- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
第一节 网络图
统筹方法的第一步工作就是绘制计划网络图,也就是将工序 (或称为活动)进度表转换为统筹方法的网络图。
例9.1 某公司研制新产品的部分工序与所需时间以及它们之间的 相互关系都显示在其工序进度表如表所示,请画出其网络计划图。
工序代号
工序内容
a
产品设计与工艺设计
b
外购配套零件
c
外购生产原料
36
2. 利用时差
总时差不影响最短工期,但影响后续工序的自由时间。 单时差不影响后续工序。
2020/8/8
37
3.时间-资源优化
做法: 1)优先安排关键工序所需的资源。 2)利用非关键工序的时差,错开各工序的开始时间。 3)适当延长时差大的工序时间,或切断非关键工序进程。
2020/8/8
38
2020/8/8
间完成工序所需要的费用,kij为工序(i ,j)的直接费用变动率
(成本斜率)。
kij
c`ij cij Tij T `ij
44
方法一:线性规划法
min f kij yij i, j
S.t. xj-xi Tij-yij, 对一切弧(i, j) yij Tij-T`ij, 对一切弧(i, j) xn-x1 T, xi 0, yij 0。
2020/8/8
运筹学--线性规划
47
1. 该工程要求在150天内完工,问每个工序应比正常完工 时间提前多少天完成,才能使整个工程因缩短工期而 增加的直接费用为最少。
2. 如果工期要求在140天完工呢?
b
1a
c3
f
2 d4g
6i
7j
8
e5
h
48
解:设此网络图上第i点发生的时间为xi,工序提前完工的时间为yij。
工序a的最早 开始时间
工序a的最早 完成时间
a[0,60]
i
60
j
16
例9.4
c[60,70] 3
10
1 2 a[0,60] 60
d[60.80] 20
b[60,105] 45 f[70,88]
18
4 6 g[80,110] i[110.135]
30
25
j[135,170]
7
8
35
e[60.100] 40
i[110.135] 25[110,135]
j[135,170] 35[135,170]
e[60.100] 40[80,120]
5 h[100,115] 15[120,135
19
三、时差
1、总时差 在不影响工程最早结束时间的条件下,工序最早开始(或结束) 的时间可以推迟的时间,成为该工序的总时差R
运筹学--线性规划
42
工序的最快完成时间:指完成时间的最高限度。 我们设完成工序j的正常所需时间为Tj;直接费用为cj;完成工 序j的最快完成时间为T`j,直接费用为c`j。这样我们可以计算出 缩短工序j的一天工期所增加的直接费用,用kj表示,称为直接 费用变动率(成本斜率)。有
kj c`j cj Tj T `j
h[100,115]
5 15
2020/8/8
17
2、最晚时间 从网络的收点开始计算,在不影响整个工程最早结束时间的情
况下,各个工序的最晚结束时间(LF)和最晚开始时间(LS)
t t
LF LF
(i, (i,
n) j)
tEF (i, n)
mint k
LS
(
j,
k
)
tLS (i, j) tLF (i, j) t(i, j)
例9.4 某公司装配一条新的生产线,具体过程如表1,求:完成 此工程的最少时间,关键路线及相应的关键工序,各工序的最 早开始时间和非关键工序在不影响工程完成时间的前提下,其 开始时间与结束时间可以推迟多久?
26
工序代号 a b c d e f g h i j
工序内容 生产线设计 外购零配件 下料、锻件 工装制造1 木模、铸件 机械加工1 工装制造2 机械加工2 机械加工3
2020/8/8
运筹学--线性规划
5
1a 2 b
4e
5
60
15 cd
8
13
38
3
图1
6
例9.2 把例1的工序进度表做一些扩充,如表,请画出 其统筹方法的网络图。
工序代号 所需时间(天) 紧前工序 工序代号
a
60
-
e
b
15
a
f
c
13
a
g
d
38
c
h
所需时间 (天)
8 10 16 5
紧前工序
b,d d d
39
2020/8/8
40
2020/8/8
41
4.工期—成本优化
直接费用:为了加快工程进度,需要增加人力、设备和工作 班次,这需要增加一笔费用,成为直接费用。 间接费用:由于工程早日完工,减少了管理人员的工资办公 费等费用称为间接费用。一般说工序越短,直接费用越多, 间接费用越少。
2020/8/8
装配调试
所需时间(天) 60 45 10 20 40 18 30 15 25 35
紧前工序 / a a a a c d
d, e g b, i, f, h
27
b
45
c3
f 18
10
1
a 60
2
d 20
4
g 30
6
i 25
7j 35
8
e
5h
40
15
28
1 a[0,60] 60
c[60,70] 3 10
a b c d e f g h i
2020/8/8
1.5
2.0
2.5
2.0
2.5
6.0
1.0
2.0
3.0
1.5
2.0
2.5
0.5
1.0
1.5
1.0
2.0
3.0
3.0
3.5
7.0
3.0
4.0
5.0
1.5
2.0
2.5
13
显然这三种完成活动所需时间都具有一定概率,由经验,我
们可以可以假定这些时间的概率分布近似服从 分布。我们可以
用如下公式计算出完成活动所需的:
平均时间 T
a4mb 6
方差
2
(
ba 6
)
2
例如:完成工作g所需平均时间:
Tg
a 4m b 6
3.0 4 3.5 7.0 6
4
同时求出方差为
4 9
14
同样可以求出每个活动的完成所需平均时间及方差
活动 T(平均时间) 方差 活动 T
方差
a
2
0.028 f
2
0.111
2 d[60.80] 20
b[60,105] 45 f[70,88] 18
g[80,110] i[110.135]
4 30 6 25
j[135,170]
7
8
35
e[60.100] 40
h[100,115]
5 15
29
b[60,105]
45[90,135]
f[70,88]
c[60,70] 3
[117,135]
43
模型一,在既定的时间T完工的前提下,问各工序的完成时间为 多少才使因缩短工期而增加的直接费用最少。
设工序(i ,j)的提前完工时间为yij,我们用Tij,T`ij分别表示正
常完工时间与最快完工的时间,则有工序(i ,j)的实际完工时
间为:Tij- yij 。我们用Cij,C`ij表示用正常完工时间和最快完成时
30
最后将各工序的时差,以及其他信息构成工序时间表如表所示。
这样就找到了一条由关键工序a,d,g,i和j依次连接成的从发点到收 点的关键路线。
31
完成工序所需时间不确定
例9-2
2020/8/8
32
2020/8/8
33
2020/8/8
运筹学--线性规划
34
关键线路 1 3 6 7
P(T
11
一、工作时间 t (i, j )
确定型
概率型 缺乏统计来确定完成每个活动所需时间,但对所需时间做 了三种估计: 1.乐观时间。指所需最少时间,用a表示。 2.最可能时间。指正常时间,用m表示。 3.悲观时间。指不顺利情况下,最多时间,用b表示。
2020/8/8
12
例9.3
活动 乐观时间 最可能时间 悲观时间
10[107,117]
a[0,60]
1 2 60[0,60]
d[60.80] 20[60,80]
4 6 7 8 g[80,110] 30[80,110]
i[110.135] 25[110,135]
j[135,170] 35[135,170]
e[60.100] 40[80,120]
5 h[100,115] 15[120,135
9
在绘制统筹方法的网络图时,要注意图中不能有缺口和回路。
a
2
1 60
b 15
5
e
13 c
8 f
7
h 5
8
d 3
4
10 g
38
16 6
图4
避免交叉
节点标号:j > i i
j
10
第二节 时间参数的计算
在绘制出网络图之后,我们可以由网络图求出: 1、完成此工程项目所需的最少时间。 2、每个工序的开始时间与结束时间。 3、关键路线及其应用的关键工序。 4、非关键工序在不影响工程的完成时间的前提下,其开始时 间与结束时间可以推迟多久。