二阶非线性常微分方程的打靶法
- 格式:ppt
- 大小:1.05 MB
- 文档页数:14
非线性微分方程边值问题打靶算法Matlab程序【非线性微分方程边值问题打靶算法】参见:// matlabsky /thread-828-1-1.html【线性微分方程边值问题打靶算法】参见 :// matlabsky /thread-827-1-1.html 【线性微分方程边值问题有限差分算法】参见:// matlabsky /thread-829-1-1.html下面我们讲解下【非线性微分方程边值问题打靶算法】对于边值问题线性边值问题时,p、q和r只是x的函数,但是非线性时它们是x,y和y'的函数我们将问题转换为如下初值问题现在我们需要做的就是找到那个m,使得y(b)=beta,换句话说y现在由两个变量最终控制,即m和x。
对于这个求m的问题,我们可以使用牛顿迭代法得到(1)先给出一个初值m=1(2)计算出对应的y(b)为yb,这个直接使用ode45计算,得到y(end,1)就是yb(3)根据beta和yb的差异更新m(4)将新的m带入(2)重新计算yb并更新m(5)如此迭代直到m稳定或者在允许误差范围内下面详细描述了Matlab代码的运行过程以下内容需要回复才能看到复制内容到剪贴板代码:function [t,x]=nlineshoot(funcn,funcv,tspan,bound,tol,varargin)%对微分方程y''=p*y'+q*y+r,a<t<b,u(a)=alpha,u(b)=beta,其中p,q和r为x,y和y'的函数%只要对应修改p,q,r并将y'用x(2)替换,y用x(1)替换,就可以了%funcn=@(t,x)[x(2);p*x(2)+q*x(1)+r];%funcv=@(t,x)[x(2);p*x(2)+q*x(1)+r;x(4);x(3)*dF/dy+x(4)*dF/y'];%%% Example%F=y''=2y*y',y(0)=-1,y(pi/2)=1%%由方程有p=2y=2*x(1),q=r=0%dF/dy=2*y'=2*x(2) %y'用x(2)替换,y用x(1)替换%dF/dy'=2*y=2*x(1)%%funcn=@(t,x)[x(2);2*x(1)*x(2)];%funcv=@(t,x)[x(2);2*x(1)*x(2);x(4);2*x(2)*x(3)+2*x(1)*x(4)]; %tspan=[0 pi/2];%bound=[-1 1];%tol=1e-8;%[t,y]=nlineshoot(funcn,funcv,tspan,bound,tol);%plot(t,y)%legend('x1','x2')%%by dynamic%see also :// matlabsky%2009.3.12%%lb=bound(1);ub=bound(2);m0=0;m=1;while norm(m-m0)>tolm0=m;[t,x]=ode45(funcv,tspan,[lb;m;0;1],varargin);m=m0-(x(end,1)-ub)/x(end,3);end[t,x]=ode45(funcn,tspan,[lb;m]);下面的图形是代码中附带实例的运行结果线性微分方程边值问题打靶算法Matlab程序【非线性微分方程边值问题打靶算法】参见:// matlabsky /thread-828-1-1.html 【线性微分方程边值问题打靶算法】参见:// matlabsky /thread-827-1-1.html【线性微分方程边值问题有限差分算法】参见:// matlabsky /thread-829-1-1.html注意该算法只能完成二阶常微分方程双边值问题求解,至于其他形式的边值问题必须先转换到二阶形式对于下面的二阶常微分方程利用上面方程的线性结果和两个特殊的初值问题,我们可以构造两个等效的常微分初值方程初值问题,对于初值问题我们就可以直接使用ode**计算器或者龙哥库塔算法求解了。
常微分方程打靶法
常微分方程打靶法是一种解常微分方程初值问题的数值解法。
它的基本思想是通过将初值问题转化为一个对参数的非线性方程,然后使用数值迭代的方法来逼近该非线性方程的解。
具体步骤如下:
1. 将常微分方程的初值问题表示为一个一阶方程组的形式。
2. 假设参数的初值,并将问题转化为一个求解非线性方程的问题。
3. 对于每个猜测的参数值,使用常微分方程的数值解法(例如欧拉法或龙格-库塔法)来求解对应的一阶方程组。
4. 根据数值解的结果,计算逼近解的误差。
5. 使用数值迭代的方法(如牛顿法)来更新参数的值,直到逼近解的误差满足预设的要求。
6. 重复步骤3~5,直到得到满足要求的逼近解。
通过常微分方程打靶法,可以有效地求解一些常微分方程初值问题,尤其是对于无解析解的情况。
然而,该方法的收敛性和稳定性需要根据具体的问题来评估,并且在实际应用中需要对参数的初值选择和迭代过程进行合理的调整。
用某种离散化数值步骤求出常微分方程边值问题在离散点上的近似解的方法。
各种实际问题导出不同类型的边值问题。
较简单的有二阶常微分方程两点边值问题:求函数y=y(x),x∈【α,b】,使它满足微分方程和边值条件式中ƒ、g1、g2为已知函数;α与b为两个给定的端点。
较一般地有一阶常微分方程组两点边值问题:求N个函数使其满足微分方程组和边值条件式中诸ƒn、g i是已知函数;r为给定的自然数。
有些问题因求解区间是无穷区间而被称作奇异边值问题,相应的边界条件变为对解在无穷远处渐近行为的限制,例如,要求y(x)在区间【0,)上平方可积或要求当x趋于无穷时,y(x)趋于某极限值。
还有些实际问题因要求解满足多个点上的条件而被称作多点边值问题。
近年来,对反映边界层现象的奇异摄动边值问题提出了一些新的数值解法。
此外,关于存在多个解的分歧现象数值解问题也引起人们的注意。
打靶法主要思路是:适当选择和调整初值条件,(选什么)求解一系列初值问题,使之逼近给定的边界条件。
如果将描述的曲线视作弹道,那么求解过程即不断调整试射条件使之达到预定的靶子,所以称作打靶法或试射法,此类方法的关键是设计选取初值的步骤。
对非线性边值问题可通过下列步骤求数值解:①计算初值问题的数值解y1。
若g(y1(b),y姈(b))=B,近似地满足,则y1即为所求;否则进行②。
②计算初值问题的数值解y2,若g(y2(b),y娦(b))=B近似地满足,则y2即为所求;否则令m=3进行③。
③将g(y(b),y┡(b))视为y(α)的函数,用线性逆插值法调整初值,即计算然后进行④。
④计算初值问题的数值解y m并进行判定:若b点边值条件近似地满足,则y m即为所求;否则令m+1崊m转向③继续计算直到满意为止。
特别地,若微分方程是线性的,则打靶法变成线性组合法,即根据常微分方程理论适当选取初值可得到一组线性独立解,利用它们的线性组合导出边值问题的解。
例如线性方程边值问题的数值解可通过两个初值问题数值解来实现。
(完整版)二阶常微分方程边值问题的数值解法毕业论文二阶常微分方程边值问题的数值解法摘要求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础.对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析.关键词:常微分方程,边值问题,差分法,Taylor展开,数值解The Numerical Solutions ofSecond-Order Ordinary Differential Equations with the Boundary Value ProblemsABSTRACTThe numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numericalmethods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.For the second-order ordinary differential equations with the boundary value problems, we review two kinds of numerical methods commonly used for linear boundary value problems, i.e. shooting method and finite difference method. There are mainly two ways to create these finite difference methods: i.e. Taylor series expansion method and Numerical Integration. The later one is more flexible, because at the same time it can get the estimates of the truncation errors. We give the exact calculating steps and Matlab codes. Moreover, we compare the advantages and disadvantages in detail of these two methods through a specific numerical example. In the first chapter, we will introduce some backgrounds of the ordinary differential equations and the difference method. In the second chapter, we will obtain difference schemes of the numerical solutions of the Second-Order ordinary differential equations with the boundary value problems through the Taylor expansion. In the third chapter, we using Matlab tosolve the specific examples on the basis of the second chapter, and analyzing the errors.KEY WORDS: Ordinary Differential Equations, Boundary Value Problems, Finite Difference Method, Taylor Expansion, Numerical Solution毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
西京学数学软件实验任务书动方向控制减速的推力,主要的控制量只有一个减速推力,减速还会消耗燃料让登月器的质量减小。
所以在极坐标下系统的状态就是x‘=[质量m,角度theta,高度r,角速度omega,径速度v]这五个量,输入就是减速力F。
先列微分方程,dx/dt=f(x)+B*F,其中x是5*1的列向量,质量dm/dt=-F/2940,剩下几个翻下极坐标的手册。
把这个动力学模型放到matlab里就能求解了,微分方程数值解用ode45。
第一问F=0,让你求椭圆轨道非常容易。
注意附件1里说15公里的时候速度是s。
算完以后验证一下对不对,对的话就是他了,不对的话说明这个椭圆轨道有进动,到时再说。
(2) 算出轨道就能计算减速力了。
这时候你随便给个常数减速力到方程里飞船八成都能降落,但不是最优解。
想想整个过程,开始降落之前飞船总机械能就那么多,你需要对飞船做负功让机械能减到0。
题目里写发动机喷出翔的相对速度是一定的,直觉告诉我飞船速度快的时候多喷一些速度慢的时候少喷一些,可以提高做负功的效率。
但是多喷也不能超过上限7500N,所以这就是一个带约束优化问题,matlab里边有专用的优化函数,用fmincon就好。
找出最优解以后把过程画出来,看看F可不可以是那5个状态量的线性组合,如果是的话就非常happy,不是的话再说。
三四阶段你可以扯点图像识别,什么二维复利叶分解找平坦区域,怎么一边下降一边根据自身状态调整路径之类的。
五六阶段还真不知道说什么。
一二阶段肯定是重点啦(3) 误差分析其实还挺难的。
可能的误差来源是地球的引力,月亮绕地球向心加速度,太阳的引力(可能会很小),对自身速度、角度的测量误差(比如你测出自身当前速度100m/s但实际上是105m/s),控制的时候F大小以及角度的误差(比如你想朝正前方向喷2000N但实际上偏了2度而且F=2010N之类)。
上一问已经求出了最优控制策略和飞船路线,把这些扰动加进去以后算出新的路线减掉理想路线求偏差,然后随便用个卡尔曼滤波器把误差给校正All for Joy2014/9/13 11:14:38老师的思路,求大神解答给我一份呀实验二十七实验报告实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。
二阶常微分方程边值问题的数值解法摘要求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础.对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析.关键词:常微分方程,边值问题,差分法,Taylor展开,数值解The Numerical Solutions ofSecond-Order Ordinary Differential Equations with the Boundary Value ProblemsABSTRACTThe numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.For the second-order ordinary differential equations with the boundary value problems, we review two kinds of numerical methods commonly used for linear boundary value problems, i.e. shooting method and finite difference method. There are mainly two ways to create these finite difference methods: i.e. Taylor series expansion method and Numerical Integration. The later one is more flexible, because at the same time it can get the estimates of the truncation errors. We give the exact calculating steps and Matlab codes. Moreover, we compare the advantages and disadvantages in detail of these two methods through a specific numerical example. In the first chapter, we will introduce some backgrounds of the ordinary differential equations and the difference method. In the second chapter, we will obtain difference schemes of the numerical solutions of the Second-Order ordinary differential equations with the boundary value problems through the Taylor expansion. In the third chapter, we using Matlab tosolve the specific examples on the basis of the second chapter, and analyzing the errors.KEY WORDS: Ordinary Differential Equations, Boundary Value Problems, Finite Difference Method, Taylor Expansion, Numerical Solution毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
二阶非线性常微分方程的打靶法matlab实现二阶非线性常微分方程的打靶法1.问题:试用打靶法求二阶非线性常微分方程亮点边值的数值解:要求用Matlab 编程计算,请给出一些例子,验证你的算法与程序的正确性。
2.打靶法分析:非线性打靶法:非线性打靶法的基本原理是将两点边值问题(1)转化为下面形式的初值问题令z = y ′,将上述二阶方程降为一阶方程组n=length(xvalue)s0=a-0.01;%选取适当的s的初值x0=[alfa,s0];%迭代初值flag=0;%用于判断精度y0=rk4(ff,a,x0,h,a,b);if abs(y0(1,n)-beta)<=epsflag=1;y1=y0;elses1=s0+1;x0=[alfa,s1];y1=rk4(ff,a,x0,h,a,b);if abs(y1(1,n)-beta)<=epsflag=1;endendif flag~=1while abs(y1(1,n)-beta)>epss2=s1-(y1(1,n)-beta)*(s1-s0)/(y1(1,n)-y0( 1,n));x0=[alfa,s2];y2=rk4(ff,a,x0,h,a,b);s0=s1;s1=s2;y0=y1;y1=y2;endendxvalue=a:h:b;yvalue=y1(1,:);ys=[xvalue',yvalue'];function x=rk4(f,t0,x0,h,a,b)%rung-kuta法求每个点的近似值(参考大作业一)t=a:h:b;%迭代区间m=length(t);%区间长度t(1)=t0;x(:,1)=x0;%迭代初值for i=1:m-1L1=f(t(i),x(:,i));L2=f(t(i)+h/2,x(:,i)'+(h/2)*L1);L3=f(t(i)+h/2,x(:,i)'+(h/2)*L2);L4=f(t(i)+h,x(:,i)'+h*L3);x(:,i+1)=x(:,i)'+(h/6)*(L1+2*L2+2*L3+L4); end4.举例求二阶非线性方程的边值问题:在matlab 控制台中输入:f=@(x,y,z)(x^2+z*x^2);x0l=0;x0u=2*exp(-1);alfa=0;beta=2;h=0.01dbf(f,x0l,x0u,y0l,y0u,h,1e-6); >> y=ans(:,2);x=ans(:,1);>> plot(x,y,'-r')>>结果:再输入:>> m=0:0.01:2;>> n=m.*exp(-1/2*m);>> plot(n,m)>> plot(x,y,'-r',n,m,'-b')5.结论:根据得到的图像,可以看到在x 的初值一起末值也就是α和β两点做到了较好的逼近,但是中间部分的逼近不是很理想。
打靶法常微分方程边值问题数值解法- 正文用某种离散化数值步骤求出常微分方程边值问题在离散点上的近似解的方法。
各种实际问题导出不同类型的边值问题。
较简单的有二阶常微分方程两点边值问题:求函数y=y(x),x∈【α,b】,使它满足微分方程和边值条件式中ƒ、g1、g2为已知函数;α与b为两个给定的端点。
较一般地有一阶常微分方程组两点边值问题:求N个函数使其满足微分方程组和边值条件式中诸ƒn、g i是已知函数;r为给定的自然数。
有些问题因求解区间是无穷区间而被称作奇异边值问题,相应的边界条件变为对解在无穷远处渐近行为的限制,例如,要求y(x)在区间【0,)上平方可积或要求当x趋于无穷时,y(x)趋于某极限值。
还有些实际问题因要求解满足多个点上的条件而被称作多点边值问题。
近年来,对反映边界层现象的奇异摄动边值问题提出了一些新的数值解法。
此外,关于存在多个解的分歧现象数值解问题也引起人们的注意。
打靶法主要思路是:适当选择和调整初值条件,(选什么)求解一系列初值问题,使之逼近给定的边界条件。
如果将描述的曲线视作弹道,那么求解过程即不断调整试射条件使之达到预定的靶子,所以称作打靶法或试射法,此类方法的关键是设计选取初值的步骤。
对非线性边值问题可通过下列步骤求数值解:①计算初值问题的数值解y1。
若g(y1(b),y姈(b))=B,近似地满足,则y1即为所求;否则进行②。
②计算初值问题的数值解y2,若g(y2(b),y娦(b))=B近似地满足,则y2即为所求;否则令m=3进行③。
③将g(y(b),y┡(b))视为y(α)的函数,用线性逆插值法调整初值,即计算然后进行④。
④计算初值问题的数值解y m并进行判定:若b点边值条件近似地满足,则y m即为所求;否则令m+1崊m转向③继续计算直到满意为止。
特别地,若微分方程是线性的,则打靶法变成线性组合法,即根据常微分方程理论适当选取初值可得到一组线性独立解,利用它们的线性组合导出边值问题的解。