血液分析仪概述
- 格式:docx
- 大小:58.38 KB
- 文档页数:27
血液分析仪的功能主治1. 简介血液分析仪是一种用于检测人体血液的医疗设备,通过对血液的成分和特性进行分析和评估,可以帮助医生判断患者的健康状况和诊断疾病。
血液分析仪通常由采样系统、分析系统和结果显示系统组成。
本文将介绍血液分析仪的功能主治。
2. 功能血液分析仪具有多项功能,以下是常见的一些功能:•血细胞计数及血红蛋白浓度测量血细胞计数可以帮助医生了解患者的血液状况,包括红细胞、白细胞和血小板的个数。
血红蛋白浓度测量可以评估患者的贫血情况。
•血液成分分析血液分析仪可以对血清中的各种成分进行定量测量,如血清蛋白、血清脂质、血糖等。
这些数据可以帮助医生评估患者的肝肾功能、糖尿病风险等。
•血小板功能测定血小板功能测定可以评估患者的血小板的凝血功能和止血能力,帮助医生判断患者的出血风险。
•血液凝血功能测定血液凝血功能测定可以评估患者的凝血时间、凝血酶原时间和凝血酶时间等指标,帮助医生评估患者的凝血能力和出血风险。
•血型鉴定血型鉴定是一项重要的检测,可以判断患者的血型,以便医生在输血、器官移植等情况下选择合适的血液来源。
3. 主治应用血液分析仪主要在以下方面有着广泛的应用:•临床诊断血液分析仪可以提供大量的血液参数,帮助医生对患者进行全面的血液分析和评估,从而为临床诊断提供支持。
例如,通过分析白细胞计数、血小板计数、血红蛋白浓度等指标,可以评估患者是否存在感染、贫血等疾病。
•疾病监测血液分析仪可以用于长期患者的疾病监测,例如糖尿病患者的血糖监测、肾病患者的肾功能监测等。
通过定期的血液分析,可以及时了解患者的疾病进展和治疗效果。
•医学研究血液分析仪可以用于医学研究领域,帮助研究人员深入了解血液的成分和特性,探索新的治疗方法和疾病机制。
例如,通过分析血液中特定的蛋白质或细胞类型,可以寻找治疗某些癌症或自身免疫性疾病的新方法。
•健康管理血液分析仪可以用于健康管理领域,例如健康体检机构和家用血液分析仪等。
通过定期的血液分析,可以了解个体的健康状况,及早发现潜在的健康问题。
血液常规分析仪的主要作用是什么血液常规分析仪是一种医疗设备,广泛应用于临床医学和科研领域。
其主要作用是对血液样本进行全面和快速的分析,以评估患者的健康状况、监测疾病进展和指导治疗方案。
本文将探讨血液常规分析仪的主要作用,包括血液成分分析、疾病诊断和治疗监测。
一、血液成分分析血液常规分析仪通过对血液样本中各种成分的测定,提供了丰富的生理指标,对患者的健康状况进行评估。
其中,血红蛋白测定可以反映贫血情况,白细胞计数和分类可以评估免疫功能,血小板计数可以指示出凝血功能是否正常。
此外,血液常规分析仪还可以测定血清中的蛋白质、脂质和糖类等重要成分,提供全面的生化信息。
二、疾病诊断血液常规分析仪在疾病诊断方面发挥着重要作用。
根据不同疾病的特点,通过对血液样本进行分析,可以确定病因、判断疾病类型和指导治疗。
典型的例子是白血病和淋巴瘤等血液系统恶性肿瘤的诊断,血液常规分析仪可以对血液细胞计数、形态和细胞学特征进行分析,以帮助医生作出准确的诊断。
此外,血液常规分析仪还可以对感染性疾病进行早期诊断。
通过检测血液中的炎症指标,如C反应蛋白和白细胞计数,可以快速判断感染的存在和严重程度。
血液常规分析仪还可以检测血液中的病原体,如病毒和细菌,从而辅助正确诊断疾病。
三、治疗监测血液常规分析仪可以监测疾病的治疗效果和患者的健康状态。
在治疗过程中,通过定期检测血液成分和指标的变化,可以评估治疗措施的有效性,及早发现并调整治疗方案。
例如,在化疗过程中,血液常规分析仪可以监测白细胞计数和血小板计数的变化,提供及时的治疗反馈。
此外,血液常规分析仪还可以用于监测慢性疾病的进展,如糖尿病和心血管疾病等。
通过定期检测血糖、血脂和血压等指标,可以帮助患者了解自身病情,采取相应的健康管理措施,减少并发症的发生。
总结起来,血液常规分析仪的主要作用包括血液成分分析、疾病诊断和治疗监测。
它在临床医学中的应用广泛,并在指导医疗决策和改善患者治疗效果方面发挥着重要作用。
电子血液分析仪工作原理电子血液分析仪是一种先进的医疗设备,广泛应用于临床医学和生命科学研究领域。
本文将详细介绍电子血液分析仪的工作原理,帮助读者更好地了解其基本原理和应用。
一、电子血液分析仪的概述电子血液分析仪是一种自动化仪器,能够对人体血液进行全面的分析和检测。
它通过多种传感器和检测模块,实时监测血液中的各项指标,如红细胞计数、血红蛋白含量、血小板计数等,为医生提供准确的检测结果。
二、电子血液分析仪的工作原理电子血液分析仪的工作原理主要包括样本处理、信号检测和数据分析三个步骤。
1. 样本处理样本处理是电子血液分析仪工作的第一步。
首先,护士或医生会采集患者的血液样本,并将其送入电子血液分析仪。
仪器会自动进行样本装载,将样本送入内部的反应池。
在反应池中,样本会与荧光染料和抗体等试剂发生反应。
这些试剂能与血液中的特定成分结合,并产生荧光信号。
2. 信号检测样本处理完成后,电子血液分析仪会启动信号检测模块。
该模块一般由光学系统、电子传感器和控制电路组成。
在信号检测过程中,光学系统会照射通过样本后产生的荧光信号,并将这些信号转化为电子信号。
电子传感器能够测量这些信号的强度和性质,如波长、频率等。
3. 数据分析电子血液分析仪的最后一步是数据分析。
通过对信号检测得到的数据进行处理和比对,仪器能够计算出血液中各项指标的浓度和数值。
数据分析是电子血液分析仪的核心部分。
它基于一系列的算法和模型,将检测到的信号转化为准确的检测结果,并将其显示在仪器的屏幕上。
三、电子血液分析仪的应用电子血液分析仪在临床医学和生命科学研究中具有广泛的应用价值。
它能够为医生提供血液各项指标的快速和准确检测结果。
下面列举一些电子血液分析仪常见的应用场景:1. 临床诊断电子血液分析仪可以在短时间内完成多项血液指标的检测,如血红蛋白、血小板计数、白细胞计数等。
这些指标能够帮助医生判断患者的健康状况,快速作出正确的诊断和治疗决策。
2. 健康体检电子血液分析仪广泛应用于健康体检中。
血液分析仪的原理
血液分析仪是一种用于检测和分析血液样本的设备,它基于一些基本的原理进行工作。
首先,血液分析仪使用一种叫做流式细胞术的技术,将血液样本悬浮在液体中,并通过一个窄小的通道引导血液流动。
这种流动的方式有助于保持细胞的单一排列,并为测量提供便利。
其次,血液分析仪通过使用光学原理来测量血液中的不同成分。
例如,它可以使用激光器产生的光束照射血液样本,然后通过检测散射和吸收的光来测量细胞的大小、形状和浓度。
不同类型的细胞会对光的散射和吸收产生不同的响应,因此可以通过这种方式来识别不同的细胞类型。
此外,血液分析仪还可以使用电化学传感器来检测血液中的电化学反应。
这些传感器通常是基于特定的分子与电极之间的化学反应,例如酶反应或氧化还原反应。
通过测量这些反应产生的电流或电势变化,可以确定血液中的特定分子的浓度。
最后,血液分析仪通常还会结合一些计算和数据处理的算法,以将测量结果转化为实际的数值。
这些算法可以基于已知的标准曲线或模型来进行计算,从而得出血液中各个成分的浓度或其他相关参数。
总的来说,血液分析仪的原理基于流式细胞术、光学原理和电化学原理,通过测量和分析血液中的不同成分来提供有关血液健康状况的信息。
血液分析仪原理
血液分析仪是一种用于检测血液中各种成分和指标的仪器,它可以帮助医生了
解患者的健康状况,进行疾病诊断和治疗监测。
在现代医疗中,血液分析仪已经成为不可或缺的设备之一。
那么,血液分析仪的原理是什么呢?
首先,血液分析仪的原理是基于光学原理的。
它利用光的吸收、散射、透射等
特性,通过测量血液中各种成分对光的影响来进行分析。
当血液通过血液分析仪时,光线会穿过血液样本,不同成分的血液会对光产生不同的作用,这些作用会被血液分析仪检测到并转化为电信号,然后通过计算机进行处理,最终得出血液中各种成分的含量和指标。
其次,血液分析仪的原理还涉及到化学分析原理。
在血液分析仪中,有一些特
殊的试剂和传感器,可以与血液中的成分发生化学反应,通过检测这些化学反应的结果,来确定血液中各种成分的含量和指标。
这种原理的血液分析仪通常被称为化学发光免疫分析仪,它可以检测血液中的蛋白质、激素、细胞因子等物质,对于一些特定的疾病诊断和治疗监测具有重要意义。
此外,血液分析仪的原理还包括细胞计数原理。
血液中的红细胞、白细胞、血
小板等细胞成分对于人体健康具有重要的意义,血液分析仪可以通过细胞计数原理来精确测量这些细胞的数量和形态特征,从而帮助医生进行疾病诊断和治疗监测。
总的来说,血液分析仪的原理是基于光学、化学和细胞计数原理的综合应用,
通过测量血液中各种成分和指标的特性,来帮助医生了解患者的健康状况。
随着科学技术的不断进步,血液分析仪的原理也在不断完善,使得它在临床医疗中发挥着越来越重要的作用。
希望本文能够帮助大家更加了解血液分析仪的原理,对于医学工作者和相关领域的人士有所帮助。
血液分析仪原理
血液分析仪是一种广泛应用于临床医学的仪器,通过对人体血液样本的检测和分析,能够提供关于个体的生理状态、病理变化以及疾病诊断的重要信息。
血液分析仪的原理基于现代光学、化学和生物技术等多种科学原理。
首先,血液样本被送入分析仪中进行前处理,以分离血浆、血红蛋白和血小板等不同成分。
然后,通过光学技术测量样本中的吸光度,得到与成分浓度相关的信号。
典型的血液分析仪可以通过各种方法来测量血液中的不同成分。
例如,通过流式细胞术,可以对血细胞进行计数和分类,并且可以检测红细胞的大小、形态以及白细胞的种类和数量。
此外,血液分析仪还可以测量血浆中的各种生化指标,例如血脂、葡萄糖、电解质、肝功能指标和肾功能指标等。
血液分析仪在工作过程中需要高度精确的测量结果。
为了保证准确性,血液样本通常需要事先进行标定,并且在测量过程中要进行质量控制。
血液分析仪还需要经过严格的校准和验证,以确保测量结果的可靠性和一致性。
总的来说,血液分析仪的原理是基于对血液样本中不同成分的测量和分析,通过光学、化学和生物技术等多种科学原理,提供关于个体生理状态和疾病诊断的重要信息。
这些信息对于医疗诊断和治疗具有重要的指导作用。
血细胞分析仪介绍1. 引言血细胞分析仪是一种用于血液样本分析的仪器,可以快速、准确地检测血液中的各类细胞数量、形态和功能等信息。
血细胞分析仪广泛应用于临床诊断、科研实验室以及血库等场所,为医疗工作和疾病研究提供了重要的帮助。
本文将对血细胞分析仪的基本原理、分类、工作流程以及常见应用进行介绍。
2. 基本原理血细胞分析仪的工作原理基于流式细胞术(Flow Cytometry)技术。
该技术通过使样本细胞以单个细胞为单位通过聚焦的激光束,利用散射光和荧光光谱的不同特性对细胞进行检测和分析。
通过读取激光与细胞相互作用后产生的散射光和荧光信号,血细胞分析仪可以获取细胞的数量、形态和功能等信息。
3. 分类根据不同的检测参数和功能,血细胞分析仪可以分为多种类型,常见的分类包括:3.1 表面标记分析仪表面标记分析仪主要用于研究细胞膜上的特定标记物。
通过将荧光染料或荧光标记的抗体与目标标记物结合,血细胞分析仪可以定量测量细胞表面标记物的表达水平,并进一步研究其功能或相关性。
3.2 细胞周期分析仪细胞周期分析仪用于研究细胞的生命周期。
通过利用DNA染料和荧光检测技术,血细胞分析仪可以对细胞进行DNA含量测定,从而判断细胞所处的不同周期阶段。
3.3 细胞凋亡分析仪细胞凋亡分析仪用于研究细胞的凋亡(程序性死亡)过程。
通过测量细胞核内DNA的断裂情况、细胞膜磷脂外翻等指标,血细胞分析仪可以定量分析细胞凋亡的程度。
3.4 红细胞分析仪红细胞分析仪主要用于测量血液中红细胞的数量和形态特征。
通过测量红细胞的大小、形态、颜色和分布等指标,血细胞分析仪可以帮助医生了解红细胞相关的疾病或贫血情况。
4. 工作流程血细胞分析仪的工作流程一般包括样本处理、细胞检测和数据分析等步骤。
4.1 样本处理在样本处理阶段,操作人员需要按照仪器的要求,将需要检测的血液样本进行预处理。
通常包括对样本进行稀释、混匀和染色等步骤。
样本处理的质量对后续的细胞检测结果有着重要的影响,因此操作人员需要严格按照操作规范进行操作。
血液分析仪的原理和作用血液分析仪是一种用于血液分析的仪器,它可以快速准确地测量血液中各种成分的含量和特征。
这些成分包括红细胞、白细胞、血红蛋白、血小板、血糖、脂质、电解质等。
血液分析仪广泛应用于医疗机构、实验室、疾病筛查、科研等领域,它对于疾病的诊断、治疗以及健康管理起到了重要的作用。
血液分析仪的原理是通过多种技术手段对血液样本进行检测和分析。
主要包括传统的光学测量技术,如吸光度法、荧光法、散射法等,以及现代化的电子检测技术,如流式细胞仪、电子血细胞计数器、高速成像等。
首先,光学测量技术是血液分析仪的核心原理之一。
血液中的红细胞、白细胞、血小板等成分对不同波长的光有不同的吸收特性。
通过对血液样本中透过光的强度进行测量,可以得到不同成分的浓度和特征。
例如,吸光度法是利用红细胞对红外光的吸收特点进行测量,从而得到红细胞数量和形态特征;荧光法是通过荧光标记物与特定成分的结合来测量其浓度。
其次,电子检测技术在血液分析仪中也起到了关键的作用。
流式细胞仪是一种常见的电子检测设备,它利用细胞对激光光束的散射和荧光信号来进行细胞的计数和分析。
通过将血液样本通过微细孔洞,使单个细胞单元依次通过测量区域,测量细胞体积、形态、荧光特征等指标。
电子血细胞计数器则利用电子计数原理,通过对血液样本中的细胞进行离子分流、电激发等技术,实现对细胞的计数和分类。
血液分析仪的作用主要体现在以下几个方面:1. 疾病的诊断与监测:血液分析仪可以对血液中的各种成分进行快速准确的测量和分析,从而帮助医生对疾病进行早期诊断和监测。
例如,通过测量血红蛋白和红细胞数量可以诊断贫血;通过测量白细胞数量和分类可以判断感染和炎症等;通过测量血小板数量可以判断出血倾向等。
2. 药物疗效监测:血液分析仪可以监测某些药物在血液中的浓度和代谢情况,从而帮助医生评估药物治疗效果和剂量调整。
例如,抗癌药物的治疗效果可以通过监测白细胞数量和分类来评估;抗凝血药物的治疗效果可以通过监测凝血酶原时间来评估。
血液分析仪原理
血液分析仪是一种用于评估人体健康状况的医疗设备。
它通过分析血液样本,可以提供关于血细胞、血小板、血红蛋白、白细胞计数等重要指标的信息。
血液分析仪的工作原理是基于光学和电学技术。
当血液样本进入仪器时,首先对样本进行预处理,以消除异物和净化血液。
然后,将样本放置在血液解析腔中,该腔内充满了特定的试剂。
在分析过程中,血液分析仪使用光源照射样本,并通过测量样本对特定波长光的吸收和散射来获得相关信息。
光经过样本后会被传感器捕获,该传感器量化了光被样本吸收的程度。
这些吸收和散射的特性可以提供有关血液中各种成分的丰度和特征的信息。
测量的结果经过数字化处理,并通过仪器的显示屏或输出设备呈现给操作者。
分析仪通常配备了预设的参考值范围,用于将测量结果与正常值进行比较。
这样,医生或技术人员可以根据测量结果评估患者的健康状况,并作出相应的诊断和治疗决策。
总之,血液分析仪通过光学和电学原理对血液样本进行分析,提供关于血液成分的信息,从而为医疗诊断和治疗提供支持。
血液分析仪(综述)(一)2016-6-9|编辑: admin|查看: 263|评论: 0|来源: CAIVD摘要: 第一节概述血液分析仪(Hematology Analyzer),又称血细胞分析仪(Blood Cell Analyzer),也可称为血细胞计数仪(Blood Cell Counter),主要用于检测血液标本,能对血液中有形成分进行定性、定量分析,并提供相 ...第一节概述血液分析仪(Hematology Analyzer),又称血细胞分析仪(Blood Cell Analyzer),也可称为血细胞计数仪(Blood Cell Counter),主要用于检测血液标本,能对血液中有形成分进行定性、定量分析,并提供相关信息的仪器。
一、产品定义、性能及应用特点自50 年代初库尔特先生发明了粒子计数技术的专利,制造了第一台血液分析仪并应用于临床以来,血液分析仪的发展已有60年的历史。
血液分析仪实质上是指对一定体积血细胞数量及异质性进行分析的仪器。
最初的血球计数仪(Cell Counter)仅能计数红细胞(RED)和白细胞(WBC),后来又有了血红蛋白HBG),血小板(PLT),红细胞压积(HCT),平均红细胞体积(MCV)等几个参数。
而发展成为血液分析仪 (HematologyAnalyzer)后,又增加了许多分析和计算参数,如红细胞体积分布宽度(RDW),平均血小板体积(MPV),血小板体积分布宽度(PDW),血小板压积(PCT),大血小板比率,白细胞三分群,白细胞五分类,血红蛋白浓度分布宽度,异常淋巴细胞提示,幼稚细胞提示等各种参数和功能也不断地添加到一些品牌的仪器上。
为了纪念库尔特先生对血液分析仪的贡献,特将其计数原理命名为库尔特原理(the coulter principle)即电阻抗原理,该原理现已成为血细胞计数和分析中最经典的原理。
库尔特原理的基本含义是:在待测液体中置一微孔,在微孔的两端各加一定电压的电极,当液体中的颗粒经过微孔时,电极间的电阻就会产生瞬间的变化,以因而产生电脉冲,对这种电脉冲进行计数就可得到颗粒的数量,脉冲幅度的大小表示颗粒的体积的大小,经过对各种细胞所产生脉冲的大小的电子的选者择,可以区分出不同种类的细胞;在液体中加上一定的负压就能使经过微孔的液体流动。
随着电子技术,流式细胞技术,激光技术,电子计算机技术和新荧光化学物质等多种高科技技术在临床检验工作的应用,使血液分析仪在自动化程度,先进功能和完美设计方面提高到了一个崭新的阶段,血液分析仪已经不仅仅局限在进行常规的血细胞分析,还增加了许多扩展功能,例如将网织红细胞(RET)的计数和分析功能加入其中,一些仪器还另外增加了幼稚细胞分析和有核红细胞分析功能,甚至对血液细胞中某些寄生虫进行提示,更有一些仪器把流式细胞分析仪的某些功能合并到血液分析仪上,在进行常规血细胞分析时可得到某些淋巴细胞亚群的分析结果。
在常规血细胞计数仪上,红细胞(RBC),血小板(PLT)共用一个测量通道,血红蛋白含量(HGB)的测定在任何类型,档次的仪器中其测试原理都是相同的。
白细胞的计数和分类有其专用的通道,现就对分析仪上各测试项目所使用的技术方法和原理作些简要介绍。
1、血红蛋白含量测定血红蛋白含量的测定是在被稀释的血液中加入溶血剂后,使红细胞释放出血红蛋白,后者与溶血剂结合形成血红蛋白衍生物,进入血红蛋白测试系统,在特定波长(一般在530-550nm)下比色,吸光度的变化与液体中Hb 含量成比例,仪器便可显示Hb 浓度。
不同系列的血液分析仪配套溶血剂配方不同,形成的血红蛋白衍生物也不同,但大多数的最大吸收光谱接近540nm。
近年来许多高档的分析仪上采用了激光散射法进行单个血红细胞血红蛋白的分析,以尽量减少高WBC,乳糜血,高胆红素等对HBG 比色的影响。
2、血红细胞及血小板的检测血红细胞的检测是血液分析仪的重要组成部分,红细胞的检测以往主要还是使用阻抗法对红细胞的数目和体积计数,以此分选出不同大小的信号并打印出红细胞体积分布直方图。
但现在也采用光学和电阻抗法结合的处理方法对红细胞体积进行三维空间分析(3D)以期得到更正确的结果。
如拜尔的ADVIA 120以光散射法检测红细胞,以低角度前向光散射和高角度散射两个测量系统同时测量1 个红细胞,根据低角度光转换能量的大小测量单个红细胞体积与总数;根据高角度的光散射得出单个血红蛋白浓度,可准确得出MCV(平均红细胞体积),MCH(平均血红蛋白含量),MCHC(平均血红蛋白浓度)测定值,并绘出红细胞散射图,单个红细胞体积及红细胞Hb 含量的直方图及求出RWD(红细胞体积分布宽度),HDW(红细胞血红蛋白分布宽度)等参数。
由于血小板和红细胞体积的明显差异,很容易用一个限定阈值将两者同时测得的光电信号区分。
因此,迄今为止全血分析中血小板,红细胞检查均采用一个共用的分析系统。
但由于血小板和红细胞测量信号常有交叉,如大血小板的脉冲信号可能被误认为红细胞而计数,小红细胞的脉冲信号可能进入血小板通道,造成实验误差。
各血液分析仪生产厂家采用多种先进技术以减少血小板计数的干扰,以下我们就分别给予介绍:扫流技术(sweep flow):由于血小板和红细胞在同一个计数池中计数,红细胞体积较大,在通过正中计数感应区时会形成一个大脉冲,若有回流会同时又产生一个因涡流再度进入感应区边缘而形成的小脉冲使电极可能感应到相当于血小板大小的小脉冲,使血小板计数假性增多。
扫流技术是在进行红细胞和血小板计数的同时,在红细胞计数小孔的后面有一个稳定的液流通过,这样可以使后的红细胞被立即冲走,以防止回到感应区被计数为血小板。
传统血液学常规检查方法是借助于显微镜进行人工血液红细胞、白细胞计数和血涂片染色后显微镜进行肉眼人工白细胞分类,每检测一份标本至少要20分钟才能出检测报告,不仅检测项目少,且费时费力,准确性、可靠性受到一定影响,难以进行质量控制。
到20 世纪50 年代血细胞分析仪(Automated Heamatology Analyzer)问世以来,血细胞自动分析从单一的电阻抗技术发展成为多种技术的融合包括物理学、化学、免疫学、流式细胞术、信息处理技术、如体积传导光散射(VCS)、多角度偏振光散射(MAPSS)等,使对各种血细胞分析结果更加准确可靠;自动化方面,血细胞自动分析已由单一半自动不分类到的三分群/五分类(3/5-part differential)发展为血细胞自动分析的流水线,即将全血细胞计数(CBC)、网织红细胞(Ret)计数、外周血推片和染色等过程实现全自动化,临床应用方面,血细胞自动分析的检测参数由单一的血细胞计数结果发展为可向临床诊断,鉴别诊断、治疗和预后监测提供数二十多个参数。
近年来,我国在血液自动分析领域也取得了十分可喜的成绩。
目前,各级医院、乡镇、社区医疗机构血液分析仪已逐步得到普及,CBC 检测结果的精密度和准确度明显提高;大中型医院检验科拥有多台血液分析仪,有的大型或教学医院还拥有血液自动分析的流水线;同时,各级医院已基本建立血液自动分析的质控程序,大大提高了全血细胞计数(CBC)的工作效率。
第二节血液分析仪的发展历程近年来,随着先进仪器的普及应用和技术人员素质的提高,我国的检验医学事业有了飞速的发展。
近10 年来,各种类型的血液分析仪在国迅速普及。
血液分析仪的应用,不但提高了检验结果的质量和工作效率,而且为临床提供了更多更可靠的试验指标,对疾病的诊断和鉴别诊断起了重要的作用。
同时也取得了较好的经济效益和社会效益。
一、血液分析仪的发展传统的血液学检查:显微镜手工检验法。
血细胞计数、白细胞分类结果准确性、可靠性受到一定影响,检验人员费时费力。
1947 年美国科学家库尔特(W.H.Coulter)发明了用电阻法计数粒子的专利技术。
1956 年他又将这一技术应用于血细胞计数获得成功,其原理是根据血细胞非传导的性质,以电解质溶液中悬浮血细胞在通过计数小孔时引起的电阻变化进行检测为基础,进行血细胞计数和体积测定,这种方法称为电阻法或库尔特原理。
60 年代末血细胞分析仪除可进行血细胞计数外,还可以同时测定HBG 血红蛋白。
70 年代计算机技术快速发展,将血小板计数的繁琐手续(手工分离富血小板血浆后在进行血小板计数),改进成血小板与红细胞同时计数。
80 年代,发展迅速,在8 项检测基础上加上红细胞指数、三个直方图的报告,不仅提供是否贫血,且可对贫血的类型和原因进行分析;血小板参数对止血和血栓疾病的诊断及一些疾病的疗效观察有重要价值。
开发了白细胞3 分群血细胞分析仪。
90 年代,开发出五分类血液分析仪和可对网状红细胞进行计数的血细胞分析仪,同时,将激光、射频、化学染色计数应用于对细胞检测更成熟,发展成为血液分析流水线。
二.白细胞分类技术的进展最早进行白细胞分类的设备仅根据白细胞的体积分布情况将淋巴细胞单独划分出来。
在1970 年起Coulter 公司开始设计对白细胞进行分类的仪器,并首先推出了二分类的S-PLUS 系列仪器,然后在1980 年又推出了T 系列,都是可进行白细胞二分群的仪器,大家比较熟悉的SysmexF800 和F820 型也是根据白细胞体积分布直方图进行粗略两分类的仪器。
目前半自动或全自动型具有18 参数含白细胞三分类的血细胞分析仪已经成为我国医院检验科的主流血细胞分析仪。
仅仅根据简单的体积分析法就将血细胞进行分类,无论是三分类(3-partdifferential)还是二分类(2- partdifferential),其实是将细胞按照体积大小进行了简单的分群处理,实际上是不科学的,因此国专家建议将此分类统一称呼为分群(group),即二分群型或三分群型血细胞分析仪。
第三节现代血液分析仪的主要进展随着高科技的应用和基础医学的发展,各种先进的血细胞分析测试技术被应用到血液分析仪上。
1987 年Coulter 公司发明的VCS(Volume,V,体积;conductivity,C,电导性;Scatter,S,光散射)技术可使血细胞未经任何处理,在与体形态完全相同的自然状态下得出检测结果。
而在SYSMEX 的NE-8000和SF-3000 血细胞分析仪中采用了阻抗和射频技术联合的白细胞分类法。
进入90 年代后,仪器的自动化程度增高(达到120 份/小时);可进行多参数分析(高达30 余项);精密度高(重复计数;保证微孔管清洁;取中段血;运动流式细胞计数原理;鞘流原理……);向5 分类及鉴别幼稚细胞发展;准确度好,全面质量管理,保证仪器检测可靠性;具有智能化,可对同一病人诊断的前后进行对比,提出综合意见,确定诊断方向;更加注意保护操作人员的安全(SLS-Hb、自动混匀、进样、吸样针外清洗等);向流水线发展,将血液分析仪、网织红细胞计数仪、推片、染色机联成流水操作线。