空间角(异面直线所成角和线面角
- 格式:ppt
- 大小:337.50 KB
- 文档页数:15
-立体几何中的传统法求空间角 时间:2021.03.05创作:欧阳理知识点:一.异面直线所成角:平移法二.线面角1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有面面垂直的结构,找到交线,作交线的垂线即可。
2.用等体积法求出点到面的距离 sinA=d/PA三.求二面角的方法1、直接用定义找,暂不做任何辅助线;2、三垂线法找二面角的平面角.例一:如图,在正方体1111ABCD A B C D 中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是______90______. 考向二线面角例二、如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥PD ,NMB 1A 1C 1D 1B D CABC=1,PC=23,PD=CD=2.(I )求异面直线PA 与BC 所成角的正切值;(II )证明平面PDC ⊥平面ABCD ;(III )求直线PB 与平面ABCD 所成角的正弦值。
练习: 如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=,点D ,E 分别在棱,PB PC 上,且//DE BC(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值;(Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC.又90BCA ︒∠=,∴AC ⊥BC.∴BC ⊥平面PAC.(Ⅱ)∵D 为PB 的中点,DE//BC , ∴12DE BC =, 又由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E.∴∠DAE 是AD 与平面PAC 所成的角,∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=AB ,∴△ABP 为等腰直角三角形,∴2AD AB =, ∴在Rt △ABC 中,60ABC ︒∠=,∴12BC AB =. ∴在Rt △ADE 中,2sin 24DE BC DAE AD AD ∠===, 考向三:二面角问题在图中做出下面例题中二面角例三:.定义法(2011广东理18)如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形,且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1)证明:AD ⊥平面DEF;(2)求二面角P-AD-B 的余弦值.法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。
第四讲 空间角(异面直线所成角线面角二面角)A 组题一、选择题1.下面正确的序号是①两直线的方向向量所成的角就是两条直线所成的角.②直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ③两个平面的法向量所成的角是这两个平面所成的角.④两异面直线夹角的范围是(00,90⎤⎦,直线与平面所成角的范围是0090⎡⎤⎣⎦,,二面角的范围是[0,1800] ( ).A.①B.②C.③D.④【答案】D【解析】对于①,因为两异面直线夹角的范围是(00,90⎤⎦,而两直线的方向向量所成的角可能为钝角. 所以①错. 对于②,直线的方向向量和平面的法向量所成的角是直线与平面所成的角或其补角. 所以②错.对于③,两个平面的法向量所成的角是这两个平面所成的角是这两个平面所成的角或其补角. 所以③错. 故选D .2.如图,在正方体ABCD -A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与C N 所成的角是( ). A.90° B.75° C.60° D.45°【答案】A【解析】取AA′的中点Q ,连接QN ,B Q ,且B Q 与B′M 相交于点H ,则QN 綉AD 綉BC ,从而有四边形NQ BC 为平行四边形,所以N C ∥Q B ,则有∠B′H B 为异面直线B′M 与C N 所成的角. 又∵B′B =BA ,∠B′B M =∠BA Q =90°,B M =A Q ,∴△B′B M ≌△BA Q , ∴∠M B′B =∠Q B M .而∠B′M B +∠M B′B =90°,从而∠B′M B +∠Q B M =90°,∴∠MH B =90°.故选A. 3.如图,在四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形,则异面直线CD 与P B 所成角的大小为( ) A.90° B.75° C.60° D.45°【答案】 A【解析】如图,过点B 作直线B E ∥CD ,交DA 的延长线于点E ,连接PE .∴∠P B E (或其补角)是异面直线CD 与P B 所成角.∵△P AB 和△P AD 都是等边三角形,∴∠P AD =60°,DA =P A =AB=P B =A E ,∴∠P A E =120°.设P A =AB =P B =A E =a ,则PE .又∠ABC =∠BAD =90°,∴∠BA E =90°,∴B E a ,∴在△P B E 中,P B 2+B E 2=PE 2,∴∠P B E =90°.即异面直线CD 与P B 所成角为90°.故选A.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线B E 与CD 1所成角的余弦值为( )B.15 D.35【答案】C【解析】如图,连接BA 1,因为BA 1∥CD 1,所以∠E B A 1是异面直线B E 与CD 1所成角,设AB =1,则111,EB A E A B ===,作EF ⊥BA 1, 11A E AB EF A B ⋅==FB =∠E B A 1.选C.5. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB, 则异面直线A P 与BC 所成角的大小; A.90°B. 60°C. 75°D.45°【答案】B【解法】∵P C ⊥平面ABC ,⊂A B 平面ABC , ∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .过点A 作A F //BC ,且A F =BC ,连结PF ,C F . 则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F ,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AFPF==3,∴异面直线P A 与BC 所成的角为60°.选B.6. 如图,正方形ABCD 所在平面与正方形,AB EF 所在平面成60ο角,求异面直线AD 与B F 所成角的余弦值. A.42 B.2C. 3D.【答案】A 【解析】∵CB ∥AD, ∴∠CB F 为异面直线AD 与B F 所成的角.连接C F 、C E 设正方形ABCD 的边长为α,则B F =a 2∵CB ⊥AB, E B ⊥AB ∴∠C E B 为平面ABCD 与平面AB EF所成ABC DPE F的角,∴∠CB E =∠60ο ∴C E =a F C =a 2 ,∴cos ∠CB F =42,选A. 7. 如图,已知棱柱1111D C B A ABCD -的底面是菱形,且⊥1AA 面ABCD , 60=∠DAB ,1AA AD =,F 为棱1AA 的中点,M 为线段1BD 的中点,则面1BFD 与面ABCD 所成二面角的大小. A .30° B .45° C .60° D .90°【答案】C【解析】 底面是菱形, BD AC ⊥∴ 又⊥B B 1 面ABCD ,⊂AC 面ABCD B B AC 1⊥∴,⊥∴AC 面11B BDD 又AC MF // ⊥∴MF 面11B BDD 延长F D 1、DE 交于点E ,F 是A A 1的中点且ABCD 是菱形AB AE DA ==∴ 又 60=∠DAB 90=∠∴DBE ∴BE B D ⊥1 BD D 1∠∴为所求角 在菱形ABCD 中, 60=∠DAB BD BC 3=∴ 3t a n 11==∠BDDD BD D 601=∠∴BD D ,选C .8.在一个45°的二面角的一个面内有一条直线与二面角的棱成45°,则此直线与二面角的另一个面所成的角为( ) A .30° B .45° C .60° D .90° 【答案】A【解析】如图,二面角α-l -β为45°,β,且与棱l 成45°角,过A 作A O ⊥α于O ,作A H ⊥l 于H .连接OH 、O B ,则∠A HO 为二面角α-l -β的平面角,∠AB O 为AB 与平面α所成角.不妨设A HRt △A OH 中,易得A O =1;在Rt △AB H 中,易得AB =2.故在Rt △AB O 中,sin ∠AB O =12AO AB =,∴∠AB O =30°,为所求线面角.选A. 二、填空题9. 如图所示,在正四面体S -ABC 中,D 为S C 的中点,则BD 与S A所成角的余弦值是A BC DA 1B 1C 1D 1F MOE________.【解析】取AC 中点E ,连接D E ,B E ,则BD 与D E 所成的角即为BD 与S A 所成的角.设S A =a ,则BD =B Ea ,D E =2a .由余弦定理知cos ∠BD E.10. 如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小的正切为23,则该正四棱柱的高等于____________.【答案】【解析】由题意得11122tan 33DD DBD DD BD ∠===⇒=. 11. A 、B 是直二面角α-l -β的棱l 上的两点,分别在α,β内作垂直于棱l 的线段AC ,BD ,已知AB =AC =BD =1,那么CD 的长为【解析】如图,由于此题的二面角是直角,且线段AC ,BD 分别在α,β内垂直于棱l ,AB =AC =BD =1,作出以线段AB ,BD ,AC 为棱的正方体,CD 即为正方体的对角线,由正方体的性质知,CD三、解答题 12. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB .(1) 求证:AB ⊥平面P CB ;(2 求异面直线A P 与BC 所成角的大小;(3π) 【解析】(1) ∵P C ⊥平面ABC ,⊂A B 平面ABC ,BDPE∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .(2) 过点A 作A F //BC ,且A F =BC ,连结PF ,C F .则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F .由三垂线定理,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AF PF ==3, ∴异面直线P A 与BC 所成的角为3π.13.如图所示,在多面体111A B D DCBA 中,四边形11AA B B,11,ADD A ABCD均为正方形,点E 为11B D的中点,过点1A ,D ,E 的平面交1CD 于点F .(1)求证:1//EF B C ;(2)求二面角11EA DB ﹣﹣余弦值.【解析】(1)证明:由题可得1//AD B C ,又因为1A D ⊄平面11B CD ,1B C ⊂平面11B CD ,所以1//A D 平面11B CD .又平面1A DEF平面11B CD EF =,所以1//A D EF .又因为11//A D B C ,所以1//EF B C .(2)将原图形补全成正方体,如图所示,则平面1A CD 即为平面1A EFD ,所以求二面角11E A D B --的余弦值可以转化为求二面角111C A D B --的余弦值。
立体几何———空间角 1、角的概念及范围1)异面直线所成的角的定义:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角叫做异面直线所成的角,其范围为]2,0(πθ∈。
2)直线和平面所成的角,应分三种情况:(1)直线与平面斜交时,直线与平面所成的角是指这条直线和它在平面上的身影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角为90;(3)直线和平面平行或直线在平面内时,直线和平面所成的角为0。
由此可知,直线和平面所成角的范围为⎥⎦⎤⎢⎣⎡2,0π。
3)二面角的大小是通过其平面角来度量的,而二面角需要具有以下三个特点:(1)顶点在棱上;(2)两边分别在两个面内;(3)与棱垂直。
2、求异面直线所成的角求异面直线所成角的主要方法是通过平移转化法作出异面直线所成的角,然后利用三角形边角关系求角的大小。
根据定义,可以从空间任取一点作两异面直线的平行线,实际操作中,常取两异面直线之一的端点(只有两个端点,若不会观察,可用穷举法),引另一异面直线的平行线。
3、求直线与平面所成的角求直线与平面所成角的一般过程是:(1)通过射影转化法,作出直线与平面所成角;(2)在三角形中求角的大小。
关于线线角,线面角,下面的两个结论经常用到。
1)已知PA 与PB 分别是平面α的垂线,在平面α内过斜足B 任意引一直线BC ,设θθθ=∠=∠=∠PBC ABC PBA ,,21,有21cos cos cos θθθ∙=。
2)经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线。
4、求二面角二面角的大小是用它的平面角来度量的,如何找出二面角,并且求出其大小,主要有以下几种方法:1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角。
用定义法时,要认真观察图形的特征。
2)三垂线法:已知二面角中一个面内一点到另一个面的垂线,用三垂线定理或逆定理作出平面角。
第四讲 空间角(异面直线所成角线面角二面角)A 组题一、选择题1.下面正确的序号是①两直线的方向向量所成的角就是两条直线所成的角.②直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ③两个平面的法向量所成的角是这两个平面所成的角.④两异面直线夹角的范围是(00,90⎤⎦,直线与平面所成角的范围是0090⎡⎤⎣⎦,,二面角的范围是[0,1800] ( ).A.①B.②C.③D.④【答案】D【解析】对于①,因为两异面直线夹角的范围是(00,90⎤⎦,而两直线的方向向量所成的角可能为钝角. 所以①错. 对于②,直线的方向向量和平面的法向量所成的角是直线与平面所成的角或其补角. 所以②错.对于③,两个平面的法向量所成的角是这两个平面所成的角是这两个平面所成的角或其补角. 所以③错. 故选D .2. (人教A 必修2习题改编)如图,在正方体ABCD -A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与C N 所成的角是( ). A.90° B.75° C.60° D.45°【答案】A【解析】取AA′的中点Q ,连接QN ,B Q ,且B Q 与B′M 相交于点H ,则QN 綉AD 綉BC ,从而有四边形NQ BC 为平行四边形,所以N C ∥Q B ,则有∠B′H B 为异面直线B′M 与C N 所成的角. 又∵B′B =BA ,∠B′B M =∠BA Q =90°,B M =A Q ,∴△B′B M ≌△BA Q , ∴∠M B′B =∠Q B M .而∠B′M B +∠M B′B =90°,从而∠B′M B +∠Q B M =90°,∴∠MH B =90°.故选A. 3.如图,在四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形,则异面直线CD 与P B 所成角的大小为( ) A.90° B.75° C.60° D.45°【答案】 A【解析】如图,过点B 作直线B E ∥CD ,交DA 的延长线于点E ,连接PE .∴∠P B E (或其补角)是异面直线CD 与P B 所成角.∵△P AB 和△P AD 都是等边三角形,∴∠P AD =60°,DA =P A =AB =P B =A E ,∴∠P A E =120°.设P A =AB =P B =A E =a ,则PE =3a .又∠ABC =∠BAD =90°,∴∠BA E =90°,∴B E =2a ,∴在△P B E 中,P B 2+B E 2=PE 2,∴∠P B E =90°.即异面直线CD 与P B 所成角为90°.故选A.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线B E 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35【答案】C【解析】如图,连接BA 1,因为BA 1∥CD 1,所以∠E B A 1是异面直线B E 与CD 1所成角,设AB =1,则112,1,5EB A E A B ===,作EF ⊥BA 1, 115A E AB EF A B ⋅==35FB =∠E B A 1310.选C.5. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB, 则异面直线A P 与BC 所成角的大小; A.90°B. 60°C. 75°D.45°ABC DPE F【答案】B【解法】∵P C ⊥平面ABC ,⊂A B 平面ABC , ∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .过点A 作A F //BC ,且A F =BC ,连结PF ,C F . 则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F ,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AFPF==3,∴异面直线P A 与BC 所成的角为60°.选B.6. 如图,正方形ABCD 所在平面与正方形,AB EF 所在平面成60ο角,求异面直线AD 与B F 所成角的余弦值. A.42 B. 22 C. 23 D.3【答案】A 【解析】∵CB ∥AD, ∴∠CB F 为异面直线AD 与B F 所成的角.连接C F 、C E 设正方形ABCD 的边长为α,则B F =a 2∵CB ⊥AB, E B ⊥AB ∴∠C E B 为平面ABCD 与平面AB EF 所成的角,∴∠CB E =∠60ο ∴C E =a F C =a 2 ,∴cos ∠CB F =42,选A. 7. 如图,已知棱柱1111D C B A ABCD -的底面是菱形,且⊥1AA 面ABCD , 60=∠DAB ,1AA AD =,F 为棱1AA 的中点,M 为线段1BD 的中点,则面1BFD 与面ABCD 所成二面角的大小. A .30° B .45° C .60° D .90°【答案】C【解析】 底面是菱形, BD AC ⊥∴ 又⊥B B 1 面ABCD ,⊂AC 面ABCD B B AC 1⊥∴,⊥∴AC 面11B BDD 又AC MF // ⊥∴MF 面11B BDD 延长F D 1、DE 交于点E ,F 是A A 1的中点且ABCD 是菱形AB AE DA ==∴ 又 60=∠DAB 90=∠∴DBE ∴BE B D ⊥1 BD D 1∠∴为所求角 在菱形ABCD 中, 60=∠DAB BD BC 3=∴ 3tan 11==∠BDDD BD D 601=∠∴BD D ,选C .8.在一个45°的二面角的一个面内有一条直线与二面角的棱成45°,则此直线与二面角的另一个面所成的角为( ) A .30° B .45° C .60° D .90° 【答案】A【解析】如图,二面角α-l -β为45°,AB β,且与棱l 成45°角,过A 作A O ⊥α于O ,作A H ⊥l 于H .连接OH 、O B ,则∠A HO 为二面角α-l -β的平面角,∠AB O 为AB 与平面α所成角.不妨设A H =2,在Rt △A OH 中,易得A O =1;在Rt △AB H 中,易得AB =2.故在Rt △AB O 中,sin ∠AB O =12AO AB =,∴∠AB O =30°,为所求线面角.选A. 二、填空题9. 如图所示,在正四面体S -ABC 中,D 为S C 的中点,则BD 与S A 所成角的余弦值是________.A BC DA 1B 1C 1D 1FMOE【答案】36【解析】取AC 中点E ,连接D E ,B E ,则BD 与D E 所成的角即为BD 与S A 所成的角.设S A =a ,则BD =B E =32a ,D E =2a .由余弦定理知cos ∠BD E =36.10. 如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小的正切为23,则该正四棱柱的高等于____________.【答案】22【解析】由题意得111122tan 223332DD DD DBD DD BD ∠==⇒=⇒=. 11. A 、B 是直二面角α-l -β的棱l 上的两点,分别在α,β内作垂直于棱l 的线段AC ,BD ,已知AB =AC =BD =1,那么CD 的长为【答案】3【解析】如图,由于此题的二面角是直角,且线段AC ,BD 分别在α,β内垂直于棱l ,AB =AC =BD =1,作出以线段AB ,BD ,AC 为棱的正方体,CD 即为正方体的对角线,由正方体的性质知, 222=1+1+1=3CD . 故填3.三、解答题12. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB .(1) 求证:AB ⊥平面P CB ;(2 求异面直线A P 与BC 所成角的大小;(3π) 【解析】(1) ∵P C ⊥平面ABC ,⊂A B 平面ABC ,∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB ,P∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .(2) 过点A 作A F //BC ,且A F =BC ,连结PF ,C F .则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F .由三垂线定理,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AF PF ==3, ∴异面直线P A 与BC 所成的角为3π.13.(2015安徽)如图所示,在多面体111A B D DCBA中,四边形11AA B B ,11,ADD A ABCD均为正方形,点E 为11B D的中点,过点1A ,D ,E 的平面交1CD 于点F .(1)求证:1//EF B C ;(2)求二面角11EA DB ﹣﹣余弦值.【解析】(1)证明:由题可得1//AD B C ,又因为1A D ⊄平面11B CD ,1B C ⊂平面11B CD ,所以1//A D 平面11B CD .又平面1A DEF平面11B CD EF =,所以1//A D EF .又因为11//A D B C ,所以1//EF B C .(2)将原图形补全成正方体,如图所示,则平面1A CD 即为平面1A EFD ,所以求二面角11E A D B --的余弦值可以转化为求二面角111C A D B --的余弦值。
空间的角异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②补形法. 直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影. 二面角θ范围:0°≤θ≤180° 方法:①定义法; ②三垂线定理及其逆定理;③垂面法. 注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算1.空间角的计算步骤 一作、二证、三算.2.异面直线所成角:(1)范围:(]0,90︒︒;(2)计算方法:①平移法:②向量法:设,a b r r分别为异面直线,a b 的方向向量,则两异面直线所成的角α=arccosa b a buu r u u r uu r u u r g g ;③补形法;④证明两条异面直线垂直,即所成角为90︒. 3直线与平面所成的角:①定义:平面的一条斜线和它在这个平面内的射影所成的锐角,若垂直于平面,所成角是直角.②范围[]0,90︒︒;③最小角定理:斜线和平面所成的角,是斜线和这个平面内经过斜足的直线所成的角中最小的角.⑤斜线与平面所成角的计算:(1)直接法:关键是作垂线,找射影 可利用面面垂直的性质;(2)通过等体积法求出斜线任一点到平面的距离d ,计算这点与斜足之间的线段长l ,则sin d l θ=.(3) 12cos cos cos θθθ=. (4)向量法:设l 是斜线l 的方向向量,n是平面α的法向量,则斜线l 与平面α所成的角θarcsinl n l n=r r g r r g .4.二面角:①定义:平面内的一条直线把平面分为两部分,其中的每一部分叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做这个二面角的平面角.规定:二面角的两个半平面重合时,二面角为0,当两个半平面合成一个平面时,二面角为π,因此,二面角的大小范围为[]0,π.②确定二面角的方法:(1)定义法;(2)三垂线定理及其逆定理法;(3)垂面法;(4)射影面积法:cos S S θ=射影多边形原多边形,此方法常用于无棱二面角大小的计算;无棱二面角也可以先根据线面性质恢复二面角的棱,然后再用方法(1)、(2)计算大小;(5)向量法:法一、在α内al ⊥,在β内bl ⊥,则二面角l αβ-- 的平面角αarccosa ba b=ur u r u r u r g g ;或 arccos a ba bπ-ur u r ur u r g g (同等异补)法二、设1n ,2n是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角α1212arccos n nn n=uu r uu ruu r uu r g g课前练习1.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱C 1C 与BC 的中点,则直线EF 与直线D 1C 所成角的大小是 ( B )A .45°B .60°C .75°D .90°空间四边形ABC D 中,E 、F 分别为AC 、B D 中点,若C D =2AB =4,EF ⊥AB ,则EF 与C D 所成的角为( A )(A)30° (B)45° (C)60°(D)90°如图,AB =2,A C ⊥α,B D ⊥α,C α∈,D α∈,CD=1, 则直线AB 与α所成的角为( B )(A)300(B)600(C)a rct an21 (D)4503.AB ⊥平面BCD ,DC ⊥CB ,AD 与平面BCD 所成的角为30°,且AB =BC . 求AD 与平面ABC 所成角的大小.( 45°)例53. 已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β 取最大值时,二面角B ―AC ―D 等于( B )(A )1200 (B )900 (C )600 (D )450 例57.正方体AB CD-A 1B 1C 1D 1中,(1)B C 1与底面AB CD 所成角为 450 ;(2)A 1C 与底面AB CD 所成的角的正切值为22;(3)B C 1与对角面BB 1D 1D 所成的角为 300 。