为,并考虑梁单元在三个方向上的应力和应变。
混凝土本构模型:ABAQUS提供了多个混凝土本构模型,它们可以用于描述混凝土的本构行为。
其中一个常用的模型是Mander本构模型,它考虑了混凝土的三个不同阶段的行为:1. 压缩阶段: 混凝土在受到压缩时会逐渐变硬,所以Mander模型使用一个非线性的应力-应变关系来描述混凝土的压缩行为。
该模型使用三个参数来描述混凝土在不同应变范围内的硬化行为。
2. 弯曲-拉伸阶段: 当混凝土受到弯曲或拉伸时,会发生一些微小的裂缝,导致其变得更容易受到破坏。
因此,Mander模型采用一个渐进应力-应变关系来描述混凝土的弯曲和拉伸行为。
该模型也使用三个参数来描述不同应变范围内的弯曲和拉伸行为。
3. 破坏阶段: 当混凝土受到极大应力时,会发生破坏。
为了模拟破坏行为,Mander模型使用两个参数来描述混凝土的弹性模量和极限应变。
当混凝土受到超过极限应变的应变时,该模型将输出一个非常大的应力值,这意味着梁单元已经破坏。
钢筋本构模型:ABAQUS也提供了多个钢筋本构模型。
其中一个常用的模型是多屈服弹塑性模型,它考虑了钢筋的应力-应变关系的多个拐点:1. 弹性阶段: 在应力小于屈服强度时,钢筋的行为是弹性的。
因此,多屈服弹塑性模型使用一个线性应力-应变关系来描述弹性阶段的行为。
2. 屈服阶段: 当钢筋的应力达到屈服强度时,它的行为将开始变得非线性。
因此,多屈服弹塑性模型使用一个拐点来描述屈服后的应力-应变关系。
该模型使用一组参数来描述每个拐点的应力和应变差。
3. 再次弹性阶段: 当钢筋的应变超过屈服点后,它的应变-应力关系将再次变得线性。
多屈服弹塑性模型也考虑了这个阶段的行为。
武汉理工大学弹塑性理论学习论文混凝土的本构模型研究学院(系):土木工程与建筑学院专业班级:土木研1005班学生姓名:梁庆学指导教师:张光辉混凝土的本构模型研究梁庆学(武汉理工大学土木工程与建筑学院,武汉 430070)摘要:在《弹塑性理论》这门课程中,我们学习了应力理论、应变理论和本构关系的一些相关知识。
虽然只有短短的几个月的时间,但这对于引导我们自学和探讨是非常有帮助的。
我在学完本构关系相关知识后,自己阅读相关的专业书籍和查阅了相关的科技论文文献,对混凝土的本构模型有了一些初步的了解,也对其产生了比较浓厚的兴趣,本文主要依据弹塑性理论对混凝土的本构模型最了一些简单的阐述总结。
关键词:本构关系;本构模型;线弹性模型;非线弹性模型;塑性理论模型The Study of ConstitutiveModel of ConcreteQing-xue Liang(Civil Engineering and Architecture School Wuhan University of Technology, Wuhan 430070)Abstract: In the course of “elastic-plastic theory”, we have learned some knowledge about stress theory, strain theory and constitutive relation. Although only several months’study, it’s helpful to lead us self-study and discussion. After learning the knowledge about constitutive relation, I have read some relevant professional books and reviewed some scientific papers related constitutive relation. I have got some preliminary understanding about the constitutive model of concrete, and I’m interested to it too. In this paper, I give some simple summary to the constitutive model of concrete based on the elastic-plastic theory.Key words:Constitutive relation; Constitutive model; Linear-elastic model; Non-linear-elastic model; Plastic theory model1 绪论混凝土是一种在工程结构中应用及其广泛的材料,在相当长时间内是依靠经验公式进行设计与分析的, 近几十年来, 随着电子计算机的普及,混凝土非线性有限元分析得到了很大的发展, 有关混凝土的本构关系得到了广泛而深入的研究。
ABAQUS结构工程实例建模教程第1章建模方法介绍本章通过一框架剪力墙结构,详细介绍了三种建模方法,并在ABAQUS中对模型进行了模态分析。
注意:这里建立的模型只包括混凝土一种材料,对于钢筋的建立,将在后续章节中详细介绍。
【例题1.1】模型为九层混凝土框-剪结构,如图1. 1和图1. 2所示。
基本数据如下:➢柱:500mm ×500mm➢梁:250mm×500mm➢混凝土:C30➢剪力墙:250mm➢层高: 一层4500mm,二~九层3600mm图1. 1 结构尺寸图1. 2分析模型1.1 【方法一】直接在ABAQUS中建立模型单位制:N、m、kg、s1.1.1 Part模块—建立首层和标准层进入Part模块—Create Part,如图1. 3,Part-1为首层平面,如图1. 4;标准层与首层只是层高不同,而平面布置完全一样,所以可以在左侧模型树Parts—Part-1右击,点击Copy,如图1. 5,进入Part Copy窗口,如图1. 6,命名为Part-2。
图1. 3图1. 4图1. 5图1. 6在菜单栏中点击Tool—Datum,进入Create Datum窗口,如图1. 7所示,Type 选择Point,Method选择Offset from point。
选择有柱的点,在左下角(如图1. 8)Offset(X,Y,Z)中输入(0,0,-4.5),完成之后如图1. 9。
图1. 7图1. 8图1. 9在环境栏中选择,如图1. 10,弹出Create Wire Feature 窗口,如图1. 11,Add method选择Disjoint wires,通过Add,连接柱子的两个端点,完成之后如图1. 12。
同理,可以生成标准层Part-2的柱子。
图1. 10图1. 11图1. 12建立首层剪力墙Part-3,Part—Create Part(如图1. 13),点击,在左下角starting point输入(0,0),end point输入(0,6),如图1. 14,点击Done,弹出Edit Base Extrusion窗口,如图1. 15,在Depth中输入4.5,完成之后如图1. 16。
混凝土本构模型混凝土是一种常用的结构材料,具有很强的抗压强度和耐久性。
为了有效地分析和设计混凝土结构,人们提出了混凝土本构模型,用于描述混凝土材料的力学性能。
本文将介绍混凝土本构模型的基本概念、常用模型以及模型选择的几个关键因素。
1. 混凝土本构模型的基本概念混凝土的本构模型是一种数学模型,用于描述混凝土在力学加载下的应力-应变关系。
它基于实验数据和理论分析,通过一组公式或曲线来模拟混凝土的弹性和塑性行为。
常见的本构模型包括弹性模型、线性本构模型、非线性本构模型等。
2. 常用的2.1 弹性模型弹性模型是最简单的混凝土本构模型之一,它假设混凝土在加载过程中具有线性弹性行为。
根据胡克定律,混凝土的应力和应变之间存在着线性关系。
在小应变范围内,弹性模型能够较好地描述混凝土的力学性能,但它无法考虑材料的非线性行为。
2.2 线性本构模型线性本构模型相比于弹性模型更为复杂,它考虑了混凝土的非线性行为。
其中最为常用的是双曲线模型和抛物线模型。
双曲线模型通过将应力-应变曲线分为上升段和下降段,分别使用线性和非线性公式描述,能够较好地模拟混凝土在受压和受拉状态下的应力-应变关系。
抛物线模型则是通过二次方程来拟合混凝土的应力-应变曲线,在一定程度上考虑了混凝土的非线性特性。
2.3 非线性本构模型非线性本构模型较为复杂,但能够更准确地描述混凝土在大变形情况下的力学性能。
常见的非线性本构模型包括双参数本构模型、Drucker-Prager本构模型、Mohr-Coulomb本构模型等。
这些模型能够考虑混凝土在各向异性和多轴加载条件下的非线性行为,适用于复杂的结构分析和设计。
3. 模型选择的关键因素选择适合的混凝土本构模型是结构分析和设计的关键一步,需要考虑以下因素:3.1 加载条件不同的加载条件会对混凝土的力学性能产生不同的影响,例如受压、受拉、剪切等。
在选择本构模型时,需要根据具体的加载条件确定模型的参数和表达形式。
3.2 大应变效应部分混凝土结构在强震等极端加载条件下可能发生较大应变,此时需要考虑混凝土的非线性行为。
ABAQUS中的三种混凝土本构模型2010-05-12 22:19:14| 分类:ABAQUS | 标签:|字号大中小订阅资料来自SIMWE论坛shanhuimin923,特表示感谢!ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model(ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。
14 ABAQUS中的混凝土本构模型4.1 概述A wide variety of materials is encountered in stress analysis problems, and for any one of these materials a range of constitutive models is available to describe the material's behavior. For example, a component made from a standard structural steel can be modeled as an isotropic, linear elastic, material with no temperature dependence. This simple model would probably suffice for routine design, so long as the component is not in any critical situation. However, if the component might be subjected to a severe overload, it is important to determine how it might deform under that load and if it has sufficient ductility to withstand the overload without catastrophic failure. The first of these questions might be answered by modeling the material as a rate-independent elastic, perfectly plastic material, or—if the ultimate stress in a tension test of a specimen of the material is very much above the initial yield stress—isotropic work hardening might be included in the plasticity model. A nonlinear analysis (with or without consideration of geometric nonlinearity, depending on whether the analyst judges that the structure might buckle or undergo large geometry changes during the event) is then done to determine the response. But the severe overload might be applied suddenly, thus causing rapid straining of the material. In such circumstances the inelastic response of metals usually exhibits rate dependence: the flow stress increases as the strain rate increases. A ―viscoplastic‖ (rate-dependent) material model might, therefore, be required. (Arguing that it is conservative to ignore this effect because it is a strengthening effect is not necessarily acceptable—the strengthening of one part of a structure might cause load to be shed to another part, which proves to be weaker in the event.) So far the analyst can manage with relatively simple (but nonlinear) constitutive models. But if the failure is associated with localization—tearing of a sheet of material or plastic buckling—a more sophisticated material model might be required because such localizations depend on details of the constitutive behavior that are usually ignored because of their complexity (see, for example, Needleman, 1977). Or if the concern is not gross overload, but gradual failure of the component because of creep at high temperature or because of low-cycle fatigue, or perhaps a combination of these effects, then the response of the material during several cycles of loading, in each of which a small amount of inelastic deformation might occur, must be predicted: a circumstance in which we need to model much more of the detail of the material's response.So far the discussion has considered a conventional structural material. We can broadly classify the materials of interest as those that exhibit almost purely elastic response, possibly with some energy dissipation during rapid loading by viscoelastic response (the elastomers, such as rubber or solid propellant); materials that yield andexhibit considerable ductility beyond yield (such as mild steel and other commonly used metals, ice at low strain rates, and clay); materials that flow by rearrangement of particles that interact generally through some dominantly frictional mechanism (such as sand); and brittle materials (rocks, concrete, ceramics). The constitutive library provided in Abaqus contains a range of linear and nonlinear material models for all of these categories of materials. In general the library has been developed to provide those models that are most usually required for practical applications. There are several distinct models in the library; and for the more commonly encountered materials (metals, in particular), several ways of modeling the material are provided, each suitable to a particular type of analysis application. But the library is far from comprehensive: the range of physical material behavior is far too broad for this ever to be possible. The analyst must review the material definitions provided in Abaqus in the context of each particular application. If there is no model in the library that is useful for a particular case, Abaqus/Standard contains a user subroutine—UMAT—and, similarly, Abaqus/Explicit contains a user subroutine—VUMAT. In these routines the user can code a material model (or call other routines that perform that task). This ―user subroutine‖ capability is a powerful resource for the sophisticated analyst who is able to cope with the demands of programming a complex material model.Theoretical aspects of the material models that are provided in Abaqus are described in this chapter, which is intended as a definition of the details of the material models that are provided: it also provides useful guidance to analysts who might have to code their own models in UMAT or VUMAT.From a numerical viewpoint the implementation of a constitutive model involves the integration of the state of the material at an integration point over a time increment during a nonlinear analysis. (The implementation of constitutive models in Abaqus assumes that the material behavior is entirely defined by local effects, so each spatial integration point can be treated independently.) Since Abaqus/Standard is most commonly used with implicit time integration, the implementation must also provide an accurate ―material stiffness matrix‖ for use in fo rming the Jacobian of the nonlinear equilibrium equations; this is not necessary for Abaqus/Explicit.The mechanical constitutive models that are provided in Abaqus often consider elastic and inelastic response. The inelastic response is most commonly modeled with plasticity models. Several plasticity models are described in this chapter. Some of the constitutive models in Abaqus also use damage mechanics concepts, the distinction being that in plasticity theory the elasticity is not affected by the inelastic deformation (the Young's modulus of a metal specimen is not changed by loading it beyond yield, until the specimen is very close to failure), while damage models include the degradation of the elasticity caused by severe loading (such as the loss of elastic stiffness suffered by a concrete specimen after it has been subjected to large uniaxial compressive loading).2In the inelastic response models that are provided in Abaqus, the elastic and inelastic responses are distinguished by separating the deformation into recoverable (elastic) and nonrecoverable (inelastic) parts. This separation is based on the assumption that there is an additive relationship between strain rates:where is the total strain rate, is the rate of change of the elastic strain, and isthe rate of change of inelastic strain.A more general assumption is that the total deformation, , is made up of inelasticdeformation followed by purely elastic deformation (with the rigid body rotation added in at any stage in the process):In ―The additive strain rate decomposition,‖ Section 1.4.4, the circumstances are discussed under which Equation 4.1.1–1is a legitimate approximation to Equation 4.1.1–2. We conclude that, if1.the total strain rate measure used in Equation 4.1.1–1is the rate ofdeformation:where is the velocity and is the current spatial position of a material point;and2.the elastic strains are small,then the approximation is consistent. Abaqus uses the rate of deformation as the strain rate measure in finite-strain problems for this reason. (The distinction between different strain measures matters only when the strains are not negligible compared to unity; that is, in finite-strain problems.) The elastic strains always remain small for many materials of practical interest; for example, the yield stress of a metal is typically three orders of magnitude smaller than its elastic modulus, implying elasticstrains of order . However, some materials (polymers, for example) can undergo large elastic straining and also flow inelastically, in which case the additive strain rate decomposition is no longer a consistent approximation.Various elastic response models are provided in Abaqus. The simplest of these is linear elasticity:where is a matrix that may depend on temperature but does not depend on the deformation (except when such dependency is introduced in damage models). This elasticity model is intended to be used for small-strain problems or to model the elasticity in an elastic-plastic model in which the elastic strains are always small.An extension of the elastic type of behavior is the hypoelastic model:where now may depend on the deformation. In this case the elasticity may be nonlinear, but the implementation in Abaqus still assumes that the elastic strains will always be small. In porous and granular media, the elastic properties are strongly dependent on the volume strain; porous elastic behavior is described in ―Porous elasticity,‖ Section 4.4.1.The most general type of nonlinear elastic behavior is the hyperelastic model, in which we assume that there is a strain energy density potential—U—from which the stresses are defined (to within a hydrostatic stress value if the material is fully incompressible) bywhere and are any work conjugate stress and strain measures. This form of elasticity model is generally used to model elastomers: materials whose long-term response to large deformations is fully recoverable (elastic). The hyperelasticity modeling provided in Abaqus is described in ―Large-strain elasticity,‖ Section 4.6. The hyperelasticity models cannot be used with the plastic deformation models in the program, but can be combined with viscoelastic behavior, as described in ―Finite-strain viscoelasticity,‖ Section 4.8.2.The plasticity models offered in Abaqus are discussed in general terms in ―Plasticity overview,‖ Section 4.2. Both rate-independent and rate-dependent models, with and without yield surfaces, are offered. Models are included in the program that are intended for applications to metals (―Metal plasticity,‖ Section 4.3) as well as some nonmetallic materials such as soils, polymers, and crushable foams (―Pl asticity for non-metals,‖ Section 4.4). The jointed material model (―Constitutive model for jointed materials,‖ Section 4.5.4) and the concrete model (―An inelastic constitutive model for concrete,‖ Section 4.5.1) also include plasticity modeling.The constitutive routines in Abaqus exist in a library that can be accessed by any of the solid or structural elements. This access is made independently at each ―constitutive calculation point.‖ These points are the numerical integration points in the elements. Thus, the constitutive routines are concerned only with a single calculation point. The element provides an estimate of the kinematic solution to the problem at the point under consideration. These kinematic data are passed to the constitutive routines as the deformation gradient——or, more typically, as the strain and rotation increments—and . The constitutive routines obtain the state atthe point under consideration at the start of the increment from the ―material point data base.‖ The state variables include the stress and any state variables used in the constitutive models—plastic strains, for example. The constitutive routines also look up the constitutive definition. Their function then is to update the state to the end of the increment and, if the procedure uses implicit time integration and if Newton's method is being used to solve the equations, to define the material contribution to theJacobian matrix, . For material models that are defined in rate form and, therefore, require integration (such as incremental plasticity models), this Jacobian contribution depends on the model and also on the integration method used for the model. Its derivation is, therefore, discussed in some detail in the sections that define such models.Reference―Material library: overview,‖ Section 18.1.1 of the Abaqus Analysis User's Manual。
基于 ABAQUS的钢筋混凝土构件有限元模型的建立摘要:钢筋混凝土结构由钢筋和混凝土两种材料组成。
钢筋一般是包围于混凝土之中的,而且相对体积较小。
因此建立钢筋混凝土结构的有限元模型时,必须考虑到这一特点。
ABAQUS是一套功能非常强大的基于有限元方法的工程模拟软件,它可以解决从相对简单的线性分析到极富挑战性的非线性模拟等各种问题。
本文从模型的选取、单元的选取以及本构关系三个方面研究了如何建立混凝土构件有限元模型。
关键词:钢筋混凝土;ABAQUS;有限元模型1 模型的选取钢筋混凝土结构由钢筋和混凝土两种材料组成。
钢筋一般是包围于混凝土之中的,而且相对体积较小。
因此建立钢筋混凝土结构的有限元模型时,必须考虑到这一特点。
通常构成钢筋混凝土结构的有限元模型主要有三种方式:分离式、组合式和整体式。
1.1 分离式模型分离式模型是把混凝土和钢筋分别作为不同的单元来处理,即将混凝土和钢筋各自划分为足够小的单元。
在平面问题中,可以将混凝土划分为三角形单元或者四边形单元,也可将钢筋划分为三角形单元或四边形单元。
但钢筋作为一种细长材料,一般情况下可以忽略钢筋的横向抗剪强度,即把钢筋视为线性单元,这样不仅可以大大减少单元的数目,而且可以有效的避免钢筋单元划分太细而在钢筋与混凝土交界处应用太多的过渡单元。
1.2 组合式模型组合式模型适用于钢筋和混凝土之间具有较好的粘结性,可近似认为两者之间无相对滑移的情况。
常用两种方式:分层组合式和等参数单元。
分层组合式将构件在横截面上分成许多混凝土层和钢筋层,对对截面的应变作出某些假定(如应变沿截面高度为直线分布等)。
根据材料的实际应力应变关系和平衡条件可以到处单元的刚度表达式,分层组合法在杆件系统,尤其是钢筋混凝土板和壳结构中应用非常广泛。
1.3 整体式模型整体式模型是指将钢筋分布于整个单元中,并把单元作为均匀连续的材料来处理,它与分离式不同之处是,整体式模型求出的刚度矩阵是综合类钢筋与混凝土的矩阵,与组合式不同之处是,它一次求得综合的单元刚度矩阵,而不是先分别求出混凝土与钢筋对单元的贡献然后再进行组合。
ABAQUS软件中部分土模型简介及其工程应用ABAQUS软件是一种常用于土力学研究和工程实践的有限元分析软件。
它具有强大的建模和仿真能力,可用于模拟不同类型土壤的各种力学行为,并对工程结构的性能进行分析和优化。
本文将介绍ABAQUS软件中部分土模型的基本原理和工程应用。
ABAQUS软件中的土模型主要有弹性模型、塑性模型和粘塑性模型。
弹性模型是最基本的土模型之一,它适用于研究土壤的线弹性行为。
弹性模型假设土壤在加载过程中的应变是可逆的,即加载取消后,土壤会恢复到初始状态。
这种模型简单而精确,适用于对土壤的刚性行为进行研究,如土壤的弹性模量、泊松比等性质的分析。
而对于具有塑性行为的土壤,弹性模型往往无法满足实际要求。
塑性模型可以模拟土壤在加载过程中的塑性行为,如塑性应变、塑性变形等。
ABAQUS软件中的常见塑性模型有Mohr-Coulomb模型、Drucker-Prager模型和Cam-Clay模型等。
这些模型考虑了土壤的剪切强度、内聚力和摩擦角等因素,能够较好地模拟土壤的非弹性行为。
在工程实践中,塑性模型广泛应用于土方工程、地基处理和边坡稳定性分析等领域。
除了塑性行为,一些土壤还表现出粘性特性,如黏土。
ABAQUS软件中的粘塑性模型可以同时考虑土壤的塑性和粘性行为。
这些模型通常基于细观数学模型,通过考虑土壤颗粒之间的摩擦和粘聚力来模拟土壤的粘塑性行为。
粘塑性模型在分析含水土的力学行为和地下水流动时具有重要作用。
在工程实践中,ABAQUS软件中的土模型被广泛应用于各种土木工程领域。
例如,在土方工程中,通过建立土壤的弹塑性模型,可以对土方开挖和填筑过程进行仿真,预测土壤的变形和稳定性。
在地基处理中,通过将地基与地下结构耦合建模,可以分析地基处理对地下结构的影响,评估地基改良效果。
在边坡工程中,通过建立土体的粘塑性模型,可以分析边坡的稳定性,为边坡设计提供依据。
然而,需要注意的是,ABAQUS软件中的土模型只是一种近似描述土壤行为的理论和模型,其结果仍需与实际工程进行对比和验证。
2011年7月第27卷第4期沈阳建筑大学学报(自然科学版)Journal of Shenyang Jianzhu University (Natural Science )Jul .2011Vol .27,No .4收稿日期:2010-12-31基金项目:住房和城乡建设部科技基金项目(2008-K1-15)作者简介:王强(1971—),男,副教授,博士,主要从事工程结构抗震研究.文章编号:2095-1922(2011)04-0679-06用于ABAQUS 显式分析梁单元的混凝土单轴本构模型王强,潘天林,刘明,李哲(沈阳建筑大学土木工程学院,辽宁沈阳110168)摘要:目的为实现采用梁单元进行钢筋混凝土杆系结构的弹塑性响应分析,对其混凝土本构关系进行二次开发,使ABAQUS 软件提供的混凝土材料模型能用于三维梁单元.方法利用ABAQUS 用户自定义材料程序VUMAT 接口,开发用于显式动力分析的梁单元混凝土单轴本构模型,并编制相应的计算程序,对低周往复加载下的钢筋混凝土柱进行数值模拟计算.结果数值模拟结果能够较好地反映轴力对钢筋混凝土构件滞回性能的影响以及钢筋混凝土柱的双向弯曲耦合性能.结论笔者所开发的混凝土本构模型能够用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,满足钢筋混凝土杆系结构动力弹塑性分析的需求.关键词:混凝土;滞回性能;本构模型;ABAQUS ;VUMAT 中图分类号:TU375.3文献标志码:AStudy on a Uniaxial Constitutive Model of Concrete for Explicit Dynamic Beam Elements of ABAQUSWANG Qiang ,PAN Tianlin ,LIU Ming ,LI Zhe(School of Civil Engineering ,Shenyang Jianzhu University ,Shenyang ,China ,110168)Abstract :In order to use the beam element of FEM software ABAQUS for analyzing the elastic-plastic dy-namic response of RC truss structures ,it is necessary to carry out a secondary development of the concrete constitutive for spatial beam element.In this paper ,a uniaxial constitutive model of concrete is established.The material subroutine of this model is successfully developed and applied to explicit dynamic module ofABAQUS by means of user-defined subroutine interface VUMAT.Afterwards ,the hysteretic performance of RC columns under cyclic loading is numerically simulated and compared with experiment results.The results show that the uniaxial constitutive model can rightly simulate the influence on the hysteretic performance of RC columns under varies axial load ,as well as the bi-axes bending coupling performance.The established model can meet the demand of analyzing the elastic-plastic dynamic response of RC frame structures.Key words :concrete ;hysteretic performance ;constitutive model ;ABAQUS ;VUMAT混凝土结构在大震作用下通常会进入塑性状态,采用弹性分析方法进行结构的受力分析不能真实反映结构实际受力情况.进行结构的动力弹塑性响应分析,特别是基于构件材料层次分析模型的弹塑性响应分析,能够较为准确地把握结构在大震作用下的非线性形态,对于评估结构的抗680沈阳建筑大学学报(自然科学版)第27卷震安全性具有重要意义.目前各国学者及工程界已开始致力于此方面的研究[1-4].通用有限元软件ABAQUS 具有较好的计算稳定性、丰富的单元材料模型以及强大的前后处理功能,目前已在结构构件的非线性分析中得到了广泛的应用[5-7],特别是其显式分析模块(ABAQUS /EXPLICIT ),由于其采用中心差分法求解动力平衡方程,计算中无需形成结构的整体刚度矩阵,具有计算收敛性好的特点,更适于结构动力弹塑性响应分析.但在ABAQUS 显式分析模块中,软件提供的混凝土材料模型不能用于三维梁单元.若采用实体单元进行高层建筑等杆系结构的整体分析,则计算工作量较大,难以满足工程计算需求.笔者基于纤维模型[8],利用ABAQUS 显式分析模块的用户自定义材料子程序VU-MAT ,对梁单元的混凝土材料模型进行二次开发,以满足结构动力弹塑性响应分析的需求.1纤维梁单元模型基于材料单轴本构关系的纤维模型是将构件沿纵向划分为若干子段,再沿构件横截面划分成纤维束.每个纤维只考虑它的轴向本构关系,且可定义不同的本构关系.柱横截面变形符合平截面假定.对截面纤维的当前状态积分就可以得到截面的双向抗弯刚度、双向抵抗矩以及轴力,进而沿杆长进行积分,就可以得到精确的杆件单元刚度矩阵.纤维模型可以自然、简单地描述构件的双向弯曲-轴力耦合效应.1.1基本假定(1)构件截面变形满足平截面假定;(2)不考虑钢筋与混凝土之间的相对滑移;(3)不考虑构件的剪切非线性及与其他变形的耦合关系.1.2单元截面刚度矩阵梁单元类型为ABAQUS 显式分析模块中的B31梁单元[9].该单元是基于铁摩辛柯(Timosh-enko )梁理论构建的,可以考虑剪切变形.B31梁单元具有两个节点,一个积分点,转角和位移采用线性插值,如图1(a )所示.采用GREEN 应变计算公式,可考虑大应变.单元质量阵为对角阵形式.采用矩形梁截面描述构件截面中的混凝土部分,将其划分为25个积分点或更多,如图1(b )所示;同时采用箱型截面按等面积原则、等位置代替截面中的钢筋,划分为16个积分点或更多,如图1(c )所示.每个积分点即为一个纤维.图1B31梁单元的积分点设置Fig.1Integration points of B31beam element假设梁单元的横截面坐标轴分别为y 、z 轴,纵向坐标轴为x 轴.由单元节点位移通过插值函数可以得到轴向积分点处变形向量d (x )={Φz (x )Φy (x )ε0(x )}T .(1)根据截面积分点的位置,由轴向积分点处变形向量可以得到纤维的应变向量ε(x )25ˑ1=H 25ˑ3d (x ).(2)其中截面纤维几何位置转换矩阵H =[H 1H 2…H 25]T,H i =[-y iz i1],i =1,2, (25)由纤维的应变向量与材料的本构关系可得截面应力向量σ=E ε,其中E 为纤维切线刚度对角阵.截面恢复力向量F (x )={M zM yN }T =H T A σ=H T AE ε=H T AEH d (x ).(3)式中:M z ,M y ,N 分别为截面上绕y 、z 轴的弯矩及轴向力;A 为纤维面积对角阵.整理可得单元截面的刚度矩阵为K sec =H T AEH .(4)运用单元形函数矩阵,可以从截面刚度矩阵推得单元刚度矩阵K e =∫lB T KsecB d x.式中,B 为单元形函数矩阵,l 为单元长度.第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型6812材料的本构模型2.1钢筋的本构模型钢筋在反复荷载作用下本构模型采用ABAQUS 中自带的随动强化模型[9],并考虑钢筋屈服硬化,钢筋屈服后刚度取E =0.01E 0,对应的单轴本构模型如图2所示.其中E 0为初始弹性模量,E 为屈服后弹性模量,f y 为屈服应力,εy 为屈服应变.图2钢筋的本构模型Fig.2Constitutive model of steel2.2混凝土的本构模型笔者采用基于文献[10]提出的混凝土本构模型,如图3所示.其中E c 0为原点切线模量;E cr 为损伤后弹性模量;εcm 为混凝土所经历的最大压应变;f c 为混凝土抗压强度;ε0为混凝土峰值应力所对应的应变,ε0=0.002;εu 为混凝土的极限压应变,εu =4ε0.混凝土受压骨架曲线采用Kent 和Park 所提出并由B.D.Scott 改进的混凝土应力-应变曲线[11].由于混凝土的抗拉强度很低,且在滞回过程中一旦开裂,混凝土就不能再承受拉力,因此抗拉强度对混凝土构件滞回性能影响较小[12-13].故在本构模型中忽略混凝土的抗拉强度,并忽略裂面效应影响.混凝土卸载及再加载曲线均取为直线形式.卸载时考虑刚度的退化,卸载模量按式(7)确定:E cr =E c0εc ≤ε0,E c0ε0ε()cm0.9εc >ε0{.(7)当混凝土卸载至零压应力时,如继续卸载则材料应力保持为零.若混凝土卸载至零压应力之前又开始加载,则沿原路径返回.再加载时加载曲线始终指向骨架曲线上所经历的最大应变点.若应力超过骨架曲线上的相应点,则沿骨架曲线加载.若混凝土应力在达到骨架曲线之前开始卸载,则按照所经历的最大压应变来确定卸载刚度.图3混凝土的本构模型Fig.3Constitutive model of concrete3用户自定义材料子程序(VU-MAT )实现依据前述的混凝土本构模型,笔者基于用户自定义材料子程序VUMAT 接口,编制了计算程序,并嵌入ABAQUS /EXPLICIT 模块中[9].主程序通过ABAQUS 输入文件中的关键字“*USER-MATERIAL ”来判断是否使用了用户自定义材料,并提供混凝土本构模型所需的材料参数[11].在ABAQUS 中对编制的VUMAT 子程序进行调试,来跟踪每一步调用子程序时变量的更新情况,从而及时发现所产生的错误.调试时要在com-mand 窗口中输入“abaqus -j 文件名.inp -user程序名.for -debug -explicit ”,在VISUAL STU-DIO 开发环境中打开子程序,然后设置断点进行调试.在VUMAT 中只有程序中定义的数组和变量能够进行新旧变量更替,如果另定义更新变量必须特别声明存储特性,否则子程序不会保存上一步变量数值.编程中还应避免除零问题.为保证程序编制思路的可靠性,笔者在进行混凝土本构模型开发之前,首先编制了理想弹塑性材料的VUMAT ,并与ABAQUS 自带理想弹塑性模型进行对比,得到的结果基本一致.4算例验证为充分验证模型的有效性,笔者分别对不同加载制度下的钢筋混凝土柱滞回性能进行计算分析.试件情况见文献[14],构造和配筋如图4所682沈阳建筑大学学报(自然科学版)第27卷示.各试件的加载规则见表1,其中试件SP1与SP2为笔者构造的加载制度,SP3与SP4则为文献[14]中的试件TP74和TP77.材料参数取值见表2.图4钢筋混凝土柱试件Fig.4Reinforced concrete column specimens表1算例加载制度Table 1Loading pattern of example试件编号加载图示加载规则轴力/kN备注SP1-轴向往复加载SP20无轴压单向往复侧推SP3160有轴压单向往复侧推SP4160有轴压双向往复侧推表2材料基本参数Table 2Basic parameters of materials参数项屈服强度/MPa 屈服应变泊松比弹性模量/104MPa 混凝土29.660.0020.252钢筋3570.00170.320由于采用显式动力方法进行拟静力分析,必须减小惯性力对整个构件的影响.采取的措施是降低加载速率和减小计算时步,这样可以使加速度趋近于很小,从而忽略惯性力影响.图5为计算所得试件SP1在轴向往复拉压时,ABAQUS 计算输出的角部混凝土纤维受压应力应变曲线(压为负).该曲线符合笔者所给出混凝土的本构模型,表明笔者编制的材料本构子程序是正确的.图6为试件SP2计算所得的水平加载滞回曲线.可以看出无轴压时构件的滞回曲线呈梭形,且较为饱满,属于典型的受弯构件滞回性能[15].而且对试验的“超前指向”现象也有所表现,即加载曲线并不指向前一循环的开始卸载点,而是指向前一循环的开始卸载点位移更大的一点.图5试件SP1角部混凝土纤维的应力应变关系Fig.5Stress-strain relationship of corner concrete fiber of specimenSP1图6试件SP2计算所得滞回曲线Fig.6Calculated hysteresis curve of specimen SP2图7、8分别为试件SP3的试验实测与计算所得滞回曲线,二者对比可以发现在加载初期0 20mm 时实验曲线与计算曲线基本一致,只是峰值点处计算值略小,这可能是对于混凝土受箍筋第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型683约束使得强度提高考虑不足.在后期加载20 60mm 时,计算所得滞回曲线较为丰满.造成此现象的原因主要是没有考虑钢筋的滑移,特别是加载后期实际构件已产生滑移,而计算模型并没有表现出来.而且采用的钢筋本构模型为线性强化模型,与真实钢筋的本构关系有一定误差,耗能能力更强一些,所以导致计算所得的滞回曲线比试验所得的曲线要饱满一些.对于试验结果中的“超前指向”现象,计算结果同样能够予以较好的描述.此外由图8与图6对比可以看出轴压力的存在使得构件极限承载力略有提高,而滞回曲线产生捏拢现象.图7试件SP3实测滞回曲线Fig.7Hysteresis curve of specimenSP3图8试件SP3计算所得滞回曲线Fig.8Calculated hysteresis curve of specimen SP3图9、10分别为试件SP4的实验与计算结果.由计算结果可以看出,当方向1保持位移恒定,方向2的加载使得方向1产生荷载跌落现象,反之亦然,这在试验曲线中有相应的体现.可以认为计算模型能够较好地反映钢筋混凝土柱的双向弯曲耦合性能.计算所得滞回曲线仍较试验曲线丰满,计算峰值略低于实验值.图9SP4试验滞回曲线Fig.9Hysteresis curve ofSP4图10SP4计算滞回曲线Fig.10Calculated hysteresis curve of SP4684沈阳建筑大学学报(自然科学版)第27卷5结论(1)笔者建立的模型可以正确反映轴力对钢筋混凝土构件滞回性能的影响,能够较好地模拟钢筋混凝土柱的双向弯曲耦合性能以及滞回曲线中的超前指向与捏拢现象,可以用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,能够满足空间框架结构动力弹塑性分析的需求.(2)采用箱型截面等效代替考虑钢筋混凝土杆件中的钢筋,有效地解决了杆件采用梁单元模型时难以考虑钢筋作用的问题.(3)由于采用的模型未考虑钢筋的滑移,对整个结果的精确性有一定的影响,有待于进一步研究.参考文献:[1]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报,2005(7):1003-1008.(Qin Conglü,Zhang Aihui.Non linear time historyanalysis based on section fiber model[J].Journal ofZhejiang University(Engineering Science),2005(7):1003-1008.)[2]Li Kangning.3-D Analysis of RC f rame-w al l building damaged in the1995hyogoken-nanbu earth-quake[C]//Process of the12th World Conference onEarthquake Engineering,New Zealand:Auckland,2000.[3]Mazzoni S,Mckenna F,Scott M H,et al.Opensees command language manual[R].PEER,Berkeley:U-niversity of California,2004.[4]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟[J].工程力学,2007(12):76-81.(Wang Xunliu,Lu Xinzheng,Ye Lieping.Numericalsimulation for the hysteresis behavior of RC columnsunder cyclic loads[J]Engineering Mechanics,2007,24(12):76-81.)[5]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.(Wang Jinchang,Chen Yekai.Application ofABAQUS in civil engineering[M].Hangzhou:Zhe-jiang University Press,2006.)[6]Navalurkar R K,Hsu C T.Fracture analysis of high strength concrete members[J].Journal of Materialsin Civil Engineering,2001,13(3):185-193.[7]Chung W,Sotelino E D.Nonlinear finite-element a-nalysis of composite steel girder bridges[J].Journalof Structural Engineering,2005,131(2):304-313.[8]Spacone E,Fillippou F C,Taucer F.Fiber beam-col-umn model for non-liner analysis of R/C frames[J].Journal of Earthquake Engineering and Structur-al Dynamics,1996,25:711-725.[9]庄茁,由小川,廖剑辉,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.(Zhuang Zhuo,You Xiaochuan,Liao Jianhui,et al.FEM analysis and application based on ABAQUS[M].Beijing:Tsinghua University Press,2009.)[10]王强,吕西林,雷淑忠.离散单元法在钢筋混凝土构件非线性分析的应用[J].沈阳建筑大学学报:自然科学版,2005(2):91-95.(Wang Qiang,Lu Xilin,Lei Shuzhong.Applicationof the DEM on the nonlinear analysis of reinforcedconcrete members[J].Journal of Shenyang JianzhuUniversity:Natural Science,2005(2):91-95.)[11]Scott B D,Park R,Priestley M J N.Stress-strain be-havior of concrete confined overlapping hoops at lowand high strain rates[J].ACI Journal,1982,79(1):13-27.[12]Légeron F,Paultre P.Uniaxial confinement model for normal and high-strength concrete columns[J].Jour-nal of Structural Engineering,2003,129(2):241-252.[13]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete[J].Journalof Structural Engineering,1988,114(8):1804-1825.[14]Kawashima K,Watanabe G,Hayakawa R.Seismic performance of RC bridge columns subjected to bi-lateral excitation[C]//Proc.35th joint meeting,pan-el on wind and seismic effects,Japan:Tsukuba Sci-ence City,2003.[15]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.(Zhang Xinpei.Nonlinear seismic study on rein-forced concrete structures[M].Beijing:SciencePress,2003.)。
(完整)ABAQUS中的三种混凝土本构模型ABQUS中的三种混凝土本构模型ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。
混凝土细观案例分析钢筋膨胀致保护层脱离的三种仿真方法混凝土细观有限元模型描述骨料有两种方法:网格映射骨料和几何刨分骨料;而描述非均质材料断裂问题的方法这里也提到两种:基于材料的塑性损伤模型,通过损伤带形式描述裂缝;基于内聚力单元的单元删除描述裂缝。
本文则采用其中的三种组合方法对主题进行研究:基于网格映射骨料+混凝土塑性损伤(CDP)模型的细观仿真方法;基于几何刨分骨料+混凝土塑性损伤(CDP)模型的细观仿真方法;基于几何刨分骨料+内聚力单元的细观仿真方法;1问题描述首先来看一下我们研究的问题,模型如下:选取整体结构中的局部区域进行研究,蓝色部分为混凝土,需要嵌入多边形骨料;黄色部分为φ16钢筋,具体尺寸参考下面的示意图。
材料参数设置如下,其中CDP塑性和损伤参数均采用POLARIS_CDP插件生成:源自:汪奔《基于网格生成的随机凹凸型混凝土骨料细观建模方法》2案例演示这个案例总结以往混凝土细观仿真的些许经验,同时应用到两款插件POLARIS_MesoConcrete和POLARIS_InsertCohElem插件。
希望对细观研究的朋友有所帮助。
2.1网格映射骨料+CDP模型模型特征:网格无需重新划分,在原有网格的基础上,判断网格位于骨料内部、边界、或外部,从而定义不同的材料性质,因此骨料边界呈现锯齿状,对于三维模型优势巨大;另外采用混凝土塑性损伤带的形式描述裂缝。
2.2几何刨分骨料+CDP模型模型特征:通过平面分割线的方式刻画骨料,因此可以比较好的描述骨料边界;但网格需要重新划分,部分位置容易出现畸变网格,二维模型通常需要四边形和三角形组合分网,三维模型大多只能进行四面体分网;同样是采用损伤带描述裂缝。
2.3几何刨分骨料+Cohesive单元模型特征:同样可以较好的刻画骨料边界;另外通过嵌入Cohesive单元,实现不同胶结材料之间的粘结失效模拟,获得的裂缝形态更真实;但计算量是最大的,且不易收敛,另外Cohesive单元失效删除后,两边实体单元的接触问题是难点。
ABAQUS用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:
Con crete Smeared cracki ng model (ABAQUS/Sta ndard)
Concrete Brittle cracki ng model (ABAQUS/Explicit)
Con crete Damage plasticity model
高压力混凝土的本构关系:
Cap model
1、ABAQUS/Standard 中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):
只能用于ABAQUS/Standard 中
裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性
用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为
在进行参数定义式的Keywords:
*CONCRETE
*TENSION STIFFENING
*SHEAR RETENTION
*FAILURE RATIOS
2、ABAQUS/Explicit 中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit): 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料
各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大
时失效。
在进行参数定义式的Keywords
*BRITTLE CRACKING,
*BRITTLE FAILURE,
*BRITTLE SHEAR
3、塑性损伤模型Concrete Damage plasticity model :
适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性
在进行参数定义式的Keywords:
*CONCRETE DAMAGED PLASTICITY
*CONCRETE TENSION STIFFENING
*CONCRETE COMPRESSION HARDENING
*CONCRETE TENSION DAMAGE
*CONCRETE COMPRESSION DAMAGE。