基因工程 酵母菌基因工程(2)
- 格式:ppt
- 大小:1.03 MB
- 文档页数:42
酵母菌在基因工程中的应用酵母菌是一类单细胞真核生物,是生物科学研究中的一种常见模式生物。
它们普遍存在于自然界中,可以在发酵食品的制备以及生命科学研究领域发挥着重要的作用。
在基因工程领域中,酵母菌更是被广泛应用,成为了基因工程领域的重要工具之一。
下面我们就来看看,酵母菌在基因工程领域中都有哪些应用吧。
一. 酵母菌作为表达宿主酵母菌是一类常见的蛋白表达宿主,能够快速高效地表达蛋白质,是一种常见的蛋白质产生工具。
一般来说,通过基因工程手段将需要表达的蛋白质的基因导入酵母菌中,利用其自身繁殖特性,迅速高效地表达出需要的蛋白质。
此外,在表达蛋白质的过程中,酵母菌的生长条件相对简单,可以通过温度、氧气、营养等因素的控制来实现高效的表达。
二. 酵母菌在药物研究中的应用当前,越来越多的药物研发都依赖于基因工程技术,而酵母菌则成为了药物研发中的重要工具之一。
通过将需要研发的靶点基因导入酵母菌中,可以模拟药物对生物体内靶点的作用过程。
此外,还可以通过酵母菌对药物副作用的研究,为药物的准确作用机制提供参考。
三. 酵母菌在癌症研究中的应用对于癌症的研究一直以来都是生物学家们所关注的重要问题之一。
而酵母菌则成为了癌症研究中的重要研究工具之一。
通过将癌症相关基因导入到酵母菌中,并通过对其复制、修复和细胞凋亡等过程的研究,可以更好地理解癌症的发生机制和治疗过程,为癌症的诊断和治疗提供更好的参考。
四. 酵母菌在基因组研究中的应用对于生命科学研究而言,基因组研究是一项重要的研究领域。
而目前,酵母菌的基因组研究也在不断地发展。
利用酵母菌基因组研究这一工具,可以揭示基因与生物型之间的关系,探寻基因突变造成遗传性疾病的可能机制,还可以帮助人们更好地理解基因间相互作用,促进基因工程技术的发展。
总之,随着基因工程技术的不断发展,酵母菌作为一种常见的模式生物,也在越来越多的领域中发挥着重要的作用。
通过其快速高效的蛋白表达能力以及对生物学过程的模拟研究,酵母菌为人们揭示了生物世界中的许多秘密。
酵母菌遗传工程及其在药物研发中的应用酵母菌是一类在酒类、面包、酸奶等食品加工中被广泛应用的微生物,同时也是生物学研究中的重要模式生物。
近年来,随着生命科学领域的不断发展,酵母菌在遗传工程领域中的应用越来越受到关注,尤其在药物研发中有广阔的应用前景。
一、酵母菌的基本特点及其在基因工程中的优势1、酵母菌的基本特点酵母菌是一类单细胞真菌,其独特的生物学特性,使之在遗传工程及其他研究中得到广泛关注。
酵母菌具有生长快、培养简单、生产糖酵解酒精等方面的优点。
在酵母菌的基因表达及调控方面,其遗传学研究已经得到较为深入的探究,所以在基因工程领域中具有较高的应用价值。
2、酵母菌在基因工程中的优势酵母菌在基因工程领域的应用优势主要表现在以下几个方面:(1)基因操作方便:酵母菌够单细胞生物,体积较小,生长速度较快,培养操作简单。
同时,在酵母菌基因操作方面也相对简单,为学者的研究提供了较为良好的条件。
(2) 基因转化效率高:酵母菌的基因转化效率较高,且在基因转录、译码等方面的表达也较为稳定可靠。
因此,酵母菌是一种理想的表达载体。
(3)多样化的基因表达系统:在酵母菌中,拥有多样化的蛋白表达系统,包括表达外源蛋白、表达重组蛋白等。
同时,酵母菌具有多种诱导基因表达的方法。
二、酵母菌遗传工程及其在药物研发中的应用1、酵母菌在药物研发中的应用酵母菌在药物研发中的应用主要是通过基因操作,将模式生物转化成重要的药物分子表达体,在产生药物的过程中取得重要突破,为医学研究提供了强有力的支持。
酵母菌可以分泌酶类、激素和重组蛋白等,广泛应用于肿瘤治疗、抗体制作和激素治疗等领域。
2、酵母菌表达体在药物研发中的应用酵母菌表达体在药物研发及生产中,具有节约时间、费用,高效易行等优点。
酵母表达体已经在很多领域被广泛应用,其中较为重要的应用领域包括肿瘤治疗药物的研究和生产、激素药物的研发、安全、有效性及毒性试验。
3、酵母菌受体研究在药物研发中的应用酵母菌受体研究在药物研发中的应用,主要是通过基因操作,模拟人体受体,研究受体与药物之间的相互作用,探索受体的构造和药物的结构。
专题二十五基因工程考点1 基因工程的基本工具与操作程序1.[2021某某某某阶段训练,12分]超氧化物歧化酶(SOD)具有抗衰老作用。
研究人员培育了能合成SOD的转基因酵母菌。
结合下图回答下列问题。
注:Hin d Ⅲ和Apa LⅠ是两种限制酶,箭头表示酶的切割位置。
(1)将图中的重组DNA分子用Hin d Ⅲ和Apa L Ⅰ完全酶切后,可得到种DNA片段。
(2)作为受体细胞的酵母菌缺失URA3基因,必须在含有尿嘧啶的培养基中才能存活,为了筛选出成功导入表达载体的酵母菌,所使用的培养基(填“需要”或“不需要”)添加尿嘧啶,理由是。
(3)目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程,称为。
为了确定受体细胞中SOD基因是否转录,可用标记的作探针与从受体细胞中提取的RNA进行分子杂交检测,分子杂交的原理是。
(4)利用蛋白质工程获得活性更高的SOD时,需根据所设计蛋白质的结构推测其氨基酸序列,最终确定相对应的脱氧核苷酸序列并经获得所需的基因。
2.[2020某某示X高中联考,15分]南极某种鱼含有抗冻基因,如图是获取转基因抗冻番茄植株的过程示意图。
请回答下列相关问题:(1)利用①过程的方法获取目的基因需要用到酶。
②过程中常需要用到的工具酶是。
(2)通过①、②过程成功构建的重组质粒,除目的基因外,还应该具备等。
(3)将目的基因导入番茄体细胞的方法是利用农杆菌的作用,其原理是。
(4)要确认抗冻基因是否在转基因番茄植株中表达出相应的蛋白质,可以采用方法,除进行分子检测外,有时还需要进行的鉴定。
考点2 基因工程的应用与蛋白质工程3.[2021某某某某质量检测,12分]植物基因工程技术的发展为人类更好地利用盐碱地提供了可能。
请回答下列问题:(1)欲培育转基因耐盐水稻,需要完成的基因工程的核心步骤是,一个基因表达载体的组成,除了目的基因和复制原点外,还必须有、以及标记基因。
(2)用PCR技术扩增耐盐基因的原理是,目前将耐盐基因导入双子叶植物最常用的方法是。
一、基因工程:按照人们的意愿,进行严格的设计,并通过_____________和________等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在______________水平上进行设计和施工的,因此又叫做_________________.二、基因工程的三大工具:______________—“分子手术刀”;________________—“分子缝合针”;___________—“分子运输车”。
三、限制性核酸内切酶的来源_________________作用部位__________________结果__________________________识别序列______________四、DNA连接酶作用部位是___________________两种常见的DNA连接酶:1._________________.来源____________,只连接______末端;2.______________提取自___________,可连接__________________,连接平末端效率______。
五、质粒是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有______________能力的_________________________DNA分子。
六、标记基因的作用:____________________________.七、使用的载体除质粒外,还有_________________,_________________八、基因工程的步骤__________________________,__________________________,__________________________ ____,________________________________.九、获取目的基因的方法:方法一:______________________________方法二:_____________________方法三________________________.十、cDNA文库:某种生物发育的某个时期的mRNA反转录产生的多种互补DNA片段,与载体连接后储存在一个受体菌群中。
基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。
如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。
7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。
基因工程试卷及答案一、名词解释题1.同尾酶:许多不同的限制酶切割DNA产生的末端是相同的,且是对称的,即它们可以产生相同的黏性突出末端。
这些酶统称为同尾酶。
p222.星星活性:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特殊性称为星星活性。
p263.基因克隆:通过体外重组技术,将一段目的DNA经切割、连接、插入适当载体,并导入受体细胞扩大形成大量子代分子的过程。
p394.基因文库:由大量的含有基因组DNA(即某一生物的全部DNA序列)的不同DNA片段的克隆所构成的群体,称之为基因文库。
p395.包涵体蛋白:在一定条件下,外源基因的表达产物在大肠杆菌中积累并致密地聚集在一起所形成的没有生物活性的、无膜裸露结构。
6.反义核酸:是指一些可以通过碱基互补原则与被感染细胞内部的某个靶标mRNA或DNA结合,抑制或封闭该基因的转录和表达,或切割mRNA使其丧失功能的人工合成的单链反义分子。
p3467.反义DNA::称反义寡核苷酸,是一种人工合成的、能与mRNA互补的、用于抑制翻译的短小反义核酸分子。
p3478.RNA干扰(RNAi):是指对应与某种mRNA的正义RNA和反义RNA组成的双链RNA(dsRNA)分子使mRNA发生特异性降解,导致其不能表达的转录后基因沉默现象。
p3509.限制性内切酶:是一种能识别双链DNA中的特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核苷酸酶。
p1510.基因治疗:是将目的基因放进特定载体中导入靶细胞或组织,通过替换或补偿引起疾病的基因,或者关闭或抑制异常表达的基因来克服疾病的治疗方法。
二、选择题1、DNA分子SexAI每隔多少个碱基会出现一个酶切位点(D )A、256B、1024C、4096D、163842、下列序列中认为哪一个最有可能是二类限制酶切位点(C )A、GAATCGB、GCTATGC、AAATTTD、AGGGGCA3、下列当A260/A280=(A )时,为纯DNA的是。
基因工程习题集一、名词解释:(20×4/)1、基因2、克隆3、基因定位4、PCR5、基因工程工具酶6、组织培养7、限制性核酸内切酶8、受体细胞9、生物技术 10、基因沉默11、重组DNA技术12、逆转录酶13、单克隆抗体14、核移植技术15、细胞融合16、胞内酶17、凝胶过滤18、固定化酶 19、蛋白质工程20、生物反应器二、单项选择题:(60×2/)1.下列关于基因工程应用的叙述,正确的是()A.基因治疗就是把缺陷基因诱变成正常基因B.基因诊断的基本原理是DNA分子杂交C.一种基因探针能检测水体中的各种病毒D.原核基因不能用来进行真核生物的遗传改良2.在已知某小片段基因碱基序列的情况下,获得该基因的最佳方法是()A.用mRNA为模板逆转录合成DNA B.以4种脱氧核苷酸为原料人工合成C.将供体DNA片段转入受体细胞中,再进一步筛选 D.由蛋白质的氨基酸序列推测mRNA 3.我国科学家运用基因工程技术,将苏云金芽孢杆菌的抗虫基因导人棉花细胞并成功表达,培育出了抗虫棉。
下列叙述不.正确的是()A.基因非编码区对于抗虫基因在棉花细胞中的表达不可缺少B.重组DNA分子中增加一个碱基对,不一定导致毒蛋白的毒性丧失C.抗虫棉的抗虫基因可通过花粉传递至近缘作物,从而造成基因污染D.转基因棉花是否具有抗虫特性是通过检测棉花对抗生素抗性来确定的4.采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出转基因羊。
但是,人凝血因子只存在于该转基因羊的乳汁中。
以下有关叙述,正确的是()A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍B.可用显微注射技术将含有人凝血因子基因的重组DNA分子导入羊的受精卵C.在该转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中D.人凝血因子基因开始转录后,DNA连接酶以DNA分子的一条链为模板合成mRNA5.科学家通过基因工程的方法,能使马铃薯块茎含有人奶主要蛋白。
基因工程与酵母菌表面展示载体构建基因工程是一种利用生物技术手段对生物体的基因进行修改和重新组合的过程。
而酵母菌表面展示载体则是一种将外源蛋白质表达在酵母菌表面的工具,用于研究和应用于生物医药领域。
本文将介绍基因工程与酵母菌表面展示载体构建的相关知识和步骤。
首先,进行基因构建前的准备工作。
确定目标蛋白质的序列,为此可以利用已有的文献或数据库进行搜索和筛选。
然后选择合适的酵母菌表面展示载体进行基因的导入和表达。
酵母菌表面展示载体一般包括信号序列、载体复制源、选择标记和目标蛋白质的表达区。
其次,进行基因克隆。
将目标蛋白质的基因序列与酵母菌表面展示载体连接在一起。
这可以通过PCR扩增目标基因、线性化载体,然后利用连接酶将目标基因和载体连接。
也可以利用限制酶将目标基因和载体进行酶切,然后进行连接。
然后,将构建好的基因载体导入酵母菌细胞中。
酵母菌细胞可以利用电转化、化学转化或冷冻转化等方法进行导入。
其中,电转化是最常用的方法,它利用高压脉冲将DNA导入细胞内。
接着,进行酵母菌细胞的培养和表达。
将导入基因载体的酵母菌细胞培养在适当的培养基中,利用荧光检测、Western blot或质谱等方法确认目标蛋白质在细胞内的表达情况。
如果目标蛋白质表达不稳定或表达量较低,可以尝试优化培养条件、选择合适的诱导剂或筛选高表达株系,以提高目标蛋白质的表达水平。
最后,进行酵母菌表面展示验证。
利用荧光显微镜、流式细胞术或ELISA等技术,检测目标蛋白质是否成功表达在酵母菌表面,并研究其在表面展示状态下的稳定性与活性。
还可以利用此酵母菌表面展示系统进行基因工程和酵母菌载体的进一步应用研究,比如疫苗研发、抗体筛选、高通量蛋白质互作研究等。
总结起来,基因工程与酵母菌表面展示载体构建是一项复杂而又有趣的科研工作。
通过合理的基因构建、基因导入和表达调控等步骤,可以实现目标蛋白质的可视化表达和展示,为生物医药领域的研究和应用提供了有力的工具和手段。