1.1 样本空间与随机事件
- 格式:ppt
- 大小:572.00 KB
- 文档页数:14
有限样本空间与随机事件教学设计在初中,我们已经初步了解随机事件的概念,并学习了在实验结果等可能的情形下求简单随机事件的概率,本节继续研究随机现象的规律:观察其所有可能出现的根本结果,引出样本空间、随机事件等概念,为后续学习做好铺垫课程目标1.了解随机试验、样本空间的概念.2.通过实例,了解必然事件、不可能事件与随机事件的含义.数学学科素养1数学抽象:随机试验、样本空间、样本容量的概念.2数据分析:判断必然事件、不可能事件与随机事件.3数学运算:写出事件的样本空间重点:写出事件的样本空间.难点:判断必然事件、不可能事件与随机事件教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,…,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码.这个随机试验共有多少个可能结果?如何表示这些结果?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察研探二、预习课本,引入新课阅读课本226-228页,思考并完成以下问题1、什么是随机试验?其特点是什么?2、什么是样本空间?怎么表示?3、怎样区别随机事件、必然事件、不可能事件?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表答复以下问题。
三、新知探究一样本空间1.随机试验我们把对随机现象的实现和对它的观察称为随机试验random eent,简称试验,常用字母E表示.2.随机试验的特点1试验可以在相同条件下重复进行;2试验的所有可能结果是明确可知的,并且不止一个;3每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.3.样本空间我们把随机试验E的每个可能的根本结果称为样本点,全体样本点的集合称为试验E的样本空间am event,简称事件,并把只包含一个样本点的事件称为根本领件eementar event.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生2.必然事件,不可能事件在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.四、典例分析、举一反三题型一样本空间例1 如图,一个电路中有A,B,C三个电器元件,每个元件可能正常,也可能失效,把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常〔1〕写出试验的样本空间;〔2〕用集合表示以下事件:M=“恰好两个元件正常〞;N=“电路是通路〞;T=“电路是断路〞【答案】〔1〕详见解析〔2〕详见解析【解析】分别用和表示元件A,B和C的可能状态,那么这个电路的工作状态可用表示,进一步地,用1表示元件的“正常〞状态,用0表示“失效〞状态。
§1.1 随机事件及其运算1.随机现象自然界和社会上发生的现象多种多样.有些现象,我们可以准确预言他们在一定条件会出现何种结果,例如“在标准大气压下,纯水加热到C ︒100时必定沸腾”等等,这类现象我们称为确定性现象.然而自然界和社会上还有许多现象,他们在一定条件下,并不总是出现相同结果,而且事先我们无法准确预言会出现何种结果, 这类现象我们称为随机现象.随机现象随处可见。
如抛一枚硬币,其结果可能是正面朝上,也可能反面朝上,而且在出现结果之前无法准确预言会出现何种结果.再比如用一仪器在相同条件下测量一物体的质量,各次测量结果会有差异,等等。
有的随机现象可以在相同条件下重复,也有很多随机现象是不能重复的,比如经济现象(如失业,经济增长速度等)大多不能重复. 对在相同条件下可以重复的随机现象的观察、记录、实验称为随机试验.对于这类随机现象,我们常常通过多次重复的随机试验,观察其出现的结果,以期发现随机现象的规律性。
长期的实践经验表明,在大量重复试验下,随机现象的结果的出现往往呈现出某种规律性.例如大量重复抛一枚硬币,正面出现的次数与反面出面出现的次数大致相当,等等.这种在大量重复试验中所呈现的规律性就是我们以后常说的统计规律性.概率论与数理统计的研究对象是随机现象,研究和揭示随机现象的统计规律性. 概率论与数理统计主要研究能重复的随机现象,但也十分注意研究不能重复的随机现象.2.样本空间数学理论的建立总是需要首先给出一些原始的无定义的概念(例如,“点”和“直线”是欧氏几何的公理化处理中无定义的概念)。
在概率论中,第一个“无定义”的原始概念是“样本点”,这一原始概念又联系着另一原始概念“随机试验”.概率论中所说的随机试具有下述特点:(1)可以在相同条件下重复地进行;(2)每次试验的可能结果不止一个,并且事先能明确试验的所有可能的结果;(3)进行一次试验之前不能确定哪个结果会发生.随机试验的可能结果称为样本点,用ω表示样本点;而随机试验的一切样本点组成的集合称为样本空间,记为}{ω=Ω.在具体问题中,认清“样本空间是哪些样本点构成的”是十分重要的. 有些随机试验凭“经验”可确定样本点和样本空间,有些随机试验需要“数学的理想化”去确定样本点和样本空间.样本点和样本空间的确定也与研究目的有关,或者说与观察或记录的是什么有关.看下面一些例子.例 1 考虑试验:掷一骰子,观察出现的点数.根据“实际经验”,该试验的基本结果有6个:1,2,3,4,5,6,从而其样本空间为}6,5,4,3,2,1{=Ω.如果我们只是观察出现奇数点还是偶数点,那么样本空间可以确定为{=Ω出现奇数点,出现偶数点}.例 2 考虑试验:观察一天内进入某商场的人数. 一天内进入某商场的人数是非负整数,但由于不知道最多的人数和最少的人数,我们把该试验的样本空间“理想化”地定为},3,2,1,0{⋅⋅⋅=Ω,即样本空间确定为全体非负整数构成的集合.例3考虑试验:考察一个元件的寿命.为了数学上处理方便, 我们把该试验的样本空间“理想化”地确定为),0[+∞=Ω.例 4 对于试验:将一硬币抛3次.若我们记录3次正反面出现的情况,则样本空间为},,,,,,,{TTT TTH THT HTT THH HTH HHT HHH =Ω;若我们记录正面出现的次数,则样本空间为}3,2,1,0{=Ω.若样本空间中的元素个数是有限个,我们称此样本空间为有限样本空间. 若样本空间中的元素个数是有限个或可列个,我们称此样本空间为离散样本空间.3.随机事件有了样本空间后,我们可以给出随机事件的概念.直观上, 随机事件是随机现象或随机试验中可能发生也可能不发生的事件.例如,在掷骰子试验中,“出现偶数点”是可能发生也可能不发生的,因此它是随机事件,而且当试验出现的结果是2或4或6时该事件就发生了,否则该事件就不发生.一个事件是否发生应当能由试验出现的结果判定,因此一个事件可以由使其发生的那些样本点组成,换言之, 随机事件可以由一个或多个样本点组成的集合来表示.因此有下面概念.设随机试验E 的样本空间为}{ω=Ω,我们称样本空间为}{ω=Ω的子集为随机事件,简称为事件,常用大写字母A,B,C,…表示.若一事件是由单个样本点组成,则称该事件为基本事件;由2个或2个以上样本点组成的事件称为复合事件.由全体样本点组成的事件称为必然事件,必然事件就是样本空间Ω本身.空集Φ作为样本空间Ω的子集也是事件,称此事件为不可能事件. 显然, 必然事件在每次试验中是必定发生的,不可能事件在任一次试验中都不会发生.这两种情况已无随机性可言,但我们把它们视为随机事件的特例.以后在理论上讨论概率论问题时,我们总是假定样本空间已经给定,随机事件就是该样本空间的子集。
§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。
在具体问题中,给定样本空间是研究随机现象的第⼀步。
例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。
随机事件与样本空间的关系在概率论中,随机事件与样本空间是密不可分的概念。
理解二者之间的关系对于概率计算和推理至关重要。
本文将介绍随机事件和样本空间的定义、关系以及在概率计算中的应用。
一、随机事件的概念随机事件是指在一次特定的试验中可能发生或不发生的现象。
它是样本空间中的一个子集。
例如,掷一枚硬币,其试验结果可以是正面朝上(事件A)或反面朝上(事件B)。
在这个例子中,事件A和事件B分别是试验的两个随机事件。
二、样本空间的定义样本空间是指一个随机试验中所有可能结果的集合。
它包含了实验中的每一个可能结果。
以掷一枚硬币为例,样本空间为{正面,反面}。
样本空间可以有有限个元素,也可以是一个无穷集合。
三、随机事件与样本空间的关系随机事件是样本空间的子集。
它们之间的关系可以用包含关系来描述。
具体而言,一个事件A发生意味着试验的结果属于A所对应的样本点集合。
相反,如果试验结果属于事件A,那么事件A就发生了。
四、概率计算中的应用概率计算是研究随机事件发生可能性的重要方法。
随机事件和样本空间的关系在概率计算中起着关键作用。
1. 计算概率概率可以通过事件发生的样本点数量与样本空间中样本点总数的比值来计算。
例如,假设在掷一枚硬币的试验中,事件A表示正面朝上,那么事件A发生的概率为P(A) = |A| / |样本空间|,其中|A|表示事件A中的样本点数量,|样本空间|表示样本空间中的样本点数量。
2. 事件间的运算根据随机事件和样本空间的关系,可以进行并、交、差等运算。
例如,事件A和事件B的并集为A∪B,表示A和B中至少有一个发生的样本点的集合。
交集为A∩B,表示A和B同时发生的样本点的集合。
差集为A-B,表示A发生而B不发生的样本点的集合。
3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率计算中,样本空间会根据已知事件的发生而被限制在一个子集中,从而影响概率的计算。
例如,已知事件A发生的条件下,事件B发生的概率可以表示为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。